Numerical Verification Of The Rao–Cramer Inequality And Analysis Of The Efficiency Of Statistical Estimators
Abdukhakimov Saidakhmat Khazratkulovich , Associate Professor, Jizzakh Branch of the National University of Uzbekistan, Uzbekistan Abdukhakimova Maftuna Gofur qizi , PhD, Lecturer, Jizzakh Branch of the National University of Uzbekistan, Uzbekistan Ganiyeva Dilrabo Aliyevna , Master’s Student, Jizzakh Branch of the National University of Uzbekistan, UzbekistanAbstract
This paper is devoted to the analysis of the Rao–Cramer inequality and the efficiency of statistical estimators. In the theoretical part, it is shown that the sample mean obtained from a normal distribution is an unbiased and maximally efficient estimator of the parameter In the applied part, the empirical variance is computed for different sample sizes using Monte Carlo simulation and compared with the Rao–Cramer lower bound. The obtained results are visualized through graphs and tables, providing numerical evidence that the sample mean is an efficient estimator.
Keywords
Rao–Cramer inequality, probability density function, Fisher information
References
Х. Крамер Математические методы статистики. - М.: Мир, 1975. - 648с.
C.R. Рao Линейные статистические выводы и их приложения. - М.: Наука, 1981. - 520 с.
C. P.Robert., G.Casella. Monte Carlo Statistical Methods. - New York: Springer, 2004. - 645 p.
G.Casella., R. L.Berger Statistical Inference. — Pacific Grove: Duxbury Press, 2002. - 660 p.
A. M.Mood., F. A. Graybill Boes D. C.Introduction to the Theory of Statistics. - New York: McGraw-Hill, 1974. - 564 p.
A.А.Джалилов.,С.Х Абдухакимов. Периодический точки неустойчивой сепаратрисы Фейгенбаума. Бюллетинь Института математика № 6 13-16 (2019).
S.X.Abdukhakimov., M.K.Khomidov The orbit of critical point and thermodynamic formalism for critical circle maps without periodic points. Uzbek Mathematical Journal, 2020 № 3pp. 4-15.
A.А. Dжалилов., С.Х. Абдухакимов. Поведение дисперсии стохастической функции Ляпунова для отображения Фейгенбаума. Бюллетинь Института математика 2021. Vol. 4.№2. стр. 46-52.
A.А. Dжалилов., С.Х. Абдухакимов. Случайные возмущения для семейства унимодальных отображений. ДОКЛАДЫ Академии наук Республики Узбекистан 2021. №2. Стр. 9-14.
S.X. Abdukhakimov., M.G‘. Abdukhakimova. A theorem on the resonant fractions of the rotation number and their margins in circle mappings. September 22–27, 2025. Jizzakh, Uzbekistan.
S.X. Abdukhakimov., M.G‘. Abdukhakimova., and S.K. Sanayev, Ergodicity of circle homeomorphisms with several breaks. Presented at the conference, September 22–27, Jizzakh, Uzbekistan.
S.X.Abdukhakimov., M.G‘.Abdukhakimova. Analysis of infinite orbits and the first return map in critical circle dynamics. Oktabr 18,2025 Samarqand, Uzbekiston.
Download and View Statistics
Copyright License
Copyright (c) 2026 Abdukhakimov Saidakhmat Khazratkulovich, Abdukhakimova Maftuna Gofur qizi, Ganiyeva Dilrabo Aliyevna

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.


Applied Sciences
| Open Access |
DOI: