Applied Sciences | Open Access | DOI: https://doi.org/10.37547/tajas/Volume08Issue01-07

Information Technology and Natural Language Processing in Education: A Systematic and Bibliometric Review (2020–2025)

Marwah Naeem Hassooni , Ministry of Education, Directorate for Education in the Province of Maysan, Iraq

Abstract

The development of digital health crowdfunding has become a crucial alternative source of financing, and the research on it is still incomplete. The proposed study will utilize the PRISMA protocol and bibliometric methods, performance analysis, Bradford Law, and science mapping to 121 articles being indexed in Scopus (2010-2025). Findings present four journals at the heart of the research, such as Journal of Medical Internet Research, Social Science and Medicine, Journal of Medical Ethics, BMC Public Health, and Information Processing and Management, with an overall lack of disciplinary focus. The field is organized into thematic clusters, which are trust and transparency, equity and inclusion, technology integration, and platform governance. They also change the thematic direction greatly as those investigations that were aimed at descriptive explorations in the early 2014-2021 are replaced with the middle debates of the 2022-2023 era (which are still centered on legitimacy), and the newer concerns (2024-2025) are centered around equity, regulation, and new technologies (AI, blockchain, gamification, etc.). Given the apparent lack of theoretical cohesiveness despite the burgeoning development of the discipline, this paper provides the first systematic bibliometric synthesis of digital health crowdfunding and demands integrative, theoretically grounded frameworks of connections between donor behaviour, platform governance, and systemic inequities.

Keywords

Natural Language Processing (NLP), Information Technology, Educational Technology, Bibliometric Analysis, Post-COVID Digital Education

References

Adeshola, I., & Adepoju, A. P. (2024). The opportunities and challenges of ChatGPT in education. Interactive Learning Environments, 32(10), 6159-6172.

Ahadi, A., Singh, A., Bower, M., & Garrett, M. (2022). Text mining in education—A bibliometrics-based systematic review. Education Sciences, 12(3), 210. https://doi.org/10.3390/educsci12030210

Alhawiti, K. M. (2014). Natural language processing and its use in education. International Journal of Advanced Computer Science and Applications, 5(12), 72–76. https://doi.org/10.14569/IJACSA.2014.051210

Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., Bin Saleh, K., ... & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in social and administrative pharmacy, 19(8), 1236-1242.

Taha, M. S., Haddad, A. A. A., Alrashdi, N. A. Y., Mahdi, M. H., Khalid, H. N., & Yousif, Q. J. (2021, July). An advance vehicle tracking system based on Arduino electronic shields and web maps browser. In 2021 International Conference on Advanced Computer Applications (ACA) (pp. 238-243). IEEE.

Jabbar, N. K., Naderan, M., & Taha, M. S. (2025). HybridIoMT: A Dual-Phase Machine Learning Framework for Robust Cybersecurity in Internet of Medical Things. International Journal of Intelligent Engineering & Systems, 18(4).‏

Hanoon, F. S., Çevik, M., & Taha, M. S. (2024, May). A fault classification for defective solar cells in electroluminescence imagery based on deep learning approach. In AIP Conference Proceedings (Vol. 3097, No. 1, p. 050006). AIP Publishing LLC.‏

Asraa, S. A., Haddad, A. A. A., Hameed, R. S., & Taha, M. S. (2025). An Accurate Model for Text Document Classification Using Machine Learning Techniques. Ingenierie des Systemes d'Information, 30(4), 913.‏

Burstein, J., Shore, J., Sabatini, J., Moulder, B., Lentini, J., Biggers, K., & Holtzman, S. (2014). From teacher professional development to the classroom: How NLP technology can enhance teachers' linguistic awareness to support curriculum development for English language learners. Journal of Educational Computing Research, 51(1), 119-144.

Ismael, B. M., Ngadi, M. A., Sharif, J. B. M., & Taha, M. S. (2025). Multi-Agent Reinforcement Learning for User-Router Assignment in Multi-Radio Multi-Channel Wireless Mesh Networks. International Journal of Intelligent Engineering & Systems, 18(8).‏

Abdullah, A. M., Kaittan, A. M., & Taha, M. S. (2021). Evaluation of the stability enhancement of the conventional sliding mode controller using whale optimization algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 21(2), 744-756.‏

Abdulghani, S. F., Shtayt, B. A., Taha, M. S., & Hashim, M. M. (2025, September). Effective Knowledge Graph Representation for Cybersecurity Using AI-Based X Data and Named Entity Relation Technique. In International Conference on Cybersecurity and Artificial Intelligence Strategies (pp. 71-89). Cham: Springer Nature Switzerland.‏

Gutiérrez, L. (2023). Artificial intelligence in language education: Navigating the potential and challenges of chatbots and NLP. Research Studies in English Language Teaching and Learning, 1(3), 180-191.

Han, L., Long, X., & Wang, K. (2024). The analysis of educational informatization management learning model under the internet of things and artificial intelligence. Scientific Reports, 14(1), 17811.

Ali, N. S., Alsafo, A. F., Ali, H. D., & Taha, M. S. (2024). An effective face detection and recognition model based on improved YOLO v3 and VGG 16 networks. International Journal of Computational Methods and Experimental Measurements, 12(2), 107-119.‏

Obaid, A. L., Haddad, N. M., & Taha, M. S. (2024, November). DL-SCDDS: Accurate Skin Cancer Detection and Diagnosis Scheme Based on an Improved Convolutional Neural Networks Model. In International Human-Centered Technology Conference (pp. 201-214). Cham: Springer Nature Switzerland.‏

Kastrati, Z., Dalipi, F., Imran, A. S., Pireva Nuci, K., & Wani, M. A. (2021). Sentiment analysis of students’ feedback with NLP and deep learning: A systematic mapping study. Applied Sciences, 11(9), 3986.

Hashim, M. M., Ajeel, N. K., Alhamdane, H. J., Herez, A. H., Taha, M. S., & Ali, A. H. (2020, July). Based on Competitive Marketing: A New Framework mechanism in Social Media. In IOP Conference Series: Materials Science and Engineering (Vol. 881, No. 1, p. 012121). IOP Publishing.‏

Lin, B. (2022). Knowledge management system with nlp-assisted annotations: A brief survey and outlook. arXiv preprint arXiv:2206.07304.

Locatelli, M., Seghezzi, E., Pellegrini, L., Tagliabue, L. C., & Di Giuda, G. M. (2021). Exploring natural language processing in construction and integration with building information modeling: A scientometric analysis. Buildings, 11(12), 583.

Lopez-Martinez, R. E., & Sierra, G. (2020). Natural language processing, 2000-2019—a bibliometric study. Journal of Scientometric Research, 9(3), 310-318.

Lukwaro, E., Kalegele, K., & Nyambo, D. (2024). A review on nlp techniques and associated challenges in extracting features from education data.

McNamara, D. S., Allen, L. K., Crossley, S. A., Dascalu, M., & Perret, C. A. (2017). Natural Language Processing and Learning Analytics. Grantee Submission.

Meng, Q., Song, Y., Mu, J., Lv, Y., Chen, J., Xu, L., Zhao, J., Ma, J., Yao, W., & Wang, R. (2023). Electric power audit text classification with multi-grained pre-trained language model. IEEE Access, 11, 13510–13518.

Odden, T. O. B., Marin, A., & Rudolph, J. L. (2021). How has Science Education changed over the last 100 years? An analysis using natural language processing. Science Education, 105(4), 653-680.

Opara, E., Mfon-Ette Theresa, A., & Aduke, T. C. (2023). ChatGPT for teaching, learning and research: Prospects and challenges. Opara Emmanuel Chinonso, Adalikwu Mfon-Ette Theresa, Tolorunleke Caroline Aduke (2023). ChatGPT for Teaching, Learning and Research: Prospects and Challenges. Glob Acad J Humanit Soc Sci, 5.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2022). The PRISMA 2020 statement: an updated guideline for reporting systematic reviewsDeclaracion PRISMA 2020: una guia actualizada para la publicacion de revisiones sistematicas. Revista panamericana de salud publica= Pan American journal of public health, 46, e112-e112.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372.

Sarkis-Onofre, R., Catalá-López, F., Aromataris, E., & Lockwood, C. (2021). How to properly use the PRISMA Statement. Systematic reviews, 10(1), 117.

Seemab, S., Zaigham, M. S., Bhatti, A., Khan, H., & Mughal, U. A. (2024). Sentiment analysis of student feedback in higher education using Natural Language Processing (NLP). Contemporary Journal of Social Science Review, 2(04), 1741-1750.

Shaik, T., Tao, X., Li, Y., Dann, C., McDonald, J., Redmond, P., & Galligan, L. (2022). A review of the trends and challenges in adopting natural language processing methods for education feedback analysis. Ieee Access, 10, 56720-56739.

Stoykova, S., & Shakev, N. (2023). Artificial intelligence for management information systems: Opportunities, challenges, and future directions. Algorithms, 16(8), 357.

Tugwell, P., & Tovey, D. (2021). PRISMA 2020. Journal of Clinical Epidemiology, 134, A5-A6.

Vo, N. N., Vu, Q. T., Vu, N. H., Vu, T. A., Mach, B. D., & Xu, G. (2022). Domain-specific NLP system to support learning path and curriculum design at tech universities. Computers and Education: Artificial Intelligence, 3, 100042.

Wang, H. (2022). Applications of NLP in medical informatics and health systems. Journal of Medical Internet Research, 24(7), e32456.

Wang, M., Sun, Z., Jia, M., Wang, Y., Wang, H., Zhu, X., ... & Ji, H. (2022). Intelligent virtual case learning system based on real medical records and natural language processing. BMC Medical Informatics and Decision Making, 22(1), 60.

Wu, H., Li, S., Gao, Y., Weng, J., & Ding, G. (2024). Natural language processing in educational research: The evolution of research topics. Education and Information Technologies, 29(17), 23271-23297.

Wulff, P., Westphal, A., Mientus, L., Nowak, A., & Borowski, A. (2023, January). Enhancing writing analytics in science education research with machine learning and natural language processing—Formative assessment of science and non-science preservice teachers’ written reflections. In Frontiers in Education (Vol. 7, p. 1061461). Frontiers Media SA.

Younis, H. A., Ruhaiyem, N. I. R., Ghaban, W., Gazem, N. A., & Nasser, M. (2023). A systematic literature review on the applications of robots and natural language processing in education. Electronics, 12(13), 2864.

Zaki, N., Turaev, S., Shuaib, K., Krishnan, A., & Mohamed, E. (2023). Automating the mapping of course learning outcomes to program learning outcomes using natural language processing for accurate educational program evaluation. Education and Information Technologies, 28(12), 16723-16742.

Zhou, M., Duan, N., Liu, S., & Shum, H. Y. (2020). Progress in neural NLP: Modeling, learning, and reasoning. Engineering, 6(3), 275–290.

Download and View Statistics

Views: 0   |   Downloads: 0

Copyright License

Download Citations

How to Cite

Hassooni, M. N. (2026). Information Technology and Natural Language Processing in Education: A Systematic and Bibliometric Review (2020–2025). The American Journal of Applied Sciences, 8(01), 46–71. https://doi.org/10.37547/tajas/Volume08Issue01-07