Articles | Open Access |

Copper Oxide Nanoparticles in Agricultural Sustainability: Innovations and Applications in Agro-Nanotechnology

Dr. Nourhan M. El-Sharkawy , Agricultural Nanotechnology Research Center, Ain Shams University, Cairo, Egypt
Prof. Latha S. Ramaswamy , Centre for Nanoscience and Technology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India

Abstract

The escalating global population necessitates a paradigm shift in agricultural practices to ensure food security while minimizing environmental impact. Traditional farming methods often rely on excessive chemical inputs, leading to soil degradation, water pollution, and greenhouse gas emissions. Agro-nanotechnology, a burgeoning field, offers innovative solutions to these challenges by leveraging nanomaterials to enhance crop productivity and resource efficiency. Among these, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their multifaceted applications as nano-fertilizers, nano-pesticides, and soil amendments. This comprehensive review explores the recent advances and diverse applications of CuO NPs in sustainable farming. We delve into various synthesis methods, emphasizing green chemistry approaches, and critically examine their mechanisms of action in promoting plant growth, enhancing nutrient uptake, and providing robust protection against a spectrum of plant pathogens and pests. Furthermore, the article addresses the crucial environmental interactions of CuO NPs within soil and aquatic systems, considering factors such as pH, organic matter, and their potential ecotoxicity. While highlighting the immense promise of CuO NPs for revolutionizing agricultural sustainability, this review also discusses the inherent challenges, including concerns regarding long-term environmental fate, bioaccumulation, and regulatory frameworks. By synthesizing current knowledge, this article aims to provide a foundational understanding for researchers and agricultural practitioners, guiding the responsible development and deployment of CuO NPs for a more productive, resilient, and environmentally sound agricultural future.

Keywords

Copper Oxide Nanoparticles, Agro-Nanotechnology, Agricultural Sustainability, Nano-Fertilizers

References

Adhikari, T., Kundu, S., Biswas, AK., Tarafdar, JC., Rao, AS. (2012). Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol, 2(6A), 815.

Adhikari, T., Sarkar, D., Mashayekhi, H., Xing, B. (2016). Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr, 39(1), 99–115.

Ali, M., Ijaz, M., Ikram, M., Ul-Hamid, A., Avais, M., Anjum, AA. (2021). Biogenic synthesis, characterization and antibacterial potential evaluation of copper oxide nanoparticles against Escherichia coli. Nanoscale Res Lett, 16(1), 148.

Alhaithloul, HAS., Ali, B., Alghanem, SMS., Zulfiqar, F., Al-Robai, SA., Ercisli, S., Yong, JW., Moosa, A., Irfan, E., Ali, Q., Irshad, MA. (2023). Effect of green-synthesized copper oxide nanoparticles on growth, physiology, nutrient uptake, and cadmium accumulation in Triticum aestivum (L.). Ecotoxicol Environ Safety, 268, 115701.

Altabbaa, S., Kumari, A., Sharma, R., Parashar, A., Thakur, N. (2023). South African journal of botany Chitosan-coated ZnO nanocomposites of Lantana camara and Rhamnus triquetra for effective antimicrobial activity. S Afr J Bot, 161, 126–39.

Arunkumar, B., Jeyakumar, SJ., Jothibas, M. (2023). Study on the efficiency of biomedical and degradation of dye through CuO nanoparticles synthesized at various molar concentrations. In: Arunkumar B, editor. Progress in chemical science research. Amsterdam: Elseiver, 144–63.

Ayoub, HA., Khairy, M., Elsaid, S., Rashwan, FA., Abdel-Hafez, HF. (2018). Pesticidal activity of nanostructured metal oxides for generation of alternative pesticide formulations. J Agric Food Chem, 66(22), 5491–8.

Balu, SK., Andra, S., Jeevanandam, J., Kulabhusan, PK., Khamari, A., Vedarathinam, V., Hamimed, S., San Chan, Y., Danquah, MK. (2023). Exploring the potential of metal oxide nanoparticles as fungicides and plant nutrient boosters. Crop Prot, 174, 106398.

Banerjee, S., Islam, J., Mondal, S., Saha, A., Saha, B., Sen, A. (2023). Proactive attenuation of arsenic-stress by nano-priming: Zinc oxide nanoparticles in Vigna mungo (L.) Hepper trigger antioxidant defense response and reduce root-shoot arsenic translocation. J Hazard Mater, 446, 130735.

Bhuvaneshwari, V., Vaidehi, D., Logpriya, S. (2018). Green synthesis of copper oxide nanoparticles for biological applications. Microbiol Curr Res, 2(1), 10.

Botsa, SM., Ramadevi, D., Basavaiah, K. (2018). A facile synthesis of copper oxide nanorods for photocatalytic degradation of organic pollutant and inactivation of pathogens. J Nanosci Technol, 4(5), 467–70.

Broberg, MC., Uddling, J., Mills, G., Pleijel, H. (2017). Fertilizer efficiency in wheat is reduced by ozone pollution. Sci Total Environ, 607–608, 876–80.

Bucchianico, SD., Fabbrizi, MR., Misra, SK., Valsami-Jones, E., Berhanu, D., Reip, P., Bergamaschi, E., Migliore, L. (2013). Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis, 28(3), 287–99.

Ceresini, PC., Silva, TC., Vicentini, SNC., Júnior, RPL., Moreira, SI., Castro-Ríos, K., Garcés-Fiallos, FR., Krug, LD., de Moura, SS., da Silva, AG., de Paiva Custódio, AA. (2024). Strategies for managing fungicide resistance in the Brazilian tropical agroecosystem: safeguarding food safety, health, and the environmental quality. Tropical Plant Pathol, 49(1), 36–70.

Chahar, R., Mukherji, MD. (2022). Environmental applications of phytonanotechnology: a promise to sustainable future. In: Shah MP, Roy A, editors. Phytonanotechnology. Singapore: Springer Nature Singapore, 141–59.

Chao, SJ., Huang, CP., Lam, CC., Hua, LC., Chang, SH., Huang, C. (2021). Transformation of copper oxide nanoparticles as affected by ionic strength and its effects on the toxicity and bioaccumulation of copper in zebrafish embryo. Ecotoxicol Environ Saf, 225, 112759.

Chatterjee, R. (2008). The challenge of regulating nanomaterials. Environ Sci Technol, 42(2), 339–43.

Chen, JN., Wu, LT., Kun, SO., Zhu, YS., Wei, DI. (2022). Nonphytotoxic copper oxide nanoparticles are powerful “nanoweapons” that trigger resistance in tobacco against the soil-borne fungal pathogen Phytophthora nicotianae. J Integr Agric, 21(11), 3245–62.

Dangi, K., Verma, AK. (2021). Efficient & eco-friendly smart nano-pesticides: Emerging prospects for agriculture. Mater Today Proc, 45, 3819–24.

Dayarathne, MC., Mridha, AU., Wang, Y. (2020). Diagnosis of fungal plant pathogens using conventional and molecular approaches. Diagn Plant Dis. https://doi.org/10.5772/intechopen.94980.

Deng, C., Wang, Y., Cantu, JM., Valdes, C., Navarro, G., Cota-Ruiz, K., Hernandez-Viezcas, JA., Li, C., Elmer, WH., Dimkpa, CO., White, JC. (2022). Soil and foliar exposure of soybean (Glycine max) to Cu: nanoparticle coating-dependent plant responses. NanoImpact, 26, 100406.

Dhas, CR., Malar, KCMG., Venkatesh, R., Arivukarasan, D., Monica, SES., Keerthana, S. (2021). Insights on photocatalytic dye inactivation and antimicrobial activity of pH-dependent facile synthesised copper oxide nanoparticles. Appl Phys A, 127(12), 891.

Dörner, L., Cancellieri, C., Rheingans, B., Walter, M., Kägi, R., Schmutz, P., Kovalenko, MV., Jeurgens, LP. (2019). Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Sci Rep, 9(1), 11758.

Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, PK., Ighalo, JO. (2022). Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain Environ Res, 32, 1–52.

Elsabagh, SS., Elkhatib, EA., Rashad, M. (2024). Novel nano-fertilizers derived from drinking water industry waste for sustained release of macronutrients: performance, kinetics and sorption mechanisms. Scientific Repor, 14(1), 5691.

Elmer, WH., Zuverza-Mena, N., Triplett, LR., Roberts, EL., Silady, RA., White, JC. (2021). Foliar application of copper oxide nanoparticles suppresses fusarium wilt development on chrysanthemum. Environ Sci Technol, 55(15), 10805–10.

Fang, Y., Zhang, L., Jiao, Y., Liao, J., Luo, L., Ji, S., Li, J., Dai, K., Zhu, S., Yang, M. (2016). Tobacco rotated with rapeseed for soil-borne phytophthora pathogen biocontrol: mediated by rapeseed root exudates. Front Microbiol, 7, 1–11.

Faraz, A., Faizan, M., Rajput, DV., Minkina, T., Hayat, S., Faisal, M., Alatar, AA., Abdel-Salam, EM. (2023). CuO nanoparticle-mediated seed priming improves physio-biochemical and enzymatic activities of Brassica juncea. Plants, 12(4), 803.

Farooq, A., Javad, S., Jabeen, K., Ali Shah, A., Ahmad, A., Shah, AN., Alyemeni, MN., Mosa, WF., Abbas, A. (2023). Effect of calcium oxide, zinc oxide nanoparticles and their combined treatments on growth and yield attributes of Solanum lycopersicum L. J King Saud Univ Sci, 35(5), 102647.

Figueroa, M., Hammond-Kosack, KE., Solomon, PS. (2018). A review of wheat diseases—a field perspective. Mol Plant Pathol, 19(6), 1523–36.

Francis, DV., Abdalla, AK., Mahakham, W., Sarmah, AK., Ahmed, ZFR. (2024). Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environ Int, 30, 108859.

Francis, DV., Sood, N., Gokhale, T. (2022). Biogenic CuO and ZnO nanoparticles as nanofertilizers for sustainable growth of Amaranthus hybridus. Plants, 11(20), 2776.

Gupta, A., Rayeen, F., Mishra, R., Tripathi, M., Pathak, N. (2023). Nanotechnology applications in sustainable agriculture: an emerging eco-friendly approach. Plant Nano Biol, 4, 100033.

Hanif, S., Bilal, M., Nasreen, S., Latif, M., Zia, M. (2023). Indole-3-acetic acid (IAA) doping on the surface of CuO-NPs reduces the toxic effects of NPs on Lactuca sativa. J Biotechnol, 367, 53–61.

Hou, C., Wei, N., Liang, Q., Tan, Y., Li, X., Feng, J. (2024). Nano-pesticide delivery system based on UiO -66 with pH sensitivity for precise control of Spodoptera frugiperda. Pest Manag Sci, 81(2), 798–808.

Ibrahim, AS., Ali, GAM., Hassanein, A., Attia, AM., Marzouk, ER. (2022). Toxicity and uptake of CuO nanoparticles: Evaluation of an emerging nanofertilizer on wheat (Triticum aestivum L.) plant. Sustainability, 14(9), 4914.

Imtiaz, H., Shiraz, M., Mir, AR., Siddiqui, H., Hayat, S. (2023). Nano-priming techniques for plant physio-biochemistry and stress tolerance. J Plant Growth Regul, 42(11), 6870–90.

Jakhar, AM., Aziz, I., Kaleri, AR., Hasnain, M., Haider, G., Ma, J., Abideen, Z. (2022). Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact, 27, 100411.

Jassal, PS., Kaur, D., Prasad, R., Singh, J. (2022). Green synthesis of titanium dioxide nanoparticles: development and applications. J Agric Food Res, 10, 100361.

Ji, H., Guo, Z., Wang, G., Wang, X., Liu, H. (2022). Effect of ZnO and CuO nanoparticles on the growth, nutrient absorption, and potential health risk of the seasonal vegetable Medicago polymorpha L. PeerJ, 10, e14038.

Kah, M., Kookana, R. (2017). Emerging investigator series: nanotechnology to develop novel agrochemicals: critical issues to consider in the global agricultural context. Environ Science: Nano, 4(9), 1784–97.

Karmous, I., Vaidya, S., Dimkpa, C., Zuverza-Mena, N., da Silva, W., Barroso, KA., Milagres, J., Bharadwaj, A., Abdelraheem, W., White, JC., Elmer, WH. (2023). Biologically synthesized zinc and copper oxide nanoparticles using Cannabis sativa L. enhance soybean (Glycine max) defense against fusarium virguliforme. Pesticide Biochem Physiol, 194, 105486.

Khan, R., Inam, MA., Park, DR., Khan, S., Akram, M., Yeom, IT. (2019). The removal of CuO nanoparticles from water by conventional treatment C/F/S: The effect of pH and natural organic matter. Molecules, 24(5), 914.

Khalaki, MA., Moameri, M., Lajayer, BA., Astatkie, T. (2021). Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regul, 93(1), 13–28.

Khort, A., Brookman-Amissah, M., Hedberg, J., Chang, T., Mei, N., Lundberg, A., Sturve, J., Blomberg, E., Odnevall, I. (2022). Influence of natural organic matter on the transformation of metal and metal oxide nanoparticles and their ecotoxic potency in vitro. NanoImpact, 25, 100386.

Kohatsu, MY., Lange, CN., Pelegrino, MT., Pieretti, JC., Tortella, G., Rubilar, O., Batista, BL., Seabra, AB., de Jesus, TA. (2021). Foliar spraying of biogenic CuO nanoparticles protects the defence system and photosynthetic pigments of lettuce (Lactuca sativa). J Clean Prod, 324, 129264.

Labanni, A., Nasir, M., Arief, S. (2023). Research progress and prospect of copper oxide nanoparticles with controllable nanostructure, morphology, and function via green synthesis. Mater Today Sustain, 24, 100526.

Lakshimi, K., Jayashree, M., Shakila, BK. (2015). Green and chemically synthesized copper oxide nanoparticles-A preliminary research towards its toxic behaviour. Int J Pharm Pharm Sci, 7(13), 156–60.

Liu, P., Ren, Z., Ding, W., Kong, D., Hermanowicz, SW., Huang, Y. (2023). Comparative environmental impact assessment of copper-based nanopesticides and conventional pesticides. ACS Agric Sci Sci Technol, 3(7), 593–600.

Liu, S., Liu, Y., Pan, B., He, Y., Li, B., Zhou, D., Xiao, Y., Qiu, H., Vijver, MG., Peijnenburg, WJ. (2020). The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: copper complexation over particle dispersion. Chemosphere, 245, 125612.

Manikandan, DB., Arumugam, M., Sridhar, A., Perumalsamy, B., Ramasamy, T. (2023). Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. Environ Res, 228, 115867.

Manzoor, MA., Shah, IH., Ali Sabir, I., Ahmad, A., Albasher, G., Dar, AA., Altaf, MA., Shakoor, A. (2023). Environmental sustainable: Biogenic copper oxide nanoparticles as nano-pesticides for investigating bioactivities against phytopathogens. Environ Res, 231, 115941.

Martins, MAR., Kiirika, LM., Schaffer, N., Sajnóg, A., Coutinho, JAP., Franklin, G., Mondal, D. (2024). Unveiling dissolution kinetics of CuO nanofertilizer using bio-based ionic liquids envisaging controlled use efficiency for sustainable agriculture. ACS Sustain Res Manage, 1(6), 1291–301.

Muhammad, A., He, J., Yu, T., Sun, C., Shi, D., Jiang, Y., et al. (2022). Dietary exposure of copper and zinc oxides nanoparticles affect the fitness, enzyme activity, and microbial community of the model insect, silkworm Bombyx mori. Sci Total Environ, 813, 152608.

Muradi, AJ., Boz, I. (2018). The contribution of agriculture sector in the economy of Afghanistan. Int J Sci Res Manage, 6(10), 750–5.

Mustafa, M., Azam, M., Nawaz Bhatti, H., Khan, A., Zafar, L., Rehan Abbasi, AM. (2024). Green fabrication of copper nano-fertilizer for enhanced crop yield in cowpea cultivar: a sustainable approach. Biocatal Agric Biotechnol, 56, 102994.

Nehra, M., Dilbaghi, N., Marrazza, G., Kaushik, A., Sonne, C., Kim, KH., Kumar, S. (2021). Emerging nanobiotechnology in agriculture for the management of pesticide residues. J Hazard Mater, 401, 123369.

Nekoukhou, M., Fallah, S., Pokhrel, LR., Abbasi-Surki, A., Rostamnejadi, A. (2023). Foliar enrichment of copper oxide nanoparticles promotes biomass, photosynthetic pigments, and commercially valuable secondary metabolites and essential oils in dragonhead (Dracocephalum moldavica L.) under semi-arid conditions. Sci Total Environ, 863, 160920.

Ogwuegbu, MC., Ayangbenro, AS., Mthiyane, DM., Babalola, OO., Onwudiwe, DC. (2024). Green synthesis of CuO nanoparticles using Ligustrum lucidum extract, and the antioxidant and antifungal evaluation. Mater Res Express, 11(5), 055010.

Pandey, D., Singh, A., Darbinyan, N., Chakhmakhchyan, AD., Parmar, SS., Ghazaryan, K. (2024). Revolutionizing sustainable agriculture with nano-priming technology: a leap towards resilient and high-yield crops. In: Pandey D, editor. Nanotechnology applications and innovations for improved soil health. Amsterdam: Elseiver, 305–15.

Peng, C., Shen, C., Zheng, S., Yang, W., Hu, H., Liu, J., Shi, J. (2017). Transformation of CuO nanoparticles in the aquatic environment: influence of pH, electrolytes and natural organic matter. Nanomaterials, 7(10), 326.

Pereira, DESA., Oliveira, CH., Fraceto, FL., Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 267.

Peixoto, S., Morgado, RG., Prodana, M., Cardoso, DN., Malheiro, C., Neves, J., Santos, C., Khodaparast, Z., Pavlaki, MD., Rodrigues, S., Rodrigues, SM. (2024). Responses of soil microbiome to copper-based materials (nano and bulk) for agricultural applications: an indoor-mesocosm experiment. NanoImpact, 34, 100506.

Qian, YA., Haipeng, LI., Zhang, Y., Yinghao, LI., Helian, LI. (2024). Wheat morphological and biochemical responses to copper oxide nanoparticle treatment in two soils. Pedosphere, 34(4), 814–25.

Rahman, A., Pittarate, S., Perumal, V., Rajula, J., Thungrabeab, M., Mekchay, S., et al. (2022). Larvicidal and antifeedant effects of copper nano-pesticides against Spodoptera frugiperda (J.E. Smith) and its immunological response. Insects, 13(11), 1030.

Rai-Kalal, P., Jajoo, A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiol Biochem, 160, 341–51.

Rohilla, D., Chaudhary, S., Singh, N., Batish, DR., Singh, HP. (2020). Agronomic providences of surface functionalized CuO nanoparticles on Vigna radiata. Environ Nanotechnol Monitor Manage, 14, 100338.

Sarkar, N., Sharma, RS., Kaushik, M. (2021). Innovative application of facile single pot green synthesized CuO and CuO@APTES nanoparticles in nanopriming of Vigna radiata seeds. Environ Sci Pollut Res, 28(11), 13221–8.

Saritha, GNG., Anju, T., Kumar, A. (2022). Nanotechnology-big impact: how nanotechnology is changing the future of agriculture? J Agric Food Res, 10, 100457.

Sarathi, R., Sundar, SM., Jayamurugan, P., Ganganagunta, S., Sudhadevi, D., Ubaidullah, M., Pandit, B., Gupta, M., Sehgal, SS., Rao, NS. (2023). Impacts of pH on photocatalytic efficiency, the control of energy and morphological properties of CuO nanoparticles for industrial wastewater treatment applications. Mater Sci Eng, 298, 116856.

Saurabh, K., Prakash, V., Dubey, AK., Ghosh, S., Kumari, A., Sundaram, PK., Jeet, P., Sarkar, B., Upadhyaya, A., Das, A., Kumar, S. (2024). Enhancing sustainability in agriculture with nanofertilizers. Dis Appl Sci, 6(11), 559.

Savary, S., Willocquet, L., Pethybridge, SJ., Esker, P., McRoberts, N., Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nat Ecol Evolut, 3(3), 430–9.

Sedefoglu, N., Er, S., Veryer, K., Zalaoglu, Y., Bozok, F. (2023). Green synthesized CuO nanoparticles using macrofungi extracts: characterization, nanofertilizer and antibacterial effects. Mater Chem Phys, 309, 128393.

Servin, A., Elmer, W., Mukherjee, A., Torre-Roche, RDL., Hamdi, H., White, JC., Bindraban, P., Dimkpa, C. (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res, 17, 1–21.

Shah, IH., Ashraf, M., Sabir, IA., Manzoor, MA., Malik, MS., Gulzar, S., Ashraf, F., Iqbal, J., Niu, Q., Zhang, Y. (2022). Green synthesis and characterization of copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J Mol Struct, 1259, 132696.

Sharma, D., Afzal, S., Singh, NK. (2021). Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. J Biotechnol, 336, 64–75.

Shelar, A., Singh, AV., Maharjan, RS., Laux, P., Luch, A., Gemmati, D., Tisato, V., Singh, SP., Santilli, MF., Shelar, A., Chaskar, M. (2021). Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. Cells, 10(9), 2428.

Siddiqui, H., Qureshi, MS., Haque, FZ. (2017). pH-dependent single-step rapid synthesis of CuO nanoparticles and their optical behavior. Opt Spectrosc, 123, 903–12.

Singh, A., Sengar, RS., Sharma, R., Raj. (2021). Nano-priming technology for sustainable agriculture. Biogeosyst Tech, 8, 79–92.

Singh, A., Singh, NB., Hussain, I., Singh, H. (2017). Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol, 262, 11–27.

Singh, J., Kumar, S., Alok, A., Upadhyay, SK., Rawat, M., Tsang, DC., Bolan, N., Kim, KH. (2019). The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J Clean Prod, 214, 1061–70.

Singh, K., Singh, G., Singh, J. (2023). Sustainable synthesis of biogenic ZnO NPs for mitigation of emerging pollutants and pathogens. Environ Res, 219, 114952.

Sonawane, H., Arya, S., Math, S., Shelke, D. (2021). Myco-synthesized silver and titanium oxide nanoparticles as seed priming agents to promote seed germination and seedling growth of Solanum lycopersicum: a comparative study. Int Nano Lett, 11(4), 371–9.

Tiwari, E., Khandelwal, N., Singh, N., Biswas, S., Darbha, GK. (2022). Effect of clay colloid – CuO nanoparticles interaction on retention of nanoparticles in different types of soils: role of clay fraction and environmental parameters. Environ Res, 203, 111885.

Tiwari, E., Singh, N., Khandelwal, N., Ganie, ZA., Choudhary, A., Monikh, FA., Darbha, GK. (2022). Impact of nanoplastic debris on the stability and transport of metal oxide nanoparticles: Role of varying soil solution chemistry. Chemosphere, 308, 136091.

United Nations, Department of Economic and Social Affairs, Population Division. (2015). Population 2030: Demographic challenges and opportunities for sustainable development planning. Report No.: (ST/ESA/SER.A/389). https://www.un.org/en/development/desa/population/publications/pdf/trends/Population2030.pdf

Vlachý, J. (2017). The value of innovation in nanotechnology. Eng Econ, 28(5), 535–41.

Wang, Y., Lin, Y., Xu, Y., Yin, Y., Guo, H., Du, W. (2019). Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ Pollut Bioavail, 31(1), 80–4.

Wani, KA., Kothari, R. (2018). Agricultural nanotechnology: applications and challenges. Ann Plant Sci, 7(3), 2146.

Woźniak-Budych, MJ., Staszak, K., Staszak, M. (2023). Copper and copper-based nanoparticles in medicine—perspectives and challenges. Molecules, 28(18), 6687.

Wu, H., Fang, H., Xu, C., Ye, J., Cai, Q., Shi, J. (2020). Transport and retention of copper oxide nanoparticles under unfavorable deposition conditions caused by repulsive van der Waals force in saturated porous media. Environ Pollut, 256, 113400.

Yu, Q., Mu, Z., Wang, N., Wang, X., Xu, M., Li, H. (2020). The aggregation and sedimentation of two different sized copper oxide nanoparticles in soil solutions: dependence on pH and dissolved organic matter. Sci Total Environ, 731, 139215.

Yu, Q., Wang, Z., Wang, G., Peijnenburg, WJGM., Vijver, MG. (2022). Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna. Environ Pollut, 292, 118413.

Zhu, X., Ma, X., Gao, C., Mu, Y., Pei, Y., Liu, C., Zou, A., Sun, X. (2022). Fabrication of CuO nanoparticles composite ε-polylysine-alginate nanogel for high-efficiency management of Alternaria alternate. Int J Biol Macromol, 223, 1208–22.

Article Statistics

Copyright License

Download Citations

How to Cite

Dr. Nourhan M. El-Sharkawy, & Prof. Latha S. Ramaswamy. (2025). Copper Oxide Nanoparticles in Agricultural Sustainability: Innovations and Applications in Agro-Nanotechnology. The American Journal of Agriculture and Biomedical Engineering, 7(8), 1–16. Retrieved from https://theamericanjournals.com/index.php/tajabe/article/view/6496