Articles | Open Access | DOI: https://doi.org/10.37547/tajmspr/Volume07Issue01-03

Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration

An Thi Phuong Nguyen , Dermatologist, Viva Group, Ho Chi Minh city, Vietnam
Rasel Mahmud Jewel , Doctor of Business Administration concentration in Information Technology, Westcliff University, USA
Arjina Akter , Department Of Public Health, Central Michigan University, Mount Pleasant, Michigan, USA

Abstract

Skin cancer detection remains a critical challenge in dermatology, with early diagnosis significantly improving patient outcomes. This study presents a comparative analysis of machine learning models for automated skin cancer detection, highlighting the superior performance of Convolutional Neural Networks (CNNs). The CNN model achieved the highest accuracy (92.5%), sensitivity (91.8%), and specificity (93.1%) compared to other algorithms such as Support Vector Machines (SVMs) and Random Forests. The use of advanced preprocessing techniques and diverse datasets ensured the model's robustness and generalizability. While the findings demonstrate the potential of deep learning in dermatological diagnostics, limitations such as model interpretability and dataset diversity were identified. This research underscores the transformative role of AI in improving diagnostic accuracy, enabling early detection, and addressing healthcare disparities, particularly in resource-constrained settings. Future work aims to enhance model explainability and expand its applicability across diverse populations.

Keywords

skin cancer detection, machine learning, Convolutional Neural Networks

References

Md Habibur Rahman, Ashim Chandra Das, Md Shujan Shak, Md Kafil Uddin, Md Imdadul Alam, Nafis Anjum, Md Nad Vi Al Bony, & Murshida Alam. (2024). TRANSFORMING CUSTOMER RETENTION IN FINTECH INDUSTRY THROUGH PREDICTIVE ANALYTICS AND MACHINE LEARNING. The American Journal of Engineering and Technology, 6(10), 150–163. https://doi.org/10.37547/tajet/Volume06Issue10-17

American Cancer Society. (2024). Skin cancer facts & figures. Retrieved from https://www.cancer.org

Brinker, T. J., Hekler, A., Utikal, J. S., Grabe, N., Schadendorf, D., Berking, C., ... & von Kalle, C. (2019). Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma diagnosis study. European Journal of Cancer, 113, 47-54. https://doi.org/10.1016/j.ejca.2019.04.001

Codella, N. C., Nguyen, Q. B., Pankanti, S., Gutman, D., Helba, B., Halpern, A., & Smith, J. R. (2018). Deep learning ensembles for melanoma recognition in dermoscopy images. IBM Journal of Research and Development, 61(4), 5-1. https://doi.org/10.1147/JRD.2018.2846758

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056

Han, S. S., Kim, M. S., Lim, W., Park, G. H., Park, I., & Chang, S. E. (2020). Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. Journal of Investigative Dermatology, 140(7), 1572-1579. https://doi.org/10.1016/j.jid.2019.12.008

Hekler, A., Utikal, J. S., Enk, A. H., Berking, C., Klode, J., Hauschild, A., ... & von Kalle, C. (2019). Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer, 120, 114-121. https://doi.org/10.1016/j.ejca.2019.07.013

Nasr-Esfahani, E., Samavi, S., Karimi, N., Soroushmehr, S. M., Jafari, M. H., & Ward, K. (2018). Melanoma detection by analysis of clinical images using convolutional neural networks. Artificial Intelligence in Medicine, 87, 54-63. https://doi.org/10.1016/j.artmed.2018.03.008

Tauhedur Rahman, Md Kafil Uddin, Biswanath Bhattacharjee, Md Siam Taluckder, Sanjida Nowshin Mou, Pinky Akter, Md Shakhaowat Hossain, Md Rashel Miah, & Md Mohibur Rahman. (2024). BLOCKCHAIN APPLICATIONS IN BUSINESS OPERATIONS AND SUPPLY CHAIN MANAGEMENT BY MACHINE LEARNING. International Journal of Computer Science & Information System, 9(11), 17–30. https://doi.org/10.55640/ijcsis/Volume09Issue11-03

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Bhandari, A., Cherukuri, A. K., & Kamalov, F. (2023). Machine learning and blockchain integration for security applications. In Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence (pp. 129-173). River Publishers.

Diro, A., Chilamkurti, N., Nguyen, V. D., & Heyne, W. (2021). A comprehensive study of anomaly detection schemes in IoT networks using machine learning algorithms. Sensors, 21(24), 8320.

Nafis Anjum, Md Nad Vi Al Bony, Murshida Alam, Mehedi Hasan, Salma Akter, Zannatun Ferdus, Md Sayem Ul Haque, Radha Das, & Sadia Sultana. (2024). COMPARATIVE ANALYSIS OF SENTIMENT ANALYSIS MODELS ON BANKING INVESTMENT IMPACT BY MACHINE LEARNING ALGORITHM. International Journal of Computer Science & Information System, 9(11), 5–16. https://doi.org/10.55640/ijcsis/Volume09Issue11-02

Shahbazi, Z., & Byun, Y. C. (2021). Integration of blockchain, IoT and machine learning for multistage quality control and enhancing security in smart manufacturing. Sensors, 21(4), 1467.

Das, A. C., Mozumder, M. S. A., Hasan, M. A., Bhuiyan, M., Islam, M. R., Hossain, M. N., ... & Alam, M. I. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42-53.

Akter, S., Mahmud, F., Rahman, T., Ahmmed, M. J., Uddin, M. K., Alam, M. I., ... & Jui, A. H. (2024). A COMPREHENSIVE STUDY OF MACHINE LEARNING APPROACHES FOR CUSTOMER SENTIMENT ANALYSIS IN BANKING SECTOR. The American Journal of Engineering and Technology, 6(10), 100-111.

Shahid, R., Mozumder, M. A. S., Sweet, M. M. R., Hasan, M., Alam, M., Rahman, M. A., ... & Islam, M. R. (2024). Predicting Customer Loyalty in the Airline Industry: A Machine Learning Approach Integrating Sentiment Analysis and User Experience. International Journal on Computational Engineering, 1(2), 50-54.

Ontor, M. R. H., Iqbal, A., Ahmed, E., & Rahman, A. LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS'PERFORMANCE: A MACHINE LEARNING APPROACH. SYSTEM (eISSN: 2536-7919 pISSN: 2536-7900), 9(11), 45-56.

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Arif, M., Ahmed, M. P., Al Mamun, A., Uddin, M. K., Mahmud, F., Rahman, T., ... & Helal, M. (2024). DYNAMIC PRICING IN FINANCIAL TECHNOLOGY: EVALUATING MACHINE LEARNING SOLUTIONS FOR MARKET ADAPTABILITY. International Interdisciplinary Business Economics Advancement Journal, 5(10), 13-27.

Uddin, M. K., Akter, S., Das, P., Anjum, N., Akter, S., Alam, M., ... & Pervin, T. (2024). MACHINE LEARNING-BASED EARLY DETECTION OF KIDNEY DISEASE: A COMPARATIVE STUDY OF PREDICTION MODELS AND PERFORMANCE EVALUATION. International Journal of Medical Science and Public Health Research, 5(12), 58-75.

Das, A. C., Rishad, S. S. I., Akter, P., Tisha, S. A., Afrin, S., Shakil, F., ... & Rahman, M. M. (2024). ENHANCING BLOCKCHAIN SECURITY WITH MACHINE LEARNING: A COMPREHENSIVE STUDY OF ALGORITHMS AND APPLICATIONS. The American Journal of Engineering and Technology, 6(12), 150-162.

Shak, M. S., Uddin, A., Rahman, M. H., Anjum, N., Al Bony, M. N. V., Alam, M., ... & Pervin, T. (2024). INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE. International Interdisciplinary Business Economics Advancement Journal, 5(11), 6-20.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing, Management and Economics Journal, 4(12), 66-83.

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. Frontline Marketing, Management and Economics Journal, 4(12), 84-106.

Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.

Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.

Al Mamun, A., Hossain, M. S., Rishad, S. S. I., Rahman, M. M., Shakil, F., Choudhury, M. Z. M. E., ... & Sultana, S. (2024). MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 63-76.

Haque, M. S., Amin, M. S., Ahmad, S., Sayed, M. A., Raihan, A., & Hossain, M. A. (2023, September). Predicting Kidney Failure using an Ensemble Machine Learning Model: A Comparative Study. In 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 31-37). IEEE.

Modak, C., Shahriyar, M. A., Taluckder, M. S., Haque, M. S., & Sayed, M. A. (2023, August). A Study of Lung Cancer Prediction Using Machine Learning Algorithms. In 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS) (pp. 213-217). IEEE.

Modak, C., Shahriyar, M. A., Taluckder, M. S., Haque, M. S., & Sayed, M. A. (2023, August). A Study of Lung Cancer Prediction Using Machine Learning Algorithms. In 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS) (pp. 213-217). IEEE.

Nguyen, T. N., Khan, M. M., Hossain, M. Z., Sharif, K. S., Das, R., & Haque, M. S. (2024). Product Demand Forecasting For Inventory Management with Freight Transportation Services Index Using Advanced Neural Networks Algorithm. American Journal of Computing and Engineering, 7(4), 50-58.

Miah, J., Khan, R. H., Ahmed, S., & Mahmud, M. I. (2023, June). A comparative study of detecting covid 19 by using chest X-ray images–A deep learning approach. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0311-0316). IEEE.

Khan, R. H., Miah, J., Nipun, S. A. A., & Islam, M. (2023, March). A Comparative Study of Machine Learning classifiers to analyze the Precision of Myocardial Infarction prediction. In 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0949-0954). IEEE.

Kayyum, S., Miah, J., Shadaab, A., Islam, M. M., Islam, M., Nipun, S. A. A., ... & Al Faisal, F. (2020, January). Data analysis on myocardial infarction with the help of machine learning algorithms considering distinctive or non-distinctive features. In 2020 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-7). IEEE.

Islam, M. M., Nipun, S. A. A., Islam, M., Rahat, M. A. R., Miah, J., Kayyum, S., ... & Al Faisal, F. (2020). An empirical study to predict myocardial infarction using k-means and hierarchical clustering. In Machine Learning, Image Processing, Network Security and Data Sciences: Second International Conference, MIND 2020, Silchar, India, July 30-31, 2020, Proceedings, Part II 2 (pp. 120-130). Springer Singapore.

Miah, J., Ca, D. M., Sayed, M. A., Lipu, E. R., Mahmud, F., & Arafat, S. Y. (2023, November). Improving Cardiovascular Disease Prediction Through Comparative Analysis of Machine Learning Models: A Case Study on Myocardial Infarction. In 2023 15th International Conference on Innovations in Information Technology (IIT) (pp. 49-54). IEEE.

Khan, R. H., Miah, J., Rahat, M. A. R., Ahmed, A. H., Shahriyar, M. A., & Lipu, E. R. (2023, September). A Comparative Analysis of Machine Learning Approaches for Chronic Kidney Disease Detection. In 2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (pp. 1-6). IEEE.

Miah, J., Cao, D. M., Sayed, M. A., Taluckder, M. S., Haque, M. S., & Mahmud, F. (2023). Advancing Brain Tumor Detection: A Thorough Investigation of CNNs, Clustering, and SoftMax Classification in the Analysis of MRI Images. arXiv preprint arXiv:2310.17720.

Rahman, M. M., Islam, A. M., Miah, J., Ahmad, S., & Mamun, M. (2023, June). sleepWell: Stress Level Prediction Through Sleep Data. Are You Stressed?. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0229-0235). IEEE.

Rahman, M. M., Islam, A. M., Miah, J., Ahmad, S., & Hasan, M. M. (2023, June). Empirical Analysis with Component Decomposition Methods for Cervical Cancer Risk Assessment. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0513-0519). IEEE.

Khan, R. H., Miah, J., Nipun, S. A. A., Islam, M., Amin, M. S., & Taluckder, M. S. (2023, September). Enhancing Lung Cancer Diagnosis with Machine Learning Methods and Systematic Review Synthesis. In 2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (pp. 1-5). IEEE.

Miah, J. (2024). HOW FAMILY DNA CAN CAUSE LUNG CANCER USING MACHINE LEARNING. International Journal of Medical Science and Public Health Research, 5(12), 8-14.

Miah, J., Khan, R. H., Linkon, A. A., Bhuiyan, M. S., Jewel, R. M., Ayon, E. H., ... & Tanvir Islam, M. (2024). Developing a Deep Learning Methodology to Anticipate the Onset of Diabetic Retinopathy at an Early Stage. In Innovative and Intelligent Digital Technologies; Towards an Increased Efficiency: Volume 1 (pp. 77-91). Cham: Springer Nature Switzerland.

Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.

Shak, M. S., Mozumder, M. S. A., Hasan, M. A., Das, A. C., Miah, M. R., Akter, S., & Hossain, M. N. (2024). OPTIMIZING RETAIL DEMAND FORECASTING: A PERFORMANCE EVALUATION OF MACHINE LEARNING MODELS INCLUDING LSTM AND GRADIENT BOOSTING. The American Journal of Engineering and Technology, 6(09), 67-80.

Das, A. C., Mozumder, M. S. A., Hasan, M. A., Bhuiyan, M., Islam, M. R., Hossain, M. N., ... & Alam, M. I. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42-53.

Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Taluckder, M. S., Al Bony, M. N. V., ... & Jui, A. H. (2024). PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY. International Journal of Medical Science and Public Health Research, 5(11), 41-55.

Article Statistics

Copyright License

Download Citations

How to Cite

An Thi Phuong Nguyen, Rasel Mahmud Jewel, & Arjina Akter. (2025). Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 15–26. https://doi.org/10.37547/tajmspr/Volume07Issue01-03