Horticulture | Open Access | DOI: https://doi.org/10.37547/tajhfr/Volume07Issue12-01

Study Of Water Exchange Indicators Ofsoybean Varieties In The Conditions Of The Bukhara Region

Aminjonova Charoskhon Akmalovna , Bukhara State University, Basic Doctoral Student, Uzbekistan

Abstract

This study aimed to assess the effect of drought stress on some morphological, physiological, and biochemical parameters in soybeans. The study investigated the water exchange indicators of seven soybean (Glycine max L.) varieties - Arisoy, Zara, Zamin, Chara, Olmos, Bars, and Optima - under different soil moisture conditions (70%, 50%, and 30% of total field capacity) in the meadow-alluvial soils of the Bukhara region. Field experiments were conducted to evaluate diurnal leaf water deficit using physiological measurements at various growth stages (budding, flowering, and pod formation). The results showed significant varietal differences in leaf water deficit depending on soil moisture and phenological phases. The highest deficit was recorded in Bars, Optima, and Zara varieties under 30% moisture, while Arisoy and Zamin maintained lower values, indicating better drought tolerance. Overall, decreased soil moisture increased water deficit across all varieties.

Keywords

Soybean cultivars, Glycine max L, stress tolerance

References

Goulart HMD, van der Wiel K, Folberth C, Boere E, van den Hurk B. Increase of simultaneous soybean failures due to climate change. Earth’s Future. 2023;11(4): e2022EF003106. https:// doi. org/ 10. 1029/ 2022E F0031 06

Arya H, Singh MB, Bhalla PL. Towards developing drought-smart soybeans. Front Plant Sci. 2021. https:// doi. org/ 10. 3389/ fpls. 2021. 750664

Tatar O, Cakalogulları U, Tonk FA, Istıplıler D, Karakoc R. Effect of drought stress on yield and quality traits of common wheat during grain f illing stage. Turkish J Field Crops. 2020;25(2):236–44. https:// doi. org/ 10. 17557/ tjfc. 834392.

FAOSTAT. (2022). FAOSTAT. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL

Szpunar-Krok, E., & Wondołowska-Grabowska, A. (2022). Quality evaluation indices for soybean oil in relation to cultivar, application of nitrogen fertiliser, and seed inoculation with Bradyrhizobium japonicum. Foods, 11(5), 762. https://doi.org/10.3390/foods11050762

Slamani, R. M., Bejger, R., Włodarczyk, M., & Kulpa, D. (2022). Effect of humic acids on soybean seedling growth under polyethylene glycol-6000 induced drought stress. Agronomy. https://doi.org/10.3390/agronomy12051109

Jiang, W., Zhao, Y., Wu, X., Du, Y., & Zhou, W. (2023). Health inequalities of global protein-energy malnutrition from 1990 to 2019 and forecast prevalence for 2044: Data from the Global Burden of Disease Study 2019. Public Health, 225, 102 109. https://doi.org/10.1016/j.puhe.2023.10.003

Goulart, H. M. D., van der Wiel, K., Folberth, C., Boere, E., & van den Hurk, B. (2023). Increase of simultaneous soybean failures due to climate change. Earth’s Future, 11(4), e2022EF003106. https://doi.org/10.1029/2022EF003106

Arya, H., Singh, M. B., & Bhalla, P. L. (2021). Towards developing drought-smart soybeans. Frontiers in Plant https://doi.org/10.3389/fpls.2021.750664

Tatar, O., Cakalogulları, U., Tonk, F. A., Istıplıler, D., & Karakoç, R. (2020). Effect of drought stress on yield and quality traits of common wheat during grain filling stage. Turkish Journal of Field Crops, 25(2), 236–244. https://doi.org/10.17557/tjfc.834392

Kalra, A., Goel, S., & Elias, A. A. (2024). Understanding role of roots in plant response to drought: Way forward to climate-resilient crops. The Plant Genome, 17(1), e20395. https://doi.org/10.1002/tpg2.20395

Zhang, Y., Wu, X., Wang, X., Dai, M., & Peng, Y. (2025). Crop root system architecture in drought response. Journal of Genetics and Genomics, 52(1), 4–13. https://doi.org/10.1016/j.jgg.2024.05.001

Liu, B. H., Jing, D. W., Liu, F. C., Ma, H. L., Liu, X. H., & Peng, L. (2021). Serendipita indica alleviates drought stress responses in walnut (Juglans regia L.) seedlings by stimulating osmotic adjustment and the antioxidant defence system. Applied Microbiology and Biotechnology, 105, 8951–8968.

Saddique, M. A. B., Zulfiqar, A., Sher, M. A., Farid, B., Ikram, R. M., & Ahmad, M. S. (2020). Proline, total antioxidant capacity, and gene activity in radical and plumule of rice are efficient drought tolerance indicator traits. International Journal of Agronomy, Article 8862792.

Qi, Y., Ma, L., Ghani, M. I., & Peng, Q. (2023). Effects of drought stress induced by hypertonic polyethylene glycol (PEG-6000) on Passiflora edulis Sims physiological properties. Plants, 12(12), 2296. https://doi.org/10.3390/plants12122296

Wang, X., Li, X., & Dong, S. (2022). Screening and identification of drought tolerance of spring soybean at seedling stage under climate change. Frontiers in Sustainable Food Systems. https://doi.org/10.3389/fsufs.2022.988319

Li, S., Zhou, L., Addo-Danso, S. D., Ding, G., Sun, M., Wu, S., & Lin, S. (2020). Nitrogen supply enhances the physiological resistance of Chinese fir plantlets under polyethylene glycol (PEG)-induced drought stress. Scientific Reports. https://doi.org/10.1038/s41598-020-64161-7

Copyright License

Download Citations

How to Cite

Aminjonova Charoskhon Akmalovna. (2025). Study Of Water Exchange Indicators Ofsoybean Varieties In The Conditions Of The Bukhara Region. The American Journal of Horticulture and Floriculture Research, 7(12), 1–4. https://doi.org/10.37547/tajhfr/Volume07Issue12-01