Articles | Open Access |

Adaptive Rigidity Sheaths for Endovascular Interventions: Enhancing Maneuverability and Safety in Complex Vasculature

Prof. Alessandra Romano , Division of Vascular Surgery and Endovascular Therapy, Sapienza University of Rome, Italy
Dr. David K. Lin , Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA

Abstract

Navigating tortuous and delicate vasculature remains a significant challenge in endovascular interventions. This study introduces a novel class of adaptive rigidity sheaths designed to dynamically adjust their stiffness in response to procedural demands, thereby enhancing both maneuverability and safety. Utilizing advanced smart materials and embedded actuation systems, the sheaths can transition between flexible and rigid states based on surgeon input or automated feedback. Computational simulations and benchtop vascular models demonstrate that these sheaths improve catheter steerability, reduce vessel wall trauma, and maintain lumen patency even in high-curvature pathways. Initial in vivo assessments further validate their performance in minimizing procedural complications and improving access to difficult-to-reach vascular targets. These findings suggest that adaptive rigidity sheaths could significantly improve outcomes in complex endovascular procedures, particularly in neurovascular and peripheral interventions.

Keywords

Adaptive Rigidity, Endovascular Intervention, Smart Sheaths, Vascular Navigation

References

Berkhemer, O. A., Fransen, P. S. S., Beumer, D., van den Berg, L. A., Lingsma, H. F., Yoo, A. J., Schonewille, W. J., et al., 2015, “A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke,” New Engl. J. Med., 372(1), pp. 11–20.10.1056/NEJMoa1411587

Wright, M. A., Steffens, D., and Huilgol, R. L., 2019, “Vascular Surgery Trends in Australia: 2001–2015: Less Open Surgery, Less Limb Loss and More Endovascular Intervention,” ANZ J. Surg., 89(4), pp. 309–313.10.1111/ans.14878

Lauzier, D. C., Huguenard, A. L., Srienc, A. I., Cler, S. J., Osbun, J. W., Chatterjee, A. R., Vellimana, A. K., et al., 2023, “A Review of Technological Innovations Leading to Modern Endovascular Brain Aneurysm Treatment,” Front. Neurol., 14, p. 1156887.10.3389/fneur.2023.1156887

Aday, A. W., and Matsushita, K., 2021, “Epidemiology of Peripheral Artery Disease and Polyvascular Disease,” Circulation Research, 128(12), pp. 1818–1832.10.1161/CIRCRESAHA.121.318535

Molyneux, A., 2002, “International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping Versus Endovascular Coiling in 2143 Patients With Ruptured Intracranial Aneurysms: A Randomised Trial,” Lancet, 360(9342), pp. 1267–1274.10.1016/S0140-6736(02)11314-6

Spetzler, R. F., McDougall, C. G., Zabramski, J. M., Albuquerque, F. C., Hills, N. K., Russin, J. J., Partovi, S., Nakaji, P., and Wallace, R. C., 2015, “The Barrow Ruptured Aneurysm Trial: 6-Year Results,” J. Neurosurg., 123(3), pp. 609–617.10.3171/2014.9.JNS141749

Andaluz, N., and Zuccarello, M., 2008, “Recent Trends in the Treatment of Cerebral Aneurysms: Analysis of a Nationwide Inpatient Database,” J. Neurosurg., 108(6), pp. 1163–1169.10.3171/JNS/2008/108/6/1163

Jadhav, A. P., Desai, S. M., and Jovin, T. G., 2021, “Indications for Mechanical Thrombectomy for Acute Ischemic Stroke: Current Guidelines and Beyond,” Neurology, 97(20_Suppl_2), pp. S126–36.10.1212/WNL.0000000000012801

Samuels, O. B., Sadan, O., Feng, C., Martin, K., Medani, K., Mei, Y., and Barrow, D. L., 2021, “Aneurysmal Subarachnoid Hemorrhage: Trends, Outcomes, and Predictions From a 15-Year Perspective of a Single Neurocritical Care Unit,” Neurosurgery, 88(3), pp. 574–583.10.1093/neuros/nyaa465

Tanaka, R., 2020, “Recent Update on Peripheral Arterial Endovascular Therapy for Peripheral Arterial Occlusive Disease,” Intervent. Radiol., 5(3), pp. 120–127.10.22575/interventionalradiology.2020-0014

Guez, D., Hansberry, D. R., Gonsalves, C. F., Eschelman, D. J., Parker, L., Rao, V. M., and Levin, D. C., 2020, “Recent Trends in Endovascular and Surgical Treatment of Peripheral Arterial Disease in the Medicare Population,” Am. J. Roentgenol., 214(5), pp. 962–966.10.2214/AJR.19.21967

Finn, R., and Morris, L., 2016, “An Experimental Assessment of Catheter Trackability Forces With Tortuosity Parameters Along Patient-Specific Coronary Phantoms,” Proc. Inst. Mech. Eng. H, 230(2), pp. 153–165.10.1177/0954411915623815

Ronan, W., McGrath, D. J., Shirazi, R. N., Clancy, M., Dickenson, R. C., and McHugh, P. E., 2023, “Computational Modelling of the Mechanical Performance of Nitinol Guidewires in an Idealised Tortuous Path for Medical Device Applications,” Eur. J. Mech. A/Solids, 102, p. 105101.10.1016/j.euromechsol.2023.105101

Ali, A., Sakes, A., Arkenbout, E. A., Henselmans, P., van Starkenburg, R., Szili-Torok, T., and Breedveld, P., 2019, “Catheter Steering in Interventional Cardiology: Mechanical Analysis and Novel Solution,” Proc. Inst. Mech. Eng. H, 233(12), pp. 1207–1218.10.1177/0954411919877709

Paraggio, L., Bianchini, F., Aurigemma, C., Romagnoli, E., Bianchini, E., Zito, A., Lunardi, M., Trani, C., and Burzotta, F., 2024, “Femoral Large Bore Sheath Management: How to Prevent Vascular Complications From Vessel Puncture to Sheath Removal,” Circ. Cardiovasc. Intervent., 17(9), p. e014156.10.1161/circinterventions.124.014156

Balami, J. S., White, P. M., McMeekin, P. J., Ford, G. A., and Buchan, A. M., 2018, “Complications of Endovascular Treatment for Acute Ischemic Stroke: Prevention and Management,” Int. J. Stroke, 13(4), pp. 348–361.10.1177/1747493017743051

Jahan, R., Saver, J. L., Schwamm, L. H., Fonarow, G. C., Liang, L., Matsouaka, R. A., Xian, Y., Holmes, D. N., Peterson, E. D., Yavagal, D., and Smith, E. E., 2019, “Association Between Time to Treatment With Endovascular Reperfusion Therapy and Outcomes in Patients With Acute Ischemic Stroke Treated in Clinical Practice,” JAMA, 322(3), pp. 252–63.10.1001/jama.2019.8286

Wong, J. M., Ziewacz, J. E., Panchmatia, J. R., Bader, A. M., Pandey, A. S., Thompson, B. G., et al., 2012, “Patterns in Neurosurgical Adverse Events: Endovascular Neurosurgery,” Neurosurgical Focus, 33(5), p. E14.10.3171/2012.7.focus12180

Chen, S. H., Snelling, B. M., Shah, S. S., Sur, S., Brunet, M. C., Starke, R. M., Yavagal, D. R., Osbun, J. W., and Peterson, E. C., 2019, “Transradial Approach for Flow Diversion Treatment of Cerebral Aneurysms: A Multicenter Study,” J. Neurointervent. Surg., 11(8), pp. 796–800.10.1136/neurintsurg-2018-014620

Hartquist, C. M., Chandrasekaran, V., Lowe, H., Leuthardt, E. C., Osbun, J. W., Genin, G. M., and Zayed, M. A., 2021, “Quantification of the Flexural Rigidity of Peripheral Arterial Endovascular Catheters and Sheaths,” J. Mech. Behav. Biomed. Mater., 119, p. 104459.10.1016/j.jmbbm.2021.104459

Hartquist, C. M., Lee, J. V., Qiu, M. Y., Suskin, C., Chandrasekaran, V., Lowe, H. R., Zayed, M. A., Osbun, J. W., and Genin, G. M., 2023, “Stability of Navigation in Catheter-Based Endovascular Procedures,” bioRxiv, Article No. 2023.06.02.543219.10.1101/2023.06.02.543219

Piskarev, Y., Sun, Y., Righi, M., Boehler, Q., Chautems, C., Fischer, C., et al., 2024, “Fast-Response Variable-Stiffness Magnetic Catheters for Minimally Invasive Surgery,” Adv. Sci., 11(12), p. 2305537.10.1002/advs.202305537

Mattmann, M., De Marco, C., Briatico, F., Tagliabue, S., Colusso, A., Chen, X., Lussi, J., Chautems, C., Pané, S., and Nelson, B., 2022, “Thermoset Shape Memory Polymer Variable Stiffness 4D Robotic Catheters,” Adv. Sci., 9(1), p. 2103277.10.1002/advs.202103277

Piskarev, Y., Shintake, J., Chautems, C., Lussi, J., Boehler, Q., Nelson, B. J., and Floreano, D., 2022, “A Variable Stiffness Magnetic Catheter Made of a Conductive Phase-Change Polymer for Minimally Invasive Surgery,” Adv. Funct. Mater., 32(20), p. 2107662.10.1002/adfm.202107662

Chautems, C., Tonazzini, A., Boehler, Q., Jeong, S. H., Floreano, D., and Nelson, B. J., 2020, “Magnetic Continuum Device With Variable Stiffness for Minimally Invasive Surgery,” Adv. Intell. Syst., 2(6), p. 1900086.10.1002/aisy.201900086

Lussi, J., Mattmann, M., Sevim, S., Grigis, F., De Marco, C., Chautems, C., Pané, S., Puigmartí‐Luis, J., Boehler, Q., and Nelson, B. J., 2021, “A Submillimeter Continuous Variable Stiffness Catheter for Compliance Control,” Adv. Sci., 8(18), p. 2101290.10.1002/advs.202101290

Sun, Y., Piskarev, Y., Hofstetter, E. H., Fischer, C., Boehler, Q., Stárek, Z., Nelson, B. J., and Floreano, D., 2025, “Instant Variable Stiffness in Cardiovascular Catheters Based on Fiber Jamming,” Sci. Adv., 11(6), p. eadn1207.10.1126/sciadv.adn1207

Qiu, M. Y., Suskin, C. B., Becerra-Garcia, J. J., Roberts, S. H., Rucker, D. G., Zayed, M. A., et al., 2023, “Quantification of the Flexural Rigidity of Endovascular Surgical Devices Using Three-Point Bending Tests,” Res. Sq., Article No. rs.3.rs-3736325.10.21203/rs.3.rs-3736325/v1

Cosgrove, D. J., 2024, “Structure and Growth of Plant Cell Walls,” Nat. Rev. Mol. Cell Biol., 25(5), pp. 340–358.10.1038/s41580-023-00691-y

Anderson, C. T., 2023, “Shapeshifters: Functional Interplays Between Plant Cell Walls and Dynamic, Reversible Shape Changes in Plant Cells and Tissues,” Plant Cell Walls: Research Milestones and Conceptual Insights, Geitmann, A., ed., CRC Press, Boca Raton, FL.10.1201/9781003178309-15

Qiu, M. Y., Suskin, C. B., Zayed, M. A., Genin, G. M., and Osbun, J. W., 2024, “Energy Barriers Govern Catheter Herniation During Endovascular Procedures: A 2.5D Vascular Flow Model Analysis,” J. R. Soc. Interface., 21(219), p. 20240333.10.1098/rsif.2024.0333

Article Statistics

Copyright License

Download Citations

How to Cite

Prof. Alessandra Romano, & Dr. David K. Lin. (2025). Adaptive Rigidity Sheaths for Endovascular Interventions: Enhancing Maneuverability and Safety in Complex Vasculature. The American Journal of Agriculture and Biomedical Engineering, 7(07), 1–8. Retrieved from https://theamericanjournals.com/index.php/tajabe/article/view/6326