Articles | Open Access | DOI: https://doi.org/10.37547/tajmei/Volume07Issue04-15

A Hybrid CNN-LSTM Approach for Detecting Anomalous Bank Transactions: Enhancing Financial Fraud Detection Accuracy

Tamanna Pervin , Department of Business Administration, International American University, Los Angeles, California, USA
Sharmin Akter , Department of Information Technology Project Management, St. Francis College, USA
Sadia Afrin , Department of Computer & Information Science, Gannon University, USA
Md Refat Hossain , Master of Business Administration, Westcliff University, USA
MD Sajedul Karim Chy , Department of Business Administration, Washington University of Science and Technology, USA
Sadia Akter , Department of Business Administration, International American University, USA
Md Minzamul Hasan , Doctor of Business Administration (DBA), College of Business, Westcliff University, USA
Md Mafuzur Rahman , Master’s in data Analytics, Harrisburg University of Science & Technology, USA
Chowdhury Amin Abdullah , Seidenberg School of CSIS, Pace University, USA

Abstract

Detecting fraudulent bank transactions is crucial for maintaining the integrity of financial institutions and preserving customer trust. This study introduces a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model designed to enhance the accuracy and efficiency of fraud detection systems. Utilizing the European Credit Card Fraud Detection dataset comprising 284,807 transactions with significant class imbalance, extensive preprocessing techniques were applied, including Min-Max scaling and Synthetic Minority Over-sampling Technique (SMOTE). Recursive Feature Elimination (RFE) identified the top 20 impactful features, optimizing model performance. The proposed hybrid model demonstrated remarkable effectiveness, achieving superior accuracy (99.5%), precision (93.1%), recall (92.1%), F1-score (92.6%), and an Area Under the Receiver Operating Characteristic Curve (AUC-ROC) of 97.5%. Comparative analyses revealed that the hybrid CNN-LSTM model significantly outperformed traditional machine learning algorithms such as Logistic Regression, Random Forest, and XGBoost. These findings underscore the potential of CNN-LSTM hybrid models in addressing complex fraud detection scenarios, providing financial institutions with a robust and reliable tool for transaction anomaly detection.

Keywords

Fraud Detection, CNN-LSTM Hybrid Model, Credit Card Fraud, SMOTE, Machine Learning

References

Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTICACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.

Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: A comparative analysis. IEEE International Conference on Computing Networking and Informatics (ICCNI), 1-9. https://doi.org/10.1109/ICCNI.2017.8123782

Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602-613. https://doi.org/10.1016/j.dss.2010.08.008

Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. (2014). Calibrating probability with undersampling for unbalanced classification. IEEE Symposium Series on Computational Intelligence (SSCI), 159-166. https://doi.org/10.1109/SSCI.2014.35

Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P. E., He-Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234-245. https://doi.org/10.1016/j.eswa.2018.01.037

Pham, H., Tran, D., Nguyen, V., & Phung, D. (2020). Predicting healthcare trajectories from medical records: A deep learning approach. Journal of Biomedical Informatics, 104, 103370. https://doi.org/10.1016/j.jbi.2019.103370

Roy, A., Sun, J., & Mahoney, P. (2018). Deep learning detecting fraud in credit card transactions. Systems and Information Engineering Design Symposium (SIEDS), 129-134. https://doi.org/10.1109/SIEDS.2018.8374722

Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access, 5, 21954-21961. https://doi.org/10.1109/ACCESS.2017.2762418

Zhang, R., & Chen, Y. (2019). Fraud detection for online banking transactions using hybrid deep learning. International Conference on Intelligent Computing and Optimization, 518-527. https://doi.org/10.1007/978-3-030-36289-1_47

Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.

Akhi, S. S., Shakil, F., Dey, S. K., Tusher, M. I., Kamruzzaman, F., Jamee, S. S., ... & Rahman, N. (2025). Enhancing Banking Cybersecurity: An Ensemble-Based Predictive Machine Learning Approach. The American Journal of Engineering and Technology, 7(03), 88-97.

Pabel, M. A. H., Bhattacharjee, B., Dey, S. K., Jamee, S. S., Obaid, M. O., Mia, M. S., ... & Sharif, M. K. (2025). BUSINESS ANALYTICS FOR CUSTOMER SEGMENTATION: A COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS IN PERSONALIZED BANKING SERVICES. American Research Index Library, 1-13.

Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.

Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.

Rishad, S. S. I., Shakil, F., Tisha, S. A., Afrin, S., Hassan, M. M., Choudhury, M. Z. M. E., & Rahman, N. (2025). LEVERAGING AI AND MACHINE LEARNING FOR PREDICTING, DETECTING, AND MITIGATING CYBERSECURITY THREATS: A COMPARATIVE STUDY OF ADVANCED MODELS. American Research Index Library, 6-25.

Uddin, A., Pabel, M. A. H., Alam, M. I., KAMRUZZAMAN, F., Haque, M. S. U., Hosen, M. M., ... & Ghosh, S. K. (2025). Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques. The American Journal of Management and Economics Innovations, 7(01), 5-20.

Ahmed, M. P., Das, A. C., Akter, P., Mou, S. N., Tisha, S. A., Shakil, F., ... & Ahmed, A. (2024). HARNESSING MACHINE LEARNING MODELS FOR ACCURATE CUSTOMER LIFETIME VALUE PREDICTION: A COMPARATIVE STUDY IN MODERN BUSINESS ANALYTICS. American Research Index Library, 06-22.

Md Risalat Hossain Ontor, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo, & Ashequr Rahman. (2024). LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS’ PERFORMANCE: A MACHINE LEARNING APPROACH. International Journal of Computer Science & Information System, 9(11), 45–56. https://doi.org/10.55640/ijcsis/Volume09Issue11-05

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.

Iqbal, A., Ahmed, E., Rahman, A., & Ontor, M. R. H. (2024). ENHANCING FRAUD DETECTION AND ANOMALY DETECTION IN RETAIL BANKING USING GENERATIVE AI AND MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 78-91.

Nguyen, Q. G., Nguyen, L. H., Hosen, M. M., Rasel, M., Shorna, J. F., Mia, M. S., & Khan, S. I. (2025). Enhancing Credit Risk Management with Machine Learning: A Comparative Study of Predictive Models for Credit Default Prediction. The American Journal of Applied sciences, 7(01), 21-30.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing,Management and Economics Journal, 4(12), 66-83.

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Nath, F., Chowdhury, M. O. S., & Rhaman, M. M. (2023). Navigating produced water sustainability in the oil and gas sector: A Critical review of reuse challenges, treatment technologies, and prospects ahead. Water, 15(23), 4088.

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Chowdhury, O. S., & Baksh, A. A. (2017). IMPACT OF OIL SPILLAGE ON AGRICULTURAL PRODUCTION. Journal of Nature Science & Sustainable Technology, 11(2).

Nath, F., Asish, S., Debi, H. R., Chowdhury, M. O. S., Zamora, Z. J., & Muñoz, S. (2023, August). Predicting hydrocarbon production behavior in heterogeneous reservoir utilizing deep learning models. In Unconventional Resources Technology Conference, 13–15 June 2023 (pp. 506-521). Unconventional Resources Technology Conference (URTeC).

Ahmmed, M. J., Rahman, M. M., Das, A. C., Das, P., Pervin, T., Afrin, S., ... & Rahman, N. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. American Research Index Library, 31-44.

Shakil, F., Afrin, S., Al Mamun, A., Alam, M. K., Hasan, M. T., Vansiya, J., & Chandi, A. (2025). HYBRID MULTI-MODAL DETECTION FRAMEWORK FOR ADVANCED PERSISTENT THREATS IN CORPORATE NETWORKS USING MACHINE LEARNING AND DEEP LEARNING. American Research Index Library, 6-20.

Rishad, S. S. I., Shakil, F., Tisha, S. A., Afrin, S., Hassan, M. M., Choudhury, M. Z. M. E., & Rahman, N. (2025). LEVERAGING AI AND MACHINE LEARNING FOR PREDICTING, DETECTING, AND MITIGATING CYBERSECURITY THREATS: A COMPARATIVE STUDY OF ADVANCED MODELS. American Research Index Library, 6-25.

Das, A. C., Rishad, S. S. I., Akter, P., Tisha, S. A., Afrin, S., Shakil, F., ... & Rahman, M. M. (2024). ENHANCING BLOCKCHAIN SECURITY WITH MACHINE LEARNING: A COMPREHENSIVE STUDY OF ALGORITHMS AND APPLICATIONS. The American Journal of Engineering and Technology, 6(12), 150-162.

Al-Imran, M., Ayon, E. H., Islam, M. R., Mahmud, F., Akter, S., Alam, M. K., ... & Aziz, M. M. (2024). TRANSFORMING BANKING SECURITY: THE ROLE OF DEEP LEARNING IN FRAUD DETECTION SYSTEMS. The American Journal of Engineering and Technology, 6(11), 20-32.

Akhi, S. S., Shakil, F., Dey, S. K., Tusher, M. I., Kamruzzaman, F., Jamee, S. S., ... & Rahman, N. (2025). Enhancing Banking Cybersecurity: An Ensemble-Based Predictive Machine Learning Approach. The American Journal of Engineering and Technology, 7(03), 88-97.

Pabel, M. A. H., Bhattacharjee, B., Dey, S. K., Jamee, S. S., Obaid, M. O., Mia, M. S., ... & Sharif, M. K. (2025). BUSINESS ANALYTICS FOR CUSTOMER SEGMENTATION: A COMPARATIVE STUDY OF MACHINE LEARNING ALGORITHMS IN PERSONALIZED BANKING SERVICES. American Research Index Library, 1-13.

Siddique, M. T., Jamee, S. S., Sajal, A., Mou, S. N., Mahin, M. R. H., Obaid, M. O., ... & Hasan, M. (2025). Enhancing Automated Trading with Sentiment Analysis: Leveraging Large Language Models for Stock Market Predictions. The American Journal of Engineering and Technology, 7(03), 185-195.

Article Statistics

Copyright License

Download Citations

How to Cite

Tamanna Pervin, Sharmin Akter, Sadia Afrin, Md Refat Hossain, MD Sajedul Karim Chy, Sadia Akter, Md Minzamul Hasan, Md Mafuzur Rahman, & Chowdhury Amin Abdullah. (2025). A Hybrid CNN-LSTM Approach for Detecting Anomalous Bank Transactions: Enhancing Financial Fraud Detection Accuracy. The American Journal of Management and Economics Innovations, 7(04), 116–123. https://doi.org/10.37547/tajmei/Volume07Issue04-15