Articles | Open Access | DOI: https://doi.org/10.37547/tajmei/Volume07Issue01-02

Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques

Aftab Uddin , Fox School of Business & Management, Temple University, USA
Md Amran Hossen Pabel , Master’s of Science in Business Analytics Wright State University, Ohio, USA
Md Imdadul Alam , Master of Science in Financial Analysis, Fox School of Business, Temple University, USA
FNU KAMRUZZAMAN , Department of Information Technology Project Management & Business Analytics, St. Francis College, USA
Md Sayem Ul Haque , MBA in Business Analytics, Gannon University, USA
Md Monir Hosen , Master of Business Administration in Supply Chain Management, University of Houston downtown, USA
Ashadujjaman Sajal , Department of Management Science and Quantitative Methods, Gannon University, USA
Mohammad Rasel Miah , MBA in Accounting, University of the Potomac, Leesburge pike, Falls church, Virginia, USA
Sandip Kumar Ghosh , Department of Business Administration, University of Surrey, Guildford, Surrey, GU2 7XH, UK

Abstract

This study explores the application of machine learning models for predicting financial risk and optimizing portfolio management. We compare various machine learning algorithms, including Random Forest, Gradient Boosting, Long Short-Term Memory (LSTM), and Transformer networks, to assess their effectiveness in forecasting asset returns, managing risk, and enhancing portfolio performance. The results demonstrate that machine learning models significantly outperform traditional financial models in terms of prediction accuracy and risk-adjusted returns. Notably, LSTM and Transformer models excel at capturing long-term dependencies in financial data, leading to more robust predictions and improved portfolio outcomes. Feature selection and preprocessing were crucial in maximizing model performance. Portfolio optimization using machine learning models, when combined with traditional optimization techniques, resulted in superior Sharpe and Sortino ratios. These findings highlight the potential of machine learning to enhance real-time financial decision-making, offering more adaptive and resilient strategies for managing investment portfolios in dynamic market environments. This research provides valuable insights into the integration of machine learning for financial risk prediction and portfolio management, with implications for future advancements in the field.

Keywords

Machine learning, financial risk prediction, portfolio optimization, asset returns forecasting

References

Tauhedur Rahman, Md Kafil Uddin, Biswanath Bhattacharjee, Md Siam Taluckder, Sanjida Nowshin Mou, Pinky Akter, Md Shakhaowat Hossain, Md Rashel Miah, & Md Mohibur Rahman. (2024). BLOCKCHAIN APPLICATIONS IN BUSINESS OPERATIONS AND SUPPLY CHAIN MANAGEMENT BY MACHINE LEARNING. International Journal of Computer Science & Information System, 9(11), 17–30. https://doi.org/10.55640/ijcsis/Volume09Issue11-03

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Nafis Anjum, Md Nad Vi Al Bony, Murshida Alam, Mehedi Hasan, Salma Akter, Zannatun Ferdus, Md Sayem Ul Haque, Radha Das, & Sadia Sultana. (2024). COMPARATIVE ANALYSIS OF SENTIMENT ANALYSIS MODELS ON BANKING INVESTMENT IMPACT BY MACHINE LEARNING ALGORITHM. International Journal of Computer Science & Information System, 9(11), 5–16. https://doi.org/10.55640/ijcsis/Volume09Issue11-02

Das, A. C., Mozumder, M. S. A., Hasan, M. A., Bhuiyan, M., Islam, M. R., Hossain, M. N., ... & Alam, M. I. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42-53.

Akter, S., Mahmud, F., Rahman, T., Ahmmed, M. J., Uddin, M. K., Alam, M. I., ... & Jui, A. H. (2024). A COMPREHENSIVE STUDY OF MACHINE LEARNING APPROACHES FOR CUSTOMER SENTIMENT ANALYSIS IN BANKING SECTOR. The American Journal of Engineering and Technology, 6(10), 100-111.

Md Risalat Hossain Ontor, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo, & Ashequr Rahman. (2024). LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS’ PERFORMANCE: A MACHINE LEARNING APPROACH. International Journal of Computer Science & Information System, 9(11), 45–56. https://doi.org/10.55640/ijcsis/Volume09Issue11-05

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Arif, M., Ahmed, M. P., Al Mamun, A., Uddin, M. K., Mahmud, F., Rahman, T., ... & Helal, M. (2024). DYNAMIC PRICING IN FINANCIAL TECHNOLOGY: EVALUATING MACHINE LEARNING SOLUTIONS FOR MARKET ADAPTABILITY. International Interdisciplinary Business Economics Advancement Journal, 5(10), 13-27.

Uddin, M. K., Akter, S., Das, P., Anjum, N., Akter, S., Alam, M., ... & Pervin, T. (2024). MACHINE LEARNING-BASED EARLY DETECTION OF KIDNEY DISEASE: A COMPARATIVE STUDY OF PREDICTION MODELS AND PERFORMANCE EVALUATION. International Journal of Medical Science and Public HealthResearch, 5(12),58-75.

Buhlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model selection. Statistical Science, 22(4), 477-504. https://doi.org/10.1214/07-STS241

Chen, Y., Zhang, T., & Xu, H. (2018). Forecasting stock returns with machine learning. Journal of Financial Data Science, 1(1), 1-26. https://doi.org/10.3905/jfds.2018.1.1.1

Engle, R. F. (2001). GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic Perspectives, 15(4), 157-168. https://doi.org/10.1257/jep.15.4.157

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-669. https://doi.org/10.1016/j.ejor.2018.03.024

He, K., Zhang, X., Ren, S., & Sun, J. (2017). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

Jiang, Z., Xu, Z., & Liang, J. (2017). A deep reinforcement learning framework for the financial portfolio management problem. arXiv preprint arXiv:1706.10059.

Li, Y., Li, Y., & Zhang, C. (2020). Transformer-based financial market prediction models: A review. Financial Innovation, 6(1), 1-14. https://doi.org/10.1186/s40854-020-00191-9

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Zhang, Z., Zhang, H., & Li, Q. (2019). Stock market forecasting with gradient boosting machines. Journal of Computational Finance, 23(2), 89-114. https://doi.org/10.21314/JCF.2019.197

Shak, M. S., Uddin, A., Rahman, M. H., Anjum, N., Al Bony, M. N. V., Alam, M., ... & Pervin, T. (2024). INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE. International Interdisciplinary Business Economics Advancement Journal, 5(11), 6-20.

Naznin, R., Sarkar, M. A. I., Asaduzzaman, M., Akter, S., Mou, S. N., Miah, M. R., ... & Sajal, A. (2024). ENHANCING SMALL BUSINESS MANAGEMENT THROUGH MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS FOR CUSTOMER RETENTION, FINANCIAL FORECASTING, AND INVENTORY OPTIMIZATION. International Interdisciplinary Business Economics Advancement Journal, 5(11), 21-32.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing, Management and Economics Journal, 4(12), 66-83.

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. Frontline Marketing, Management and Economics Journal, 4(12), 84-106.

Al Mamun, A., Hossain, M. S., Rishad, S. S. I., Rahman, M. M., Shakil, F., Choudhury, M. Z. M. E., ... & Sultana, S. (2024). MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 63-76.

Das, A. C., Rishad, S. S. I., Akter, P., Tisha, S. A., Afrin, S., Shakil, F., ... & Rahman, M. M. (2024). ENHANCING BLOCKCHAIN SECURITY WITH MACHINE LEARNING: A COMPREHENSIVE STUDY OF ALGORITHMS AND APPLICATIONS. The American Journal of Engineering and Technology, 6(12), 150-162.

Miah, J., Khan, R. H., Ahmed, S., & Mahmud, M. I. (2023, June). A comparative study of detecting covid 19 by using chest X-ray images–A deep learning approach. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0311-0316). IEEE.

Khan, R. H., Miah, J., Nipun, S. A. A., & Islam, M. (2023, March). A Comparative Study of Machine Learning classifiers to analyze the Precision of Myocardial Infarction prediction. In 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0949-0954). IEEE.

Kayyum, S., Miah, J., Shadaab, A., Islam, M. M., Islam, M., Nipun, S. A. A., ... & Al Faisal, F. (2020, January). Data analysis on myocardial infarction with the help of machine learning algorithms considering distinctive or non-distinctive features. In 2020 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-7). IEEE.

Islam, M. M., Nipun, S. A. A., Islam, M., Rahat, M. A. R., Miah, J., Kayyum, S., ... & Al Faisal, F. (2020). An empirical study to predict myocardial infarction using k-means and hierarchical clustering. In Machine Learning, Image Processing, Network Security and Data Sciences: Second International Conference, MIND 2020, Silchar, India, July 30-31, 2020, Proceedings, Part II 2 (pp. 120-130). Springer Singapore.

Miah, J., Ca, D. M., Sayed, M. A., Lipu, E. R., Mahmud, F., & Arafat, S. Y. (2023, November). Improving Cardiovascular Disease Prediction Through Comparative Analysis of Machine Learning Models: A Case Study on Myocardial Infarction. In 2023 15th International Conference on Innovations in Information Technology (IIT) (pp. 49-54). IEEE.

Khan, R. H., Miah, J., Rahat, M. A. R., Ahmed, A. H., Shahriyar, M. A., & Lipu, E. R. (2023, September). A Comparative Analysis of Machine Learning Approaches for Chronic Kidney Disease Detection. In 2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (pp. 1-6). IEEE.

Miah, J., Cao, D. M., Sayed, M. A., Taluckder, M. S., Haque, M. S., & Mahmud, F. (2023). Advancing Brain Tumor Detection: A Thorough Investigation of CNNs, Clustering, and SoftMax Classification in the Analysis of MRI Images. arXiv preprint arXiv:2310.17720.

Rahman, M. M., Islam, A. M., Miah, J., Ahmad, S., & Mamun, M. (2023, June). sleepWell: Stress Level Prediction Through Sleep Data. Are You Stressed?. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0229-0235). IEEE.

Rahman, M. M., Islam, A. M., Miah, J., Ahmad, S., & Hasan, M. M. (2023, June). Empirical Analysis with Component Decomposition Methods for Cervical Cancer Risk Assessment. In 2023 IEEE World AI IoT Congress (AIIoT) (pp. 0513-0519). IEEE.

Khan, R. H., Miah, J., Nipun, S. A. A., Islam, M., Amin, M. S., & Taluckder, M. S. (2023, September). Enhancing Lung Cancer Diagnosis with Machine Learning Methods and Systematic Review Synthesis. In 2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (pp. 1-5). IEEE.

Miah, J. (2024). HOW FAMILY DNA CAN CAUSE LUNG CANCER USING MACHINE LEARNING. International Journal of Medical Science and Public Health Research, 5(12), 8-14.

Miah, J., Khan, R. H., Linkon, A. A., Bhuiyan, M. S., Jewel, R. M., Ayon, E. H., ... & Tanvir Islam, M. (2024). Developing a Deep Learning Methodology to Anticipate the Onset of Diabetic Retinopathy at an Early Stage. In Innovative and Intelligent Digital Technologies; Towards an Increased Efficiency: Volume 1 (pp. 77-91). Cham: Springer Nature Switzerland.

Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.

Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.

Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.

Shak, M. S., Mozumder, M. S. A., Hasan, M. A., Das, A. C., Miah, M. R., Akter, S., & Hossain, M. N. (2024). OPTIMIZING RETAIL DEMAND FORECASTING: A PERFORMANCE EVALUATION OF MACHINE LEARNING MODELS INCLUDING LSTM AND GRADIENT BOOSTING. The American Journal of Engineering and Technology, 6(09), 67-80.

Das, A. C., Mozumder, M. S. A., Hasan, M. A., Bhuiyan, M., Islam, M. R., Hossain, M. N., ... & Alam, M. I. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42-53.

Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Taluckder, M. S., Al Bony, M. N. V., ... & Jui, A. H. (2024). PERFORMANCE OF MACHINE LEARNING ALGORITHMS FOR LUNG CANCER PREDICTION: A COMPARATIVE STUDY. International Journal of Medical Science and Public Health Research, 5(11), 41-55.

Ahmmed, M. J., Rahman, M. M., Das, A. C., Das, P., Pervin, T., Afrin, S., ... & Rahman, N. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. American Research Index Library, 31-44.

Al Bony, M. N. V., Das, P., Pervin, T., Shak, M. S., Akter, S., Anjum, N., ... & Rahman, M. K. (2024). COMPARATIVE PERFORMANCE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BUSINESS INTELLIGENCE: A STUDY ON CLASSIFICATION AND REGRESSION MODELS. Frontline Marketing, Management and Economics Journal, 4(11), 72-92.

Hasan, M., Pathan, M. K. M., & Kabir, M. F. (2024). Functionalized Mesoporous Silica Nanoparticles as Potential Drug Delivery Vehicle against Colorectal Cancer. Journal of Medical and Health Studies, 5(3), 56-62.

Hasan, M. (2023). SURFACE-ENGINEERED MINERAL PARTICLES FOR GATED DRUG DELIVERY, GENE TRANSFER AND SUNSCREEN FORMULATIONS.

Hasan, M., Kabir, M. F., & Pathan, M. K. M. (2024). PEGylation of Mesoporous Silica Nanoparticles for Drug Delivery Applications. Journal of Chemistry Studies, 3(2), 01-06.

Hasan, M., Evett, C. G., & Burton, J. (2024). Advances in Nanoparticle-Based Targeted Drug Delivery Systems for Colorectal Cancer Therapy: A Review. arXiv preprint arXiv:2409.05222.

Hasan, M., & Mahama, M. T. (2024). Uncovering the complex mechanisms behind nanomaterials-based plasmon-driven photocatalysis through the utilization of Surface-Enhanced Raman Spectroscopies. arXiv preprint arXiv:2408.13927.

Article Statistics

Copyright License

Download Citations

How to Cite

Aftab Uddin, Md Amran Hossen Pabel, Md Imdadul Alam, FNU KAMRUZZAMAN, Md Sayem Ul Haque, Md Monir Hosen, Ashadujjaman Sajal, Mohammad Rasel Miah, & Sandip Kumar Ghosh. (2025). Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques. The American Journal of Management and Economics Innovations, 7(01), 5–20. https://doi.org/10.37547/tajmei/Volume07Issue01-02