Applied Sciences | Open Access |

Extreme-Intensity Laser–Matter Interactions and the Emergence of Strong-Field Quantum Electrodynamics in the Petawatt Era

Luca Romano , Department of Physics, Sapienza University of Rome, Rome, Italy

Abstract

The rapid evolution of ultra-high-power laser technology over the past two decades has fundamentally transformed the experimental and theoretical landscape of high-field physics. The realization of petawatt-class and multi-petawatt laser systems has enabled laboratory access to electromagnetic field strengths approaching, and in some regimes exceeding, those naturally occurring in extreme astrophysical environments. This technological leap has catalyzed the emergence of strong-field quantum electrodynamics as an experimentally accessible domain, where radiation reaction, nonlinear Compton scattering, Breit–Wheeler pair production, and quantum electrodynamic cascades play dominant roles in laser–matter interactions (Danson et al., 2015; Di Piazza et al., 2012). Recent demonstrations of laser intensities surpassing twenty-three orders of magnitude in watts per square centimeter have further narrowed the gap between theoretical predictions formulated in the mid-twentieth century and their direct empirical validation (Yoon et al., 2021). Within this context, the present article develops a comprehensive and critical examination of extreme-intensity laser–matter interactions grounded strictly in the provided literature corpus. The analysis integrates historical developments in laser science, foundational quantum electrodynamics in strong fields, and contemporary experimental and numerical studies of radiation reaction and electron–positron plasma formation. Rather than offering a cursory overview, the article elaborates each concept through extensive theoretical background, scholarly debate, and critical interpretation, emphasizing unresolved tensions between classical, semiclassical, and fully quantum descriptions. Particular attention is devoted to the role of laser-driven particle accelerators, plasma mirrors, and laser–beam collider geometries in enabling experimentally feasible access to nonperturbative regimes of quantum electrodynamics (Bell and Kirk, 2008; Vincenti, 2019; Magnusson et al., 2019). The results section interprets reported findings as emergent patterns within the literature, while the discussion situates these findings within broader debates on the limits of current models, experimental constraints, and the future trajectory toward exawatt-class facilities. By synthesizing advances in laser technology with developments in strong-field theory, this article aims to provide a publication-ready, deeply analytical contribution to the understanding of how extreme light–matter interactions redefine both plasma physics and fundamental quantum theory.

Keywords

Ultra-intense lasers, strong-field quantum electrodynamics, radiation reaction, electron–positron pair production

References

Aniculaesei, C., Ha, T., Yoffe, S., Labun, L., Milton, S., McCary, E., Spinks, M. M., Quevedo, H. J., Labun, O. Z., Sain, R., Hannasch, A., Zgadzaj, R., Pagano, I., Franco-Altamirano, J. A., Ringuette, M. L., Gaul, E., Luedtke, S. V., Tiwari, G., Ersfeld, B., Brunetti, E., Ruhl, H., Ditmire, T., Bruce, S., Donovan, M. E., Downer, M. C., Jaroszynski, D. A., & Hegelich, B. M. (2023). The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator. Matter and Radiation at Extremes.

Bell, A. R., & Kirk, J. G. (2008). Possibility of prolific pair production with high-power lasers. Physical Review Letters.

Blackburn, T. G. (2020). Radiation reaction in electron–beam interactions with high-intensity lasers. Reviews of Modern Plasma Physics.

Danson, C., Hillier, D., Hopps, N., & Neely, D. (2015). Petawatt class lasers worldwide. High Power Laser Science and Engineering.

Danson, C. N., Haefner, C., Bromage, J., Butcher, T., Chanteloup, J.-C. F., Chowdhury, E. A., Galvanauskas, A., Gizzi, L. A., Hein, J., Hillier, D. I., Hopps, N. W., Kato, Y., Khazanov, E. A., Kodama, R., Korn, G., Li, R., Li, Y., Limpert, J., Ma, J., Nam, C. H., et al. (2019). Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering.

Di Piazza, A., Müller, C., Hatsagortsyan, K. Z., & Keitel, C. H. (2012). Extremely high-intensity laser interactions with fundamental quantum systems. Reviews of Modern Physics.

Di Piazza, A., Wistisen, T. N., Tamburini, M., & Uggerhøj, U. I. (2020). Testing strong field QED close to the fully nonperturbative regime using aligned crystals. Physical Review Letters.

Erber, T. (1966). High-energy electromagnetic conversion processes in intense magnetic fields. Reviews of Modern Physics.

Gonsalves, A. J., Nakamura, K., Daniels, J., Benedetti, C., Pieronek, C., de Raadt, T. C. H., Steinke, S., Bin, J. H., Bulanov, S. S., van Tilborg, J., Geddes, C. G. R., Schroeder, C. B., Tóth, C., Esarey, E., Swanson, K., Fan-Chiang, L., Bagdasarov, G., Bobrova, N., Gasilov, V., Korn, G., Sasorov, P., & Leemans, W. P. (2019). Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Physical Review Letters.

Lobet, M., Davoine, X., d'Humières, E., & Gremillet, L. (2017). Generation of high-energy electron–positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser. Physical Review Accelerators and Beams.

Magnusson, J., Gonoskov, A., Marklund, M., Esirkepov, T. Z., Koga, J. K., Kondo, K., Kando, M., Bulanov, S. V., Korn, G., & Bulanov, S. S. (2019). Laser-particle collider for multi-GeV photon production. Physical Review Letters.

Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J., Jaroszynski, D. A., Langley, A. J., Mori, W. B., Norreys, P. A., Tsung, F. S., Viskup, R., Walton, B. R., & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature.

Nikishov, A. I., & Ritus, V. I. (1964). Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field. Soviet Physics JETP.

Poder, K., Tamburini, M., Sarri, G., Di Piazza, A., Kuschel, S., Baird, C. D., Behm, K., Bohlen, S., Cole, J. M., Corvan, D. J., Duff, M., Gerstmayr, E., Keitel, C. H., Krushelnick, K., Mangles, S. P. D., McKenna, P., Murphy, C. D., Najmudin, Z., Ridgers, C. P., Samarin, G. M., Symes, D. R., Thomas, A. G. R., Warwick, J., & Zepf, M. (2018). Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Physical Review X.

Qu, K., Meuren, S., & Fisch, N. J. (2021). Signature of collective plasma effects in beam-driven QED cascades. Physical Review Letters.

Radier, C., Chalus, O., Charbonneau, M., Thambirajah, S., Deschamps, G., David, S., Barbe, J., Etter, E., Matras, G., Ricaud, S., et al. (2022). 10 PW peak power femtosecond laser pulses at ELI-NP. High Power Laser Science and Engineering.

Ridgers, C. P., Brady, C. S., Duclous, R., Kirk, J. G., Bennett, K., Arber, T. D., Robinson, A. P. L., & Bell, A. R. (2012). Dense electron–positron plasmas and ultraintense gamma rays from laser-irradiated solids. Physical Review Letters.

Vincenti, H. (2019). Achieving extreme light intensities using optically curved relativistic plasma mirrors. Physical Review Letters.

Vranic, M., Martins, J. L., Vieira, J., Fonseca, R. A., & Silva, L. O. (2014). All-optical radiation reaction at extreme intensities. Physical Review Letters.

Yoon, J. W., Kim, Y. G., Choi, I. W., Sung, J. H., Lee, H. W., Lee, S. K., & Nam, C. H. (2021). Realization of laser intensity over extremely high thresholds. Optic

Download and View Statistics

Views: 0   |   Downloads: 0

Copyright License

Download Citations

How to Cite

Luca Romano. (2026). Extreme-Intensity Laser–Matter Interactions and the Emergence of Strong-Field Quantum Electrodynamics in the Petawatt Era. The American Journal of Applied Sciences, 8(01), 1–7. Retrieved from https://theamericanjournals.com/index.php/tajas/article/view/7196