Chrononutrition and Healthy Ageing: A Systematic Review and Meta-Analysis of Time-Restricted Eating in Older Adults
Chinonso Confidence Benson , MPH, Department of Biomolecular and Sport Sciences, Coventry University, United Kingdom Tokunbo Olayanju , PhD, Department of Biomolecular and Sport Sciences, Coventry University, United Kingdom Celestine Emeka Ekwuluo , MPH, Family Health International, Ukraine; and PENKUP Research Institute, Birmingham, United Kingdom Kennedy Oberhiri Obohwemu , PhD, Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Birmingham Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Sumaiya Akter , MPH, Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Birmingham Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Rabeea Rizwan , MPhil, Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Birmingham Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Samrina Afzal , Pharm. D , Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Birmingham Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Kenneth Oshiokhayamhe Iyevhobu , MPH, Department of Medical Laboratory Science, Faculty of Applied Health Science, Edo State University, Iyamho, Edo State, Nigeria; Department of Medical Microbiology, Faculty of Medical Laboratory Science, Ambrose Alli University, Ekpoma, Edo State, Nigeria Festus Ituah , PhD, School of Health & Sports Science, Regent College, London, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Ejiofor Augustine Ezika , PhD, Department of Health, Wellbeing & Social Care, Global Banking School (GBS), Leeds Trinity University Partnership, Manchester, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Sundas Bibi , MSc Clin Psych, Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Bradford Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Rakhshanda Hameed , MPH, Department of Health & Social Care, Scholars School System, Leeds Trinity University Partnership, Bradford Campus, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Bumi Jang , MPH, Faculty of Education, Health & Wellbeing, University of Wolverhampton, United Kingdom; and PENKUP Research Institute, Birmingham, United Kingdom Jennifer Adaeze Chukwu , PhD, World Health Organisation, Abuja, Nigeria; and PENKUP Research Institute, Birmingham, United Kingdom Solomon Atuman , MPH, FHI 360; and PENKUP Research Institute, Birmingham, United Kingdom Adah Michael Ameh , MScPH, PENKUP Research Institute, Birmingham, United Kingdom Samuel Sam Danladi , MPH, Department of Public Health, Ahmadu Bello University (ABU), ZariaAbstract
Background
Chrononutrition, the strategic alignment of eating patterns with the body’s biological rhythms, has gained increasing attention as a potential means of improving metabolic health. Time-restricted eating (TRE), a key chrononutrition approach, may help regulate metabolism, yet its effectiveness in older adults remains uncertain. This systematic review and meta-analysis examined the effects of TRE and related chrononutrition interventions on metabolic health biomarkers among older adults aged 60 years and above. The primary outcomes assessed included body mass index (BMI), fasting glucose, systolic and diastolic blood pressure (SBP, DBP), total cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL).
Methods
A comprehensive literature search was conducted across major databases (PubMed, MEDLINE, CINAHL, and Scopus) to identify randomised controlled trials and pre–post intervention studies published between 2015 and 2025. Study quality was appraised using Cochrane risk-of-bias tools. Random-effects meta-analyses were performed, and pooled effect sizes (Cohen’s d) with 95% confidence intervals were calculated.
Results
Seven studies, including both RCTs and pre–post designs, comprising a total of 1,086 participants, met the inclusion criteria. Pooled analyses indicated small, non-significant reductions in BMI (Cohen’s d = –0.10, 95% CI: –0.24 to 0.03, p = 0.14) and fasting glucose (Cohen’s d = –0.18, 95% CI: –0.61 to 0.25, p = 0.41). No statistically significant changes were observed for SBP, DBP, total cholesterol, triglycerides, HDL, or LDL (all p > 0.05). Heterogeneity across studies was minimal, and findings were consistent between RCTs and pre–post analyses.
Conclusion
Time-restricted eating appears to be a safe and feasible dietary approach for older adults; however, it does not produce statistically significant improvements in key metabolic biomarkers compared to control or baseline conditions. The modest effects observed may reflect the complex interplay of biological, behavioural, and sociocultural factors influencing chrononutrition in ageing populations. More diverse and methodologically robust studies are needed to clarify TRE’s role in promoting metabolic health and reducing chronic disease risks among older adults.
Keywords
Chrononutrition, Time-Restricted Eating (TRE), Older Adults, Metabolic Health, Body Mass Index (BMI), Blood Pressure
References
Anton, S. D., Lee, S. A., Donahoo, W. T., McLaren, C., Manini, T., Leeuwenburgh, C., & Pahor, M. (2019). The effects of time restricted feeding on overweight, older adults: A pilot study. Nutrients, 11(7), 1500. https://doi.org/10.3390/nu11071500
Amarya, S., Singh, K., & Sabharwal, M. (2015). Changes during aging and their association with malnutrition. Journal of Clinical Gerontology and Geriatrics, 6(3), 78–84. https://doi.org/10.1016/j.jcgg.2015.05.003
BaHammam, A. S., & Pirzada, R. (2023). Timing matters: The interplay between early mealtime, circadian rhythms, gene expression, circadian hormones, and metabolism—A narrative review. Clocks & Sleep, 5(3), 507–535. https://doi.org/10.3390/clockssleep5030034
Baik, D., & Bird, K. (2023, February 23). Dietary lifestyle changes. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK587401/
Baxter, M., Hudson, R., Mahon, J., Bartlett, C., Samyshkin, Y., Alexiou, D., & Hex, N. (2016). Estimating the impact of better management of glycaemic control in adults with type 1 and type 2 diabetes on the number of clinical complications and the associated financial benefit. Diabetic Medicine, 33(11), 1575–1581. https://doi.org/10.1111/dme.13062
UK Health Security Agency. (2018, October 5). Behavioural and social sciences in public health: The first strategy of its kind. UKHSA Blog. https://ukhsa.blog.gov.uk/2018/10/03/behavioural-and-social-sciences-in-public-health-the-first-strategy-of-its-kind/
Boege, H. L., Bhatti, M. Z., & St-Onge, M.-P. (2021). Circadian rhythms and meal timing: Impact on energy balance and body weight. Current Opinion in Biotechnology, 70, 1–6. https://doi.org/10.1016/j.copbio.2020.08.009
Chang, Y., Du, T., Zhuang, X., & Ma, G. (2024). Time-restricted eating improves health because of energy deficit and circadian rhythm: A systematic review and meta-analysis. iScience, 26(1), 109000. https://doi.org/10.1016/j.isci.2024.109000
Couto, S., Cenit, M. C., Montero, J., & Iguacel, I. (2025). The impact of intermittent fasting and Mediterranean diet on older adults’ physical health and quality of life: A randomized clinical trial. Nutrition, Metabolism and Cardiovascular Diseases, 35(5), 104132. https://doi.org/10.1016/j.numecd.2025.104132
Che, T., Yan, C., Tian, D., Zhang, X., Liu, X., & Wu, Z. (2021). Time-restricted feeding improves blood glucose and insulin sensitivity in overweight patients with type 2 diabetes: A randomised controlled trial. Nutrition & Metabolism, 18(1), 1–9. https://doi.org/10.1186/s12986-021-00613-9
Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., Lin, S., Oliveira, M. L., & Varady, K. A. (2020). Effects of 4- and 6-h time-restricted feeding on weight and cardiometabolic health: A randomized controlled trial in adults with obesity. Cell Metabolism, 32(3), 366–378.e3. https://doi.org/10.1016/j.cmet.2020.06.018
Dashti, H. S., Jansen, E. C., Zuraikat, F. M., Dixit, S., Brown, M., Laposky, A., Broussard, J. L., Butler, M. P., Creasy, S. A., Crispim, C. A., Depner, C. M., Esser, K. A., Garaulet, M., Hanlon, E. C., Makarem, N., Manoogian, E. N. C., Peterson, C. M., Scheer, F. A. J. L., Wright, K. P., & Goff, D. C. (2025). Advancing chrononutrition for cardiometabolic health: A 2023 National Heart, Lung, and Blood Institute workshop report. Journal of the American Heart Association, 14(9), e039373. https://doi.org/10.1161/JAHA.124.039373
de Andrade Mesquita, L., Pavan Antoniolli, L., Cittolin-Santos, G. F., & Gerchman, F. (2018). Distinct metabolic profile according to the shape of the oral glucose tolerance test curve is related to whole glucose excursion: A cross-sectional study. BMC Endocrine Disorders, 18(1), 1–9. https://doi.org/10.1186/s12902-018-0286-7
de Cabo, R., & Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine, 381(26), 2541–2551. https://doi.org/10.1056/NEJMra1905136
Tien, D. S. Y., Hockey, M., So, D., Stanford, J., Clarke, E. D., Collins, C. E., & Staudacher, H. M. (2024). Recommendations for designing, conducting and reporting feeding trials in nutrition research. Advances in Nutrition, 15(10), 100283. https://doi.org/10.1016/j.advnut.2024.100283
Dimitriadis, G. D., Maratou, E., Kountouri, A., Board, M., & Lambadiari, V. (2021). Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: An integrative approach. Nutrients, 13(1), 159. https://doi.org/10.3390/nu13010159
Dobrowolski, P., Prejbisz, A., Kuryłowicz, A., Baska, A., Burchardt, P., Chlebus, K., Dzida, G., Jankowski, P., Jaroszewicz, J., Jaworski, P., Kamiński, K., Kapłon-Cieślicka, A., Klocek, M., Kukla, M., Mamcarz, A., Mastalerz-Migas, A., Narkiewicz, K., Ostrowska, L., Śliż, D., & Tarnowski, W. (2022). Metabolic syndrome: A new definition and management guidelines. Archives of Medical Science, 18(5), 1133–1156. https://doi.org/10.5114/aoms/152921
Domaszewski, P., Konieczny, M., Pakosz, P., Bączkowicz, D., & Sadowska-Krępa, E. (2020). Effect of a six-week intermittent fasting intervention program on the composition of the human body in women over 60 years of age. International Journal of Environmental Research and Public Health, 17(11), 4138. https://doi.org/10.3390/ijerph17114138
Domaszewski, P., Konieczny, M., Pakosz, P., Łukaniszyn-Domaszewska, K., Mikuláková, W., Sadowska-Krępa, E., & Anton, S. (2022). Effect of a six-week time-restricted eating intervention on body composition in early elderly men with overweight. Scientific Reports, 12(1), 13904. https://doi.org/10.1038/s41598-022-13904-9
Domaszewski, P., Konieczny, M., Dybek, T., Łukaniszyn-Domaszewska, K., Anton, S., Sadowska-Krępa, E., & Skorupska, E. (2023). Comparison of the effects of six-week time-restricted eating on weight loss, body composition, and visceral fat in overweight older men and women. Experimental Gerontology, 174, 112116. https://doi.org/10.1016/j.exger.2023.112116
Duez, H., & Staels, B. (2025). Circadian disruption and the risk of developing obesity. Current Obesity Reports, 14(1), 1–10. https://doi.org/10.1007/s13679-025-00610-6
Ezpeleta, M., Cienfuegos, S., Lin, S., Pavlou, V., Gabel, K., Tussing-Humphreys, L., & Varady, K. A. (2024). Time-restricted eating: Watching the clock to treat obesity. Cell Metabolism, 36(1), 1–12. https://doi.org/10.1016/j.cmet.2023.12.004
Flanagan, A., Bechtold, D. A., Pot, G. K., & Johnston, J. D. (2020). Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. Journal of Neurochemistry, 157(1), 53–72. https://doi.org/10.1111/jnc.15246
Heden, T. D., & Kanaley, J. A. (2019). Syncing exercise with meals and circadian clocks. Exercise and Sport Sciences Reviews, 47(1), 22–28. https://doi.org/10.1249/jes.0000000000000172
Huang, L., Chen, Y., Wen, S., Lu, D., Shen, X., Deng, H., & Xu, L. (2022). Is time-restricted eating (8/16) beneficial for body weight and metabolism of obese and overweight adults? A systematic review and meta-analysis of randomized controlled trials. Food Science & Nutrition, 11(3), 1187–1200. https://doi.org/10.1002/fsn3.3194
Ioannidis, J. P. A. (2016). The mass production of redundant, misleading, and conflicted systematic reviews and meta-analyses. The Milbank Quarterly, 94(3), 485–514. https://doi.org/10.1111/1468-0009.12210
Jakubowicz, D., Barnea, M., Wainstein, J., & Froy, O. (2013). High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity, 21(12), 2504–2512. https://doi.org/10.1002/oby.20460
Kahleova, H., Lloren, J. I., Mashchak, A., Hill, M., & Fraser, G. E. (2017). Meal frequency and timing are associated with changes in body mass index in Adventist Health Study 2. The Journal of Nutrition, 147(9), 1722–1728. https://doi.org/10.3945/jn.116.244749
Kaushik, V., & Walsh, C. A. (2019). Pragmatism as a research paradigm and its implications for social work research. Social Sciences, 8(9), 1–17. https://doi.org/10.3390/socsci8090255
Kelly, S. E., Brooks, S. P. J., Benkhedda, K., MacFarlane, A. J., Greene-Finestone, L. S., Skidmore, B., Clifford, T. J., & Wells, G. A. (2024). A scoping review shows that no single existing risk of bias assessment tool considers all sources of bias for cross-sectional studies. Journal of Clinical Epidemiology, 172, 111408. https://doi.org/10.1016/j.jclinepi.2024.111408
Kim, H.-L. (2023). Arterial stiffness and hypertension. Clinical Hypertension, 29(1), 31. https://doi.org/10.1186/s40885-023-00258-1
Kim, H.-L., & Kim, S.-H. (2019). Pulse wave velocity in atherosclerosis. Frontiers in Cardiovascular Medicine, 6, 41. https://doi.org/10.3389/fcvm.2019.00041
Kortas, J. A., Reczkowicz, J., Juhas, U., Ziemann, E., Świątczak, A., Prusik, K., Olszewski, S., Soltani, N., Rodziewicz-Flis, E., Flis, D., Żychowska, M., Gałęzowska, G., & Antosiewicz, J. (2024). Iron status determined changes in health measures induced by Nordic walking with time-restricted eating in older adults: A randomised trial. BMC Geriatrics, 24(1), 300. https://doi.org/10.1186/s12877-024-04876-8
Lin, Y.-J., Wang, Y.-T., Chan, L.-C., & Chu, N.-F. (2022). Effect of time-restricted feeding on body composition and cardio-metabolic risk in middle-aged women in Taiwan. Nutrition, 93, 111504. https://doi.org/10.1016/j.nut.2021.111504
Liu, D., Huang, Y., Huang, C., Yang, S., Wei, X., Zhang, P., Guo, D., Lin, J., Xu, B., Li, C., He, H., He, J., Liu, S., Shi, L., Xue, Y., & Zhang, H. (2022). Calorie restriction with or without time-restricted eating in weight loss. New England Journal of Medicine, 386(16), 1495–1504. https://doi.org/10.1056/NEJMoa2114833
Lopez-Minguez, J., Gómez-Abellán, P., & Garaulet, M. (2019). Timing of breakfast, lunch, and dinner: Effects on obesity and metabolic risk. Nutrients, 11(11), 2624. https://doi.org/10.3390/nu11112624
Lowe, D. A., Wu, N., Rohdin-Bibby, L., Moore, A. H., Kelly, N., Liu, Y. E., Philip, E., Vittinghoff, E., Heymsfield, S. B., Olgin, J. E., Shepherd, J. A., & Weiss, E. J. (2020). Effects of time-restricted eating on weight loss and other metabolic parameters in women and men with overweight and obesity: The TREAT randomized clinical trial. JAMA Internal Medicine, 180(11), 1491–1499. https://doi.org/10.1001/jamainternmed.2020.4153
Mao, Z., Cawthon, P. M., Kritchevsky, S. B., Toledo, F. G. S., Esser, K. A., Erickson, M. L., Newman, A. B., & Farsijani, S. (2023). The association between chrononutrition behaviors and muscle health among older adults: The Study of Muscle, Mobility and Aging (SOMMA). medRxiv. https://doi.org/10.1101/2023.11.13.23298454
National Heart, Lung, and Blood Institute. (2019). Home. https://www.nhlbi.nih.gov/
NHS Digital. (2024, September 24). Health survey for England, 2022: Part 2. https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/2022-part-2/adult-overweight-and-obesity
O’Connor, S. G., Boyd, P., Bailey, C. P., Shams-White, M. M., Agurs-Collins, T., Hall, K., Reedy, J., Sauter, E. R., & Czajkowski, S. M. (2021). Perspective: Time-restricted eating compared with caloric restriction: Potential facilitators and barriers of long-term weight loss maintenance. Advances in Nutrition, 12(2), 155–167. https://doi.org/10.1093/advances/nmaa168
O’Rourke, M. F., & Hashimoto, J. (2007). Mechanical factors in arterial aging. Journal of the American College of Cardiology, 50(1), 1–13. https://doi.org/10.1016/j.jacc.2006.12.050
Özge Mengi Çelik, Köksal, E., & Aktürk, M. (2023). Time-restricted eating (16/8) and energy-restricted diet: Effects on diet quality, body composition, and biochemical parameters in healthy overweight females. BMC Nutrition, 9(1), 1–10. https://doi.org/10.1186/s40795-023-00753-6
Park, Y. S., Konge, L., & Artino, A. R. (2020). The positivism paradigm of research. Academic Medicine, 95(5), 690–694. https://doi.org/10.1097/ACM.0000000000003093
Parr, E. B., Devlin, B. L., & Hawley, J. A. (2022). Time-restricted eating: Integrating the what with the when. Advances in Nutrition, 13(3), 355–365. https://doi.org/10.1093/advances/nmac015
Parrotta, M. E., Colangeli, L., Scipione, V., Vitale, C., Sbraccia, P., & Guglielmi, V. (2025). Time-restricted eating: A valuable alternative to calorie restriction for addressing obesity? Current Obesity Reports, 14(1), 17–27. https://doi.org/10.1007/s13679-025-00609-z
Pataky, M. W., Young, W. F., & Nair, K. S. (2021). Hormonal and metabolic changes of aging and the influence of lifestyle modifications. Mayo Clinic Proceedings, 96(3), 788–814. https://doi.org/10.1016/j.mayocp.2020.07.033
Perera, N., Robertson, A. G., Abu-Abeid, A., & Misra, A. (2024). Global burden of metabolic diseases, 1990–2021. Metabolism, 145, 155999. https://doi.org/10.1016/j.metabol.2024.155999
Peters, B., Vahlhaus, J., & Pivovarova-Ramich, O. (2024). Meal timing and its role in obesity and associated diseases. Frontiers in Endocrinology, 15, 1359772. https://doi.org/10.3389/fendo.2024.1359772
Pineda, E., Poelman, M. P., Aaspõllu, A., Bica, M., Bouzas, C., Carrano, E., De Miguel-Etayo, P., Djojosoeparto, S., Blenkuš, M. G., Graca, P., Geffert, K., Hebestreit, A., Helldan, A., Henjum, S., Huseby, C. S., Gregório, M. J., Kamphuis, C., Laatikainen, T., Løvhaug, A. L., & Leydon, C. (2022). Policy implementation and priorities to create healthy food environments using the Healthy Food Environment Policy Index (Food-EPI): A pooled level analysis across eleven European countries. The Lancet Regional Health – Europe, 23, 100522. https://doi.org/10.1016/j.lanepe.2022.100522
Poggiogalle, E., Jamshed, H., & Peterson, C. M. (2018). Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism, 84, 11–27. https://doi.org/10.1016/j.metabol.2017.11.017
Quist, J. S., Pedersen, H. E., Jensen, M. M., Clemmensen, K. K. B., Bjerre, N., Ekblond, T. S., & Færch, K. (2024). Effects of 3 months of 10-h per-day time-restricted eating and 3 months of follow-up on bodyweight and cardiometabolic health in Danish individuals at high risk of type 2 diabetes: The RESET single-centre, parallel, superiority, open-label, randomised controlled trial. The Lancet Healthy Longevity, 5(5), e314–e325. https://doi.org/10.1016/S2666-7568(24)00028-X
Raji, O. E., Kyeremah, E. B., Sears, D. D., St-Onge, M.-P., & Makarem, N. (2024). Chrononutrition and cardiometabolic health: An overview of epidemiological evidence and key future research directions. Nutrients, 16(14), 2332. https://doi.org/10.3390/nu16142332
Raynor, H. A., Li, F., & Cardoso, C. (2018). Daily pattern of energy distribution and weight loss. Physiology & Behavior, 192, 167–172. https://doi.org/10.1016/j.physbeh.2018.02.036
Regmi, P., & Heilbronn, L. K. (2020). Time-restricted eating: Benefits, mechanisms, and challenges in translation. iScience, 23(6), 101161. https://doi.org/10.1016/j.isci.2020.101161
Reinke, H., & Asher, G. (2016). Circadian clock control of liver metabolic functions. Gastroenterology, 150(3), 574–580. https://doi.org/10.1053/j.gastro.2015.09.037
Reutrakul, S., & Knutson, K. L. (2015). Consequences of circadian disruption on cardiometabolic health. Sleep Medicine Clinics, 10(4), 455–468. https://doi.org/10.1016/j.jsmc.2015.07.005
Reytor-González, C., Simancas-Racines, D., Román-Galeano, N. M., Annunziata, G., Galasso, M., Zambrano-Villacres, R., Verde, L., Muscogiuri, G., Frias-Toral, E., & Barrea, L. (2025). Chrononutrition and energy balance: How meal timing and circadian rhythms shape weight regulation and metabolic health. Nutrients, 17(13), 2135. https://doi.org/10.3390/nu17132135
Rochlani, Y., Pothineni, N. V., Kovelamudi, S., & Mehta, J. L. (2017). Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Therapeutic Advances in Cardiovascular Disease, 11(8), 215–225. https://doi.org/10.1177/1753944717711379
Rodgers, J. L., Jones, J., Bolleddu, S. I., Vanthenapalli, S., Rodgers, L. E., Shah, K., Karia, K., & Panguluri, S. K. (2019). Cardiovascular risks associated with gender and aging. Journal of Cardiovascular Development and Disease, 6(2), 19. https://doi.org/10.3390/jcdd6020019
Shah, R. V., Murthy, V. L., Abbasi, S. A., Blankstein, R., Kwong, R. Y., Goldfine, A. B., Jerosch-Herold, M., Lima, J. A. C., Ding, J., & Allison, M. A. (2014). Visceral adiposity and the risk of metabolic syndrome across body mass index. JACC: Cardiovascular Imaging, 7(12), 1221–1235. https://doi.org/10.1016/j.jcmg.2014.07.017
Shea, M. K., Strath, L., Kim, M., Ðoàn, L. N., Booth, S. L., Brinkley, T. E., & Kritchevsky, S. B. (2024). Perspective: Promoting healthy aging through nutrition: A Research Centers Collaborative Network workshop report. Advances in Nutrition, 15(4), 100199. https://doi.org/10.1016/j.advnut.2024.100199
Sutton, E. F., Beyl, R., Early, K. S., Cefalu, W. T., Ravussin, E., & Peterson, C. M. (2018). Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metabolism, 27(6), 1212–1221.e3. https://doi.org/10.1016/j.cmet.2018.04.010
Tchernof, A., & Després, J. P. (2013). Pathophysiology of human visceral obesity: An update. Physiological Reviews, 93(1), 359–404. https://doi.org/10.1152/physrev.00033.2011
Thomas, E. A., Zaman, A., Sloggett, K. J., Steinke, S., Grau, L., Catenacci, V. A., Cornier, M., & Rynders, C. A. (2022). Early time-restricted eating compared with daily caloric restriction: A randomized trial in adults with obesity.
Tucker, K. L., Duggan, C., Jensen, G., & Peterson, K. (2024). Modern nutrition in health and disease (12th ed.). Jones & Bartlett Learning.
Uzhova, I., Mullally, D., Peñalvo, J., & Gibney, E. (2018). Regularity of breakfast consumption and diet: Insights from national adult nutrition survey. Nutrients, 10(11), 1578. https://doi.org/10.3390/nu10111578
Vasiloglou, M. F., Fletcher, J., & Poulia, K.-A. (2019). Challenges and perspectives in nutritional counselling and nursing: A narrative review. Journal of Clinical Medicine, 8(9), 1489. https://doi.org/10.3390/jcm8091489
Wang, W., Hu, M., Liu, H., Zhang, X., Li, H., Zhou, F., Liu, Y.-M., Lei, F., Qin, J.-J., Zhao, Y.-C., Chen, Z., Liu, W., Song, X., Huang, X., Zhu, L., Ji, Y.-X., Zhang, P., Zhang, X.-J., She, Z.-G., & Yang, J. (2021). Global Burden of Disease Study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease. Cell Metabolism, 33(10), 1943–1956.e2. https://doi.org/10.1016/j.cmet.2021.08.005
Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Dennison Himmelfarb, C., DePalma, S. M., Gidding, S., Jamerson, K. A., Jones, D. W., MacLaughlin, E. J., Muntner, P., Ovbiagele, B., Smith, S. C., Spencer, C. C., Stafford, R. S., Taler, S. J., Thomas, R. J., Williams, K. A., … Wright, J. T. (2018). 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology, 71(19), e127–e248. https://doi.org/10.1016/j.jacc.2017.11.006
Wilkinson, M. J., Manoogian, E. N. C., Zadourian, A., Lo, H., Fakhouri, S., Shoghi, A., Wang, X., Fleischer, J. G., Navlakha, S., Panda, S., & Taub, P. R. (2020). Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metabolism, 31(1), 92–104.e5. https://doi.org/10.1016/j.cmet.2019.11.004
World Health Organization. (2024, October 1). Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
Xie, X., Zhang, M., & Luo, H. (2024). Regulation of metabolism by circadian rhythms: Support from time-restricted eating, intestinal microbiota, and omics analysis. Life Sciences, 351, 122814. https://doi.org/10.1016/j.lfs.2024.122814
Yang, Y. S., Kim, H.-L., Kim, S.-H., & Moon, M. K. (2023). Lipid management in Korean people with type 2 diabetes mellitus: Korean Diabetes Association and Korean Society of Lipid and Atherosclerosis consensus statement. Diabetes & Metabolism Journal, 47(1), 1–9. https://doi.org/10.4093/dmj.2022.0448
Download and View Statistics
Copyright License
Copyright (c) 2025 Chinonso Confidence Benson, Tokunbo Olayanju, Celestine Emeka Ekwuluo, Kennedy Oberhiri Obohwemu, Sumaiya Akter, Rabeea Rizwan, Samrina Afzal, Kenneth Oshiokhayamhe Iyevhobu, Festus Ituah, Ejiofor Augustine Ezika, Sundas Bibi, Rakhshanda Hameed, Bumi Jang, Jennifer Adaeze Chukwu, Solomon Atuman, Adah Michael Ameh, Samuel Sam Danladi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.


Applied Sciences
| Open Access |
DOI: