Articles | Open Access | DOI: https://doi.org/10.37547/tajmspr/Volume07Issue02-02

Gut Microbiome-Host microRNA Interactions in Cancer Development and Immune Regulation: A Case of Colorectal and Breast Cancer

Muhammad Nouman , M.Phil Health Biotechnology, Department of Biotechnology, Faculty of Chemical and Life Sciences Abdul Wali Khan University Mardan, Pakistan
Faisal Humayun , Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan
Saad Ahmad khan , Department: Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
Abdul Qadeer khan , Department of Allied Health Science, Iqra National University Peshawar, Pakistan
Hassan Zeb , Department of Allied Health Science, Iqra National University Peshawar, Pakistan
Deena Jamal , Department of Biotechnology, Abdul Wali Khan University Mardan, Pakistan
Musawir Ali , Department of Allied Health Science, Iqra National University Peshawar, Pakistan
Abrar Hussain , MPhil Biotechnology & Genetic Engineering from Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar Pakistan, Pakistan
Faiza Shams , Department of Biotechnology, Faculty of Chemical and Life Sciences Abdul Wali Khan University Mardan, Pakistan

Abstract

Breast and colorectal cancers represent primary malignancies that researchers worldwide analyze for genetic along with environmental risk elements to build therapeutic methods for better cancer outcomes. The most prevalent cancer in women is breast cancer along with colorectal cancer ranking second and third respectively among females. Adults across the globe most often experience these cancer types yet the present scenario shows rising incidence rates among younger patients. These early-onset tumors often start in the advanced stages of their aggressive type and produce a poor clinical outlook for patients. Past research initially concentrated on identifying genes which might help explain cancer origins but this approach changed in recent years. Scientific research has demonstrated that genetics and epigenetics together with environmental elements strongly affect cancer predisposition. Due to recent paradigm shifts in scientific inquiry researchers performed diverse investigations to analyze host microRNA response patterns and validated microbiota-gut communication systems which significantly influenced disease occurrence and state. These factors directly affect the disease's final results. Immunosuppression stands as a major worrisome consequence among all identified unfavorable effects of this disease because at present such patients remain susceptible to numerous infections. Recent scientific research found microbiome along with microRNA to substantially affect immunosuppression. The review tracked host microRNA activity alongside gut microbiome changes during disease development to determine their influence on immunosuppression in patients. Understanding the microRNA and microbiome interaction mechanisms with disease presentation effects on immune function would enable future therapeutic development opportunities targeting host microRNA and patient gut microbiome functions. The combination of inhibitory-miRNA therapies with miRNA mimic-based therapeutics and immune checkpoint blockade therapies and bacteria-assisted tumor-targeted therapies helps manage cancer. This study simultaneously investigated noninvasive biomarkers that could help with both cancer diagnosis and treatment plans and prognostic assessment.

Keywords

Breast Cancer, Colorectal Cancer, microbiota

References

Sung H, Ferlay J, Siegel RL, et al. (2021). Global cancer statistics for the year 2020: Estimates of incidence and mortality for 36 cancer types across 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. doi:10.3322/caac.21660

World Health Organization. Breast cancer. [Online]. Available at: https://www.who.int/news-room/fact-sheets/detail/breast-cancer [Accessed June 14, 2021].

Johnson KS, Conant EF, Soo MS. (2021). A review on molecular subtypes of breast cancer for breast radiologists. Journal of Breast Imaging, 3(1), 12–24. doi:10.1093/jbi/wbaa110

Anders CK, Johnson R, Litton J, Phillips M, Bleyer A. (2009). Breast cancer incidence and characteristics in women under 40 years. Seminars in Oncology, 36(3), 237–249. doi: 10.1053/j.seminoncol.2009.03.001

Mavaddat N, Peock S, Frost D, et al. (2013). An analysis of cancer risks among carriers of BRCA1 and BRCA2 mutations from the EMBRACE study. Journal of the National Cancer Institute, 105(11), 812–822. doi:10.1093/jnci/djt095

Assi HA, Khoury KE, Dbouk H, Khalil LE, Mouhieddine TH, El Saghir NS. (2013). Epidemiological and prognostic characteristics of breast cancer in young women. Journal of Thoracic Disease, 5(Suppl 1), S2–S8.

Durbecq V, Ameye L, Veys I, et al. (2008). Hormone-dependent “luminal-B” tumors and their aggressive features in elderly patients. Critical Reviews in Oncology/Hematology, 67(1), 80–92. doi: 10.1016/j.critrevonc.2007.12.008

Seiler A, Chen MA, Brown RL, Fagundes CP. (2018). The relationship between obesity, dietary factors, nutrition, and breast cancer risk. Current Breast Cancer Reports, 10(1), 14–27. doi:10.1007/s12609-018-0264-0

Torre LA, Bray F, Siegel RL, et al. (2015). Cancer statistics from 2012: Global incidence and mortality trends. CA: A Cancer Journal for Clinicians, 65, 87–108. doi:10.3322/caac.21262

Sung JJ, Ng SC, Chan FK, et al. (2015). Revised Asia-Pacific consensus guidelines on colorectal cancer screening. Gut, 64(1), 121–132. doi:10.1136/gutjnl-2013-306503

Pourhoseingholi MA. (2014). The epidemiology and burden of colorectal cancer in the Asia-Pacific region. Translational Gastrointestinal Cancer, 3(4), 169–173. doi: 10.3978/j.issn.2224-4778.2014.08.10

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. (2017). Patterns and trends in colorectal cancer incidence and mortality worldwide. Gut, 66(4), 683–691. doi:10.1136/gutjnl-2015-310912

Rawla P, Sunkara T, Barsouk A. (2019). Colorectal cancer epidemiology: Incidence, survival, and risk factors. Przegląd Gastroenterologiczny, 14(2), 89–103. doi:10.5114/pg.2018.81072

Ahnen DJ, Wade SW, Jones WF, et al. (2014). Increasing rates of young-onset colorectal cancer and the need for urgent action. Mayo Clinic Proceedings, 89(2), 216–224. doi: 10.1016/j.mayocp.2013.09.006

Kyaw M, Sung JJ. (2016). Early-onset colorectal cancer in the Asia-Pacific region. Medical Journal of Australia, 205(10), 450–451. doi:10.5694/mja16.00957

Marley AR, Nan H. (2016). Epidemiology of colorectal cancer: A comprehensive review. International Journal of Molecular Epidemiology and Genetics, 7(3), 105–114.

Campos FG. (2017). Challenges posed by colorectal cancer in young adults. World Journal of Gastroenterology, 23(28), 5041–5044. doi:10.3748/wjg. v23.i28.504

Dong L, Ren H. Blood-based DNA methylation biomarkers have been highlighted as valuable tools for early colorectal cancer detection (J Proteomics Bioinform, 2018;11(6):120–126. doi:10.4172/jpb.1000477).

Bogaert J, Prenen H. This work discusses the molecular genetics underlying colorectal cancer and its implications (Ann Gastroenterol, 2014;27(1):9–14)

Jass JR. Colorectal cancer is described as a disease with multiple pathways, emphasizing its complexity (Crit Rev Oncog, 2006;12(3–4):273–287. doi:10.1615/CritRevOncog.v12.i3-4.50).

Armaghany T, Wilson JD, Chu Q, Mills G. The authors review genetic alterations commonly found in colorectal cancer (Gastrointest Cancer Res, 2012;5(1):19–27).

Tariq K, Ghias K. This paper reviews mechanisms involved in colorectal cancer carcinogenesis (Cancer Biol Med, 2016;13(1):120–135. doi: 10.20892/j.issn.2095-3941.2015.0103).

Lengauer C, Kinzler KW, Vogelstein B. The study investigates genetic instability as a hallmark of colorectal cancers (Nature, 1997;386(6625):623–627. doi:10.1038/386623a0).

Carter JV, Galbraith NJ, Yang D, et al. Blood-based microRNAs are analyzed as potential biomarkers for diagnosing colorectal cancer (Br J Cancer, 2017;116(6):762–774. doi:10.1038/bjc.2017.12).

Pillai RS. MicroRNAs are explored for their multiple mechanisms of action and their significant biological roles (RNA, 2005;11(12):1753–1761. doi:10.1261/rna.2248605).

Frixa T, Donzelli S, Blandino G. The paper discusses how oncogenic microRNAs contribute to cancer transformation (Cancers, 2015;7(4):2466–2485. doi:10.3390/cancers7040904).

Grammatikakis I, Gorospe M, Abdelmohsen K. Tumor suppressor microRNAs and their role in influencing cancer traits are examined (Int J Mol Sci, 2013;14(1):1822–1842. doi:10.3390/ijms14011822).

Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, et al. The role of metastamiRs in driving cancer invasion and metastasis is analyzed (Int J Mol Sci, 2012;13(2):1347–1379. doi:10.3390/ijms13021347).

Bouyssou JM, Manier S, Huynh D, et al. MicroRNAs are shown to play a role in regulating cancer metastasis (Biochim Biophys Acta, 2014;1845(2):255–265. doi: 10.1016/j.bbcan.2014.02.002).

Li M, Chen WD, Wang YD. The study highlights the interaction between the gut microbiota and microRNAs in host pathophysiology (Mol Med, 2020;26(1):101. doi:10.1186/s10020-020-00234-7).

Kho ZY, Lal SK. The human gut microbiome is reviewed for its potential role in influencing health and disease (Front Microbiol, 2018;9:1835. doi:10.3389/fmicb.2018.01835).

Zhao Y, Zeng Y, Zeng D, et al. The interaction between probiotics and microRNAs in host-microbe communication is discussed (Front Microbiol, 2021;11:604462. doi:10.3389/fmicb.2020.604462).

Allegra A, Musolino C, Tonacci A, et al. This paper explores how microRNAs and microbiota interactions influence cancer development (Cancers, 2020;12(4):805. doi:10.3390/cancers12040805)

Yuan C, Burns MB, Subramanian S, Blekhman R. The authors investigate the interaction of host microRNAs with gut microbiota in colorectal cancer (mSystems, 2018;3(3):e00205–e00217. doi:10.1128/mSystems.00205-17).

Williams MR, Stedtfeld RD, Tiedje JM, Hashsham SA. The study examines inter-domain communication via microRNAs between the host and gut microbiome (Front Microbiol, 2017;8:1896. doi:10.3389/fmicb.2017.01896).

Karius T, Schnekenburger M, Dicato M, Diederich M. Dietary agents’ role in modulating microRNAs for cancer management is explored (Biochem Pharmacol, 2012;83(12):1591–1601. doi: 10.1016/j.bcp.2012.02.004).

Bi K, Zhang X, Chen W, Diao H. MicroRNAs’ role in regulating intestinal immunity and gut microbiota for gastrointestinal health is comprehensively reviewed (Genes, 2020;11(9):1075. doi:10.3390/genes11091075)

Ishida M, Selaru FM. miRNA-based therapeutic strategies. Curr Anesthesiol Rep. 2013;1(1):63–70. doi:10.1007/s40139-012-0004-5.

Pedroza-Torres A, Romero-Córdoba SL, Justo-Garrido M, et al. MicroRNAs in tumor cell metabolism: roles and therapeutic opportunities. Front Oncol. 2019; 9:1404. doi:10.3389/fonc.2019.01404.

Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–10518. doi:10.1073/pnas.0804549105.

Shimomura A, Shiino S, Kawauchi J, et al. Novel combination of serum microRNA for detecting breast cancer in the early stage. Cancer Sci. 2016;107(3):326–334. doi:10.1111/cas.12880.

Ng EK, Li R, Shin VY, et al. Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One. 2013;8(1):e53141. doi: 10.1371/journal.pone.0053141.

Shin VY, Siu JM, Cheuk I, Ng EK, Kwong A. Circulating cell-free miRNAs as biomarkers for triple-negative breast cancer. Br J Cancer. 2015;112(11):1751–1759. doi:10.1038/bjc.2015.143.

Peña-Chilet M, Martínez MT, Pérez-Fidalgo JA, et al. MicroRNA profile in very young women with breast cancer. BMC Cancer. 2014; 14:529. doi:10.1186/1471-2407-14-529.

Wang F, Zheng Z, Guo J, Ding X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol. 2010;119(3):586–593. doi: 10.1016/j.ygyno.2010.07.021.

Bhat SA, Majid S, Hassan T. MicroRNAs and its emerging role as breast cancer diagnostic markers - A review. Adv Biomark Sci Technol. 2019; 1:1–8. doi: 10.1016/j.abst.2019.05.001.

Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57(1):84–91. doi:10.1373/clinchem.2010.151845.

Cortez MA, Welsh JW, Calin GA. Circulating microRNAs as noninvasive biomarkers in breast cancer. Recent Results Cancer Res. 2012; 195:151–161. doi:10.1007/978-3-642-28160-0_13.

Niu J, Shi Y, Tan G, et al. DNA damage induces NF-κB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J Biol Chem. 2012;287(26):21783–21795. doi:10.1074/jbc.M112.355495.

Tsai HP, Huang SF, Li CF, Chien HT, Chen SC. Differential microRNA expression in breast cancer with different onset age. PLoS One. 2018;13(1): e0191195. doi: 10.1371/journal.pone.0191195.

Zelli V, Compagnoni C, Capelli R, et al. Circulating microRNAs as prognostic and therapeutic biomarkers in breast cancer molecular subtypes. J Pers Med. 2020;10(3):98. doi:10.3390/jpm10030098.

Khalifa S, Alizadeh AM, Irani S, Omranipour R. Plasma miR-21, miR-155, miR-10b, and Let-7a as the potential biomarkers for monitoring breast cancer patients. Sci Rep. 2018;8(1):17981. doi:10.1038/s41598-018-36321-3.

McAnena P, Tanriverdi K, Curran C, et al. Circulating microRNAs miR-331 and miR-195 differentiate local Luminal A from metastatic breast cancer. BMC Cancer. 2019; 19:436. doi:10.1186/s12885-019-5636-y.

Søkilde R, Persson H, Ehinger A, et al. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics. 2019;20(1):503. doi:10.1186/s12864-019-5887-7.

Cecene G, Ak S, Eskiler GG, et al. Circulating miR-195 as a therapeutic biomarker in Turkish breast cancer patients. Asian Pac J Cancer Prev. 2016;17(9):4241–4246.

Sareyeldin RM, Gupta I, Al-Hashimi I, et al. Gene expression and miRNAs profiling: function and regulation in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Cancers. 2019;11(5):646. doi:10.3390/cancers11050646.

Zeng RC, Zhang W, Yan X, et al. Down-regulation of miRNA-30a in human plasma is a novel marker for breast cancer. Med Oncol. 2013;30(1):477. doi:10.1007/s12032-013-0477-z.

Gasparini P, Lovat F, Fassan M, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci U S A. 2014;111(12):4536–4541. doi:10.1073/pnas.1402604111.

Kleivi Sahlberg K, Bottai G, Naume B, et al. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin Cancer Res. 2015;21(5):1207–1214. doi: 10.1158/1078-0432.CCR-14-2011.

Shaheen J, Shahid S, Shahzadi S, Akhtar MW, Sadaf S. Identification of circulating miRNAs as noninvasive biomarkers of triple negative breast cancer in the population of Pakistan. Pakistan J Zool. 2019;51(3):1113–1121. doi: 10.17582/journal/2019.51.3.1113.1121.

Nama S, Muhuri M, Di Pascale F, et al. MicroRNA-138 is a prognostic biomarker for triple-negative breast cancer and promotes tumorigenesis via TUSC2 repression. Sci Rep. 2019;9(1):12718. doi:10.1038/s41598-019-49155-4.

Li HY, Liang JL, Kuo YL, et al. miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Res. 2017;19(1):133. doi:10.1186/s13058-017-0918-2.

Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol. 2018;144(8):1401–1411. doi:10.1007/s00432-018-2689-2.

Gupta I, Rizeq B, Vranic S, Moustafa AA, Al Farsi H. Circulating miRNAs in HER2-positive and triple negative breast cancers: potential biomarkers and therapeutic targets. Int J Mol Sci. 2020;21(18):6750. doi:10.3390/ijms21186750.

Wang W, Luo YP. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 2015;16(1):18–31. doi:10.1631/jzus. B1400184.

Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction, and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122–1143. doi:10.7150/thno.11543.

van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ. Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015; 17:21. doi:10.1186/s13058-015-0526-y.

Banerjee S, Tian T, Wei Z, et al. Distinct microbial signatures associated with different breast cancer types. Front Microbiol. 2018; 9:951. doi:10.3389/fmicb.2018.00951.

Banerjee S, Wei Z, Tian T, et al. Prognostic correlations with the microbiome of breast cancer subtypes. Cell Death Dis. 2021;12(9):831. doi:10.1038/s41419-021-04092-x.

Parida S, Sharma D. The microbiome-estrogen connection and breast cancer risk. Cells. 2019;8(12):1642. doi:10.3390/cells8121642.

Fernández MF, Reina-Pérez I, Astorga JM, Rodríguez-Carrillo A, Plaza-Díaz J, Fontana L. Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health. 2018;15(8):1747. doi:10.3390/ijerph15081747

Mosaddeque, A., Rowshon, M., Ahmed, T., Twaha, U., & Babu, B. (2022). The Role of AI and Machine Learning in Fortifying Cybersecurity Systems in the US Healthcare Industry. Inverge Journal of Social Sciences, 1(2), 70-81.

Ahmed, T., Mosaddeque, A., Hossain, A., Twaha, U., Rowshon, M., & Babu, B. (2022). The Dynamics of AI and Automation in Financial Forecasting, Human Resources Planning, and Resources Optimization for Designing an Effective National Healthcare Policy. Journal of Business Insight and Innovation, 1(2), 78-88.

Ahmad, S. J., Latif, D. A., & Masood, J. (2023). Transgender fight for civil and fundamental rights in Pakistan, current status of transgender in the light of Transgender Persons (Protection of Rights) Act, 2018 and transgender persons welfare policy 2018. Journal of policy research, 9(2), 229-238.

Iqbal, S., Latif, A., & Bashir, R. (2023). A Comparative Analysis of the Differences in Mental Health in Aged Men and Women. Journal of Policy Research (JPR), 9(2), 565-572.

Ahmed, A., Rahman, S., Islam, M., Chowdhury, F., & Badhan, I. A. (2023). Challenges and Opportunities in Implementing Machine Learning For Healthcare Supply Chain Optimization: A Data-Driven Examination. International journal of business and management sciences, 3(07), 6-31.

Rahman, S., Alve, S. E., Islam, M. S., Dutta, S., Islam, M. M., Ahmed, A., ... & Kamruzzaman, M. (2024). Understanding The Role Of Enhanced Public Health Monitoring Systems: A Survey On Technological Integration And Public Health Benefits. Frontline Marketing, Management and Economics Journal, 4(10), 16-49.

Badhan, I. A., Neeroj, M. H., & Chowdhury, I. (2024). The Effect Of Ai-Driven Inventory Management Systems On Healthcare Outcomes And Supply Chain Performance: A Data-Driven Analysis. Frontline Marketing, Management and Economics Journal, 4(11), 15-52.

Article Statistics

Copyright License

Download Citations

How to Cite

Muhammad Nouman, Faisal Humayun, Saad Ahmad khan, Abdul Qadeer khan, Hassan Zeb, Deena Jamal, Musawir Ali, Abrar Hussain, & Faiza Shams. (2025). Gut Microbiome-Host microRNA Interactions in Cancer Development and Immune Regulation: A Case of Colorectal and Breast Cancer. The American Journal of Medical Sciences and Pharmaceutical Research, 7(02), 6–20. https://doi.org/10.37547/tajmspr/Volume07Issue02-02