Applied Sciences | Open Access | DOI: https://doi.org/10.37547/tajas/Volume08Issue01-06

Numerical Verification Of The Rao–Cramer Inequality And Analysis Of The Efficiency Of Statistical Estimators

Abdukhakimov Saidakhmat Khazratkulovich , Associate Professor, Jizzakh Branch of the National University of Uzbekistan, Uzbekistan
Abdukhakimova Maftuna Gofur qizi , PhD, Lecturer, Jizzakh Branch of the National University of Uzbekistan, Uzbekistan
Ganiyeva Dilrabo Aliyevna , Master’s Student, Jizzakh Branch of the National University of Uzbekistan, Uzbekistan

Abstract

This paper is devoted to the analysis of the Rao–Cramer inequality and the efficiency of statistical estimators. In the theoretical part, it is shown that the sample mean   obtained from a normal distribution is an unbiased and maximally efficient estimator of the parameter   In the applied part, the empirical variance is computed for different sample sizes using Monte Carlo simulation and compared with the Rao–Cramer lower bound. The obtained results are visualized through graphs and tables, providing numerical evidence that the sample mean is an efficient estimator.

Keywords

Rao–Cramer inequality, probability density function, Fisher information

References

Х. Крамер Математические методы статистики. - М.: Мир, 1975. - 648с.

C.R. Рao Линейные статистические выводы и их приложения. - М.: Наука, 1981. - 520 с.

C. P.Robert., G.Casella. Monte Carlo Statistical Methods. - New York: Springer, 2004. - 645 p.

G.Casella., R. L.Berger Statistical Inference. — Pacific Grove: Duxbury Press, 2002. - 660 p.

A. M.Mood., F. A. Graybill Boes D. C.Introduction to the Theory of Statistics. - New York: McGraw-Hill, 1974. - 564 p.

A.А.Джалилов.,С.Х Абдухакимов. Периодический точки неустойчивой сепаратрисы Фейгенбаума. Бюллетинь Института математика № 6 13-16 (2019).

S.X.Abdukhakimov., M.K.Khomidov The orbit of critical point and thermodynamic formalism for critical circle maps without periodic points. Uzbek Mathematical Journal, 2020 № 3pp. 4-15.

A.А. Dжалилов., С.Х. Абдухакимов. Поведение дисперсии стохастической функции Ляпунова для отображения Фейгенбаума. Бюллетинь Института математика 2021. Vol. 4.№2. стр. 46-52.

A.А. Dжалилов., С.Х. Абдухакимов. Случайные возмущения для семейства унимодальных отображений. ДОКЛАДЫ Академии наук Республики Узбекистан 2021. №2. Стр. 9-14.

S.X. Abdukhakimov., M.G‘. Abdukhakimova. A theorem on the resonant fractions of the rotation number and their margins in circle mappings. September 22–27, 2025. Jizzakh, Uzbekistan.

S.X. Abdukhakimov., M.G‘. Abdukhakimova., and S.K. Sanayev, Ergodicity of circle homeomorphisms with several breaks. Presented at the conference, September 22–27, Jizzakh, Uzbekistan.

S.X.Abdukhakimov., M.G‘.Abdukhakimova. Analysis of infinite orbits and the first return map in critical circle dynamics. Oktabr 18,2025 Samarqand, Uzbekiston.

Download and View Statistics

Views: 0   |   Downloads: 0

Copyright License

Download Citations

How to Cite

Abdukhakimov Saidakhmat Khazratkulovich, Abdukhakimova Maftuna Gofur qizi, & Ganiyeva Dilrabo Aliyevna. (2026). Numerical Verification Of The Rao–Cramer Inequality And Analysis Of The Efficiency Of Statistical Estimators. The American Journal of Applied Sciences, 8(01), 39–45. https://doi.org/10.37547/tajas/Volume08Issue01-06