
Arbuscular Mycorrhizal Symbiosis Modulates the Expression of ZmSWEET Genes to Enhance Sugar Partitioning and Accumulation in Maize (Zea mays L.)
Dr. Jian Li , State Key Laboratory for Plant-Microbe Interactions, College of Agronomy, China Agricultural University, Beijing, China Prof. Elena Petrova , Department of Plant Molecular Biology, Wageningen University & Research, Wageningen, Netherlands Dr. Samuel Jones , Donald Danforth Plant Science Center, St. Louis, Missouri, USAAbstract
Background: Arbuscular mycorrhizal fungi (AMF) form a crucial symbiosis with most land plants, including maize (Zea mays L.), enhancing nutrient uptake in exchange for plant-derived carbon. The SWEET (Sugars Will Eventually be Exported Transporters) family of proteins are key mediators of sugar flux, but their specific roles in regulating carbon partitioning during maize-AMF symbiosis and the downstream effects on sugar accumulation in sink tissues are not well understood.
Methods: We conducted a greenhouse experiment to investigate the effects of inoculating maize with the AMF species Funneliformis mosseae. We compared inoculated (AM) and non-inoculated (NM) plants, measuring mycorrhizal colonization, plant growth parameters, photosynthetic efficiency, and soluble sugar (sucrose, glucose, fructose) concentrations in roots, leaves, and kernels. The expression levels of core ZmSWEET genes in root and leaf tissues were quantified using quantitative real-time PCR (qRT-PCR).
Results: AMF inoculation led to successful root colonization (~55%) and significantly increased plant biomass, and net photosynthetic rates compared to NM controls. Sugar concentrations were significantly elevated in the leaves and kernels of AM plants. In mycorrhizal roots, the expression of putative symbiosis-related genes ZmSWEET1b and ZmSWEET4c was upregulated by 4.2- and 3.5-fold, respectively. Critically, in the leaves of AM plants, the expression of key phloem-loading and sink-related genes, ZmSWEET11 and ZmSWEET13a, was also significantly enhanced by 2.8- and 3.1-fold, respectively.
Conclusion: Our findings demonstrate that AMF symbiosis orchestrates a sophisticated, dual regulation of the ZmSWEET gene family in maize. It localizes specific ZmSWEETs to the root-fungus interface to facilitate carbon delivery to the symbiont, while systemically upregulating different ZmSWEETs in source leaves. This systemic reprogramming enhances sugar transport efficiency throughout the plant, leading to increased sugar accumulation in kernels. This work elucidates a key molecular mechanism by which AMF can improve both the growth and nutritional quality of maize.
Keywords
Arbuscular mycorrhizal fungi (AMF), Zea mays L., SWEET transporters, Sugar metabolism, Gene expression, Plant-microbe symbiosis.
References
Wang, J.J.; Yan, D.; Liu, R.; Wang, T.; Lian, Y.J.; Lu, Z.; Hong, Y.; Wang, Y.; Li, R. The physiological and molecular mechanisms of exogenous melatonin promote the seed germination of maize (Zea mays L.) under salt stress. Plants 2024, 13, 2142.
Chaudhary, D.P.; Kumar, S.; Yadav, O.P. Nutritive value of maize: Improvements, applications and constraints. In Maize: Nutrition Dynamics and Novel Uses; Chaudhary, D.P., Kumar, S., Langyan, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–17.
National Bureau of Statistics of China. National Grain Production Data for 2024. Available online: https://www.stats.gov.cn/ (accessed on 20 February 2025).
Borriello, R.; Lumini, E.; Girlanda, M.; Bonfante, P.; Bianciotto, V. Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol. Fert. Soils 2012, 48, 911–922.
Chen, X.; Wu, X.L.; Liu, S.R.; Hu, X.C.; Liu, C.Y. Effects of AMF on photosynthetic characteristics and gene expressions of tea plants under drought stress. Acta Hortic. Sin. 2024, 51, 2358–2370.
Bunn, R.A.; Corrêa, A.; Joshi, J.; Kaiser, C.; Lekberg, Y.; Prescott, C.E.; Sala, A.; Karst, J. What determines transfer of carbon from plants to mycorrhizal fungi? New Phytol. 2024, 244, 1199–1215.
Liu, Z.; Cheng, X.F.; Zou, Y.N.; Srivastava, A.K.; Alqahtani, M.D.; Wu, Q.S. Negotiating soil water deficit in mycorrhizal trifoliate orange plants: A gibberellin pathway. Environ. Exp. Bot. 2024, 219, 105658.
Zou, Y.N.; Wu, Q.S.; Kuˇca, K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021, 23, 50–57.
Ma, J.Q.; Wang, W.Q.; Yang, J.; Qin, S.F.; Yang, Y.S.; Sun, C.; Pei, G.; Zeeshan, M.; Liao, H.; Liu, L. Mycorrhizal symbiosis promotes the nutrient content accumulation and affects the root exudates in maize. BMC Plant Biol. 2022, 22, 64.
Zhou, J.; Zhang, L.; Feng, G.; George, T.S. Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization. Soil Biol. Biochem. 2022, 171, 108713.
Wright, S.F.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107.
Cao, M.A.; Wang, P.; Hashem, A.; Wirth, S.; Abd_Allah, E.F.; Wu, Q.S. Field inoculation of arbuscular mycorrhizal fungi improves fruit quality and root physiological activity of citrus. Agriculture 2021, 11, 1297.
Meng, L.L.; He, J.D.; Zou, Y.N.; Wu, Q.S.; Kuˇca, K. Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant Soil Environ. 2020, 66, 183–189.
Zhao, H.; Liu, Z.; Han, Y.; Cao, J. Impact of silver nanoparticles on arbuscular mycorrhizal fungi and glomalin-related soil proteins in the rhizosphere of maize seedlings. Diversity 2024, 16, 273.
Ramírez-Flores, M.R.; Bello-Bello, E.; Rellán-Álvarez, R.; Sawers, R.J.; Olalde-Portugal, V. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize (Zea mays ssp. mays L.). Plant Direct 2019, 3, e00192.
Bisht, A.; Gupta, M.M. Arbuscular mycorrhiza fungi resources for sustainable and climate-smart cultivation of maize. In Fungal Resources for Sustainable Economy: Current Status and Future Perspectives; Singh, I., Rajpal, V.R., Navi, S.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 299–317.
Aguégué, M.R.; Ahoyo Adjovi, N.R.; Agbodjato, N.A.; Noumavo, P.A.; Assogba, S.; Salami, H.; Salako, V.K.; Ramón, R.; Baba-Moussa, F.; Adjanohoun, A. Efficacy of native strains of arbuscular mycorrhizal fungi on maize productivity on ferralitic soil in Benin. Agric. Res. 2021, 11, 627–641.
Assogba, S.; Noumavo, P.A.; Dagbenonbakin, G.; Agbodjato, N.; Akpode, C.; Koda, A.D.; Aguegue, R.M.; Bade, F.; Adjanohoun, A.; Rodriguez, A.F.; et al. Improvement of maize productivity (Zea mays L.) by mycorrhizal inoculation on ferruginous soil in center of Benin. Int. J. Sustain. Agric. Res. 2017, 4, 63–76.
Wu, X.J.; Li, Z.F.; Guo, P.P.; Zhang, L. Effects of different arbuscular mycorrhizal fungi on the growth and the nitrogen and phosphorus absorption of sweet corn seedlings. J. Trop. Biol. 2023, 14, 167–172.
Koda, A.D.; Dagbenonbakin, G.; Assogba, F.; Noumavo, P.A.; Agbodjato, N.A.; Assogba, S.; Aguegue, R.M.; Adjanohoun, A.; Rivera, R.; de la Noval Pons, B.M.; et al. Maize (Zea mays L.) response to mycorrhizal fertilization on ferruginous soil of northern Benin. J. Exp. Biol. Agric. Sci. 2018, 6, 919–928.
Wang, Y.J.; Wu, Q.S. Influence of sugar metabolism on the dialogue between arbuscular mycorrhizal fungi and plants. Hortic. Adv. 2023, 1, 2.
Walmsley, A.R.; Barrett, M.P.; Bringaud, F.; Gould, G.W. Sugar transporters from bacteria, parasites and mammals: Structure-Activity relationships. Trend. Biochem. Sci. 1998, 23, 476–481.
Julius, B.T.; Leach, K.A.; Tran, T.M.; Mertz, R.A.; Braun, D.M. Sugar transporters in plants: New insights and discoveries. Plant Cell Physiol. 2017, 58, 1442–1460.
Chen, L.Q.; Hou, B.H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X.Q.; Guo, W.J.; Kim, J.G.; Underwood, W.; Chaudhuri, B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010, 468, 527–532.
Ji, J.L.; Yang, L.M.; Fang, Z.Y.; Zhang, Y.Y.; Zhuang, M.; Lv, H.H.; Wang, Y. Plant SWEET family of sugar transporters: Structure, evolution and biological functions. Biomolecules 2022, 12, 205.
Zheng, F.L.; Wang, Y.J.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Mycorrhizae with Funneliformis mosseae regulate the trehalose synthesis and sucrose cleavage for enhancing drought tolerance in trifoliate orange. Sci. Hortic. 2024, 337, 113486.
Díaz, V.; Villalobos, M.; Arriaza, K.; Flores, K.; Hernández-Saravia, L.P.; Velásquez, A. Decoding the dialog between plants and arbuscular mycorrhizal fungi: A molecular genetic perspective. Genes 2025, 16, 143.
Manck-Götzenberger, J.; Requena, N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front. Plant Sci. 2016, 7, 487.
Zheng, L.; Zhao, S.; Zhou, Y.; Yang, G.; Chen, A.; Li, X.; Wang, J.; Tian, J.; Liao, H.; Wang, X. The soybean sugar transporter GmSWEET6 participates in sucrose transport towards fungi during arbuscular mycorrhizal symbiosis. Plant Cell Environ. 2024, 47, 1041–1052.
An, J.; Zeng, T.; Ji, C.; de Graaf, S.; Zheng, Z.; Xiao, T.T.; Deng, X.; Xiao, S.; Bisseling, T.; Limpens, E. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. New Phytol. 2019, 224, 396–408.
Graham, J.H.; Duncan, L.W.; Eissenstat, D.M. Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytol. 1997, 135, 335–343.
Liang, S.M.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Transcriptomic analysis reveals potential roles of polyamine and proline metabolism in waterlogged peach roots inoculated with Funneliformis mosseae and Serendipita indica. Tree Physiol. 2025, 45, tpaf013.
Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161.
Wu, Q.S.; Li, Y.; Zou, Y.N.; He, X.H. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 2015, 25, 121–130.
Wen, Y.; Zhou, L.J.; Xu, Y.J.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Growth performance and osmolyte regulation of drought-stressed walnut plants are improved by mycorrhiza. Agriculture 2024, 14, 367.
Zhu, J.L.; Zhou, L.; Li, T.F.; Ruan, Y.Y.; Zhang, A.; Dong, X.; Zhu, Y.; Li, C.; Fan, J. Genome-wide investigation and characterization of SWEET gene family with focus on their evolution and expression during hormone and abiotic stress response in maize. Genes 2022, 13, 1682.
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 2001, 25, 402–408.
Berger, F.; Gutjahr, C. Factors affecting plant responsiveness to arbuscular mycorrhiza. Curr. Opin. Plant Biol. 2021, 59, 101994.
Gange, A.C.; Ayres, R.L. On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos 1999, 87, 615–621.
Lu, J.-N. The Effects of Arbuscular Mycorrhizal Fungi on the Growth of Three Grassland Plants. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2023.
Ren, Z.; Xia, T.Y.; Chen, L.J.; Han, L.; Chen, Z.B.; Bai, H.L. Effect of different AMF on physiological related indexes of corn. Southwest China J. Agric. Sci. 2015, 28, 563–568.1
Ramírez-Flores, M.R.; Perez-Limon, S.; Li, M.; Barrales-Gamez, B.; Albinsky, D.; Paszkowski, U.; Olalde-Portugal, V.; Sawers, R.J. The genetic architecture of host response reveals t2he importance of arbuscular mycorrhizae to maize cultivation. eLIFE 2020, 9, e61701.
Liu, R.C.; Yang, L.; Zou, Y.N.; Wu, Q.S. Root-associated endophytic fungi modulate endogenous auxin and cytokinin levels to improve plant biomass and root morphology of trifoliate orange. Hortic. Plant J. 2023, 9, 463–472.
Mathur, S.; Sharma, M.P.; Jajoo, A. Improved photosynthetic efficacy of maize (Zea mays L.) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J. Photochem. Photobiol. B Biol. 2018, 180, 149–154.
Chen, F.; Yan, S.; Wang, H.L.; Zhang, K.; Zhao, F.N.; Huang, X.Y. Study on gas exchange parameters and water use efficiency of spring wheat leaves under different levels of water stress. Arid. Zone Res. 2021, 38, 821–832.
Singh, M.; Sharma, J.G.; Giri, B. Augmentative role of arbuscular mycorrhizal fungi, Piriformospora indica, and plant growth-promoting bacteria in mitigating salinity stress in maize (Zea mays L.). J. Plant Growth Regul. 2024, 43, 1195–1215.
Zhu, X.C.; Song, F.B.; Liu, S.Q.; Liu, T.D. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 2011, 346, 189–199.
Augé, R.M.; Toler, H.D.; Saxton, A.M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza 2015, 25, 13–24.
Boldt, K.; Pörs, Y.; Haupt, B.; Bitterlich, M.; Kühn, C.; Grimm, B.; Franken, P. Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J. Plant Physiol. 2011, 168, 1256–1263.
Liu, R.C.; Gao, W.Q.; Srivastava, A.K.; Zou, Y.N.; Kuˇca, K.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Differential effects of exogenous glomalin-related soil proteins on plant growth of trifoliate orange through regulating auxin changes. Front. Plant Sci. 2021, 12, 745402.
Holátko, J.; Brtnický, M.; Kuˇcerík, J.; Kotianová, M.; Elbl, J.; Kintl, A.; Kynický, J.; Benada, O.; Datta, R.; Jansa, J. Glomalin–truths, myths, and the future of this elusive soil glycoprotein. Soil Biol. Biochem. 2021, 153, 108116.
Wu, Q.S.; Srivastava, A.K.; Li, Y. Effects of mycorrhizal symbiosis on growth behavior and carbohydrate metabolism of trifoliate orange under different substrate P levels. J. Plant Growth Regul. 2015, 34, 499–508.
Salmeron-Santiago, I.A.; Martínez-Trujillo, M.; Valdez-Alarcón, J.J.; Pedraza-Santos, M.E.; Santoyo, G.; Pozo, M.J.; Chávez-Bárcenas, A.T. An updated review on the modulation of carbon partitioning and allocation in arbuscular mycorrhizal plants. Microorganisms 2021, 10, 75.
Göbel, M.; Fichtner, F. Functions of sucrose and trehalose 6-phosphate in controlling plant development. J. Plant Physiol. 2023, 291, 154140.
Du, Y.L.; Zhao, Q.; Chen, L.R.; Yao, X.D.; Zhang, W.; Zhang, B.; Xie, F. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol. Biochem. 2020, 146, 1–12.
Eom, J.S.; Chen, L.Q.; Sosso, D.; Julius, B.T.; Lin, I.W.; Qu, X.Q.; Braun, D.M.; Frommer, W.B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr. Opin. Plant Biol. 2015, 25, 53–62.
Feng, L.; Frommer, W.B. Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem. Sci. 2015, 40, 480–486.
Sugiyama, A.; Saida, Y.; Yoshimizu, M.; Takanashi, K.; Sosso, D.; Frommer, W.B.; Yazaki, K. Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus. Plant Cell Physiol. 2017, 58, 298–306.
Yang, J.; Luo, D.; Yang, B.; Frommer, W.B.; Eom, J.S. SWEET 11 and 15 as key players in seed filling in rice. New Phytol. 2018, 218, 604–615.
Liu, X.; Zhang, Y.; Yang, C.; Tian, Z.; Li, J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci. Rep. 2016, 6, 24563.
Kryukov, A.A.; Gorbunova, A.O.; Kudriashova, T.R.; Yakhin, O.I.; Lubyanov, A.A.; Malikov, U.M.; Shishova, M.F.; Kozhemyakov, A.P.; Yurkov, A.P. Sugar transporters of the SWEET family and their role in arbuscular mycorrhiza. Vavilov J. Genet. Breed. 2021, 25, 754.
Jiang, Y.; Wang, W.; Xie, Q.; Liu, N.A.; Liu, L.; Wang, D.; Zhang, X.; Yang, C.; Chen, X.; Tang, D. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017, 356, 1172–1175.
Li, Q.S.; Srivastava, A.K.; Zou, Y.N.; Wu, Q.S. Field inoculation responses of arbuscular mycorrhizal fungi versus endophytic fungi on sugar metabolism associated changes in fruit quality of lane late navel orange. Sci. Hortic. 2023, 308, 111587.
Rich, M.K.; Vigneron, N.; Libourel, C.; Keller, J.; Xue, L.; Hajheidari, M.; Radhakrishnan, G.V.; Le Ru, A.; Diop, S.I.; Potente, G.; et al. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science 2021, 372, 864–868.
Article Statistics
Copyright License
Copyright (c) 2025 Dr. Jian Li, Prof. Elena Petrova, Dr. Samuel Jones

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.