Applied Sciences | Open Access |

AI-Powered Monitoring Systems for Liquidity Risk: Predicting Cash Flows, Liquidity Coverage Ratio, and Liquidity Shortfall with Deep Learning and Real-Time Analytics

Shaurya Shounik , MS in Finance, Brandeis University Independent Researcher, USA

Abstract

As the COVID-19 pandemic and the financial crisis of 2008 have shown, liquidity risk is still an important factor in maintaining financial stability. Although buffers were enhanced by the Liquidity Coverage Ratio (LCR) and the Net Stable Funding Ratio (NSFR), day-to-day monitoring is still dependent on scenario analysis, which relies on historical assumptions, and stress testing. This research has gathered information from universities, government organizations, and companies to find out whether AI may help close that gap. Across studies, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Transformer models generally outperform statistical baselines such as ARIMA and GARCH, cutting forecast errors by roughly 20–40% and improving predictions of cash flows, LCR components, and liquidity shortfalls. Technically, continuous, low-latency monitoring is possible with event-driven data stacks like Apache Kafka with Flink, but there have been few practical installations for liquidity risk. With the use of AI-enabled monitoring, which seems to be more accurate and responsive, institutions are moving toward a unified, real-time view of financing risk. This development enables banks to efficiently manage risk and enhance systemic regulatory monitoring. Still, regulator-auditable compliance procedures, data-quality controls, model-risk governance, and flexibility will likely be necessary for adoption.

Keywords

Liquidity risk, Liquidity Coverage Ratio (LCR), Real-time analytics, Risk management, Artificial intelligence in finance, Deep learning, Financial Stability, Liquidity shortfall

References

Achter, S., Borit, M., Cottineau, C., Meyer, M., Polhill, G., & Radchuk, V. (2023). How to conduct more systematic reviews of agent-based models and foster theory development: Taking stock and looking ahead. Environmental Modelling & Software, 173, 105867. https://doi.org/10.1016/j.envsoft.2023.105867

Aniceto, M. C., Barboza, F., & Kimura, H. (2020). Machine learning predictivity applied to consumer creditworthiness. Future Business Journal, 6(1), 1–12. https://doi.org/10.1186/s43093-020-00041-w

Arner, D., Barberis, J., & Buckley, R. (2017). FinTech, RegTech, and the reconceptualization of financial regulation. Northwestern Journal of International Law & Business, 37(3), 371–413. http://hub.hku.hk/bitstream/10722/235796/1/content.pdf

Artificial intelligence, machine learning, and deep learning models for risk management (pp. 31–53). (2022). In Handbook of Financial Data Science. Wiley. https://doi.org/10.1002/9781119824961.ch3

Aziz, S., & Dowling, M. (2018). Machine learning and AI for risk management. In Palgrave studies in digital business & enabling technologies (pp. 33–55). Springer. https://doi.org/10.1007/978-3-030-02330-0_3

Barongo, R. I., & Mbelwa, J. (2023). Using machine learning for detecting liquidity risk in banks. Machine Learning with Applications, 15, 100511. https://doi.org/10.1016/j.mlwa.2023.100511

Bartz-Beielstein, T., Doerr, C., Bossek, J., Chandrasekaran, S., Eftimov, T., Fischbach, A., Kerschke, P., López-Ibáñez, M., Malan, K. M., Moore, J. H., Naujoks, B., Orzechowski, P., Volz, V., Wagner, M., & Weise, T. (2020). Benchmarking in optimization: Best practice and open issues. arXiv. https://doi.org/10.48550/arXiv.2007.03488

Bohlke-Schneider, M., Kapoor, S., & Januschowski, T. (2020). Resilient neural forecasting systems. Proceedings of the 4th International Workshop on Data Management for End-to-End Machine Learning (DEEM’20), 4, 1–5. ACM. https://doi.org/10.1145/3399579.3399869

Carcillo, F., Pozzolo, A. D., Borgne, Y. L., Caelen, O., Mazzer, Y., & Bontempi, G. (2017). SCARFF: A scalable framework for streaming credit card fraud detection with Spark. Information Fusion, 41, 182–194. https://doi.org/10.1016/j.inffus.2017.09.005

Chen, J. (2021). Ontology drift is a challenge for explainable data governance. arXiv. https://doi.org/10.48550/arXiv.2108.05401

Chen, W., Hussain, W., Cauteruccio, F., & Zhang, X. (2023). Deep learning for financial time series prediction: A state-of-the-art review of standalone and hybrid models. Computer Modeling in Engineering & Sciences, 139(1), 187–218. https://doi.org/10.32604/cmes.2023.031388

Cont, R., Kotlicki, A., & Valderrama, L. (2020). Liquidity at risk: Joint stress testing of solvency and liquidity. Journal of Banking & Finance, 118, 105871. https://doi.org/10.1016/j.jbankfin.2020.105871

Dadteev, K., Shchukin, B., & Nemeshaev, S. (2020). Using artificial intelligence technologies to predict cash flow. Procedia Computer Science, 169, 264–270. https://doi.org/10.1016/j.procs.2020.02.163

Deza, G., Travers, A., Rowat, C., & Papernot, N. (2021). Interpretability in safety-critical financial trading systems. arXiv. https://doi.org/10.48550/arXiv.2109.15112

Ding, S., Cui, T., Zhang, Y., & Li, J. (2021). Liquidity effects on oil volatility forecasting: From fintech perspective. PLoS ONE, 16(11), e0260289. https://doi.org/10.1371/journal.pone.0260289

Dionne, G., Pacurar, M., & Zhou, X. (2015). Liquidity-adjusted intraday value at risk modeling and risk management: An application to data from Deutsche Börse. Journal of Banking & Finance, 59, 202–219. https://doi.org/10.1016/j.jbankfin.2015.06.005

Du, P., & Shu, H. (2023). Design and implementation of China financial risk monitoring and early warning system based on deep learning. IEEE Access, 11, 78052–78065. https://doi.org/10.1109/access.2023.3280934

Farooq, M. B., Hunjra, A. I., Ullah, S., & Al-Faryan, M. A. S. (2023). The determinants of financial distress cost: A case of emerging market. Cogent Economics & Finance, 11(1), 2186038. https://doi.org/10.1080/23322039.2023.2186038

Fritz-Morgenthal, S., Hein, B., & Papenbrock, J. (2022). Financial risk management and explainable, trustworthy, responsible AI. Frontiers in Artificial Intelligence, 5, 779799. https://doi.org/10.3389/frai.2022.779799

Fu, Y., & Soman, C. (2021). Real-time data infrastructure at Uber. Proceedings of the 2021 International Conference on Management of Data (SIGMOD’21), 2503–2509. ACM. https://doi.org/10.1145/3448016.3457552

Gontarska, K., Geldenhuys, M. K., Scheinert, D., Wiesner, P., Polze, A., & Thamsen, L. (2021). Evaluation of load prediction techniques for distributed stream processing. Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E), 91–101. https://doi.org/10.1109/IC2E52221.2021.00023

Greco, L., Ritrovato, P., & Xhafa, F. (2018). An edge-stream computing infrastructure for real-time analysis of wearable sensors data. Future Generation Computer Systems, 93, 515–528. https://doi.org/10.1016/j.future.2018.10.058

Hazel, C. A., Bull, S., Greenwell, E., Bunik, M., Puma, J., & Perraillon, M. C. (2021). Systematic review of cost-effectiveness analysis of behavior changes communication apps: Assessment of key methods. Digital Health, 7, 20552076211000559. https://doi.org/10.1177/20552076211000559

Heuver, R. (2020). Applications of liquidity risk discovery using financial market infrastructures transaction archives. Other Publications TiSEM. Tilburg University. https://doi.org/10.26116/center-lis-2007

Jarquin, D. V., Sharp, A. J., Zhang, R., Nguyen, T., Hoang, A. T., & Pianykh, O. S. (2022). Temporal quality degradation in AI models. Scientific Reports, 12(1), 12834. https://doi.org/10.1038/s41598-022-15245-z

Jáuregui-Velarde, R., Andrade-Arenas, L., Molina-Velarde, P., & Yactayo-Arias, C. (2023). Financial revolution: A systemic analysis of artificial intelligence and machine learning in the banking sector. International Journal of Electrical and Computer Engineering, 14(1), 1079–1090. https://doi.org/10.11591/ijece.v14i1.pp1079-1090

Johnston, M. P. (2014). Secondary data analysis: A method of which the time has come. Qualitative and Quantitative Methods in Libraries, 3(3), 619–626. http://www.qqml.net/papers/September_2014_Issue/336QQML_Journal_2014_Johnston_Sept_619-626.pdf

Kalogerakis, S., Papaioannou, A., & Magoutis, K. (2022). Efficient processing of high-volume tick data with Apache Flink for the DEBS 2022 grand challenge. Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems (DEBS’22), 133–138. https://doi.org/10.1145/3524860.3539649

Kim, A., Yang, Y., Lessmann, S., Ma, T., Sung, M., & Johnson, J. E. V. (2020). Can deep learning predict risky retail investors? European Journal of Operational Research, 283(1), 217–234. https://doi.org/10.1016/j.ejor.2019.11.007

Kontaxakis, A., Deligiannakis, A., Arndt, H., Burkard, S., Kettner, C.-P., Pelikan, E., & Noack, K. (2021). Real-time processing of geo-distributed financial data. Proceedings of the 2021 ACM Symposium on Cloud Computing, 190–204. https://doi.org/10.1145/3465480.3467842

Kulatilleke, G. K. (2022). Credit card fraud detection: Classifier selection strategy. arXiv. https://doi.org/10.48550/arXiv.2208.11900

Kurshan, E., Shen, H., & Chen, J. (2020). Towards self-regulating AI: Challenges and opportunities of AI model governance in financial services. arXiv. https://arxiv.org/abs/2009.09052

Lee, M. S. A., Floridi, L., & Denev, A. (2020). Innovating with confidence: Embedding AI governance and fairness in a financial services risk management framework. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3830579

Liu, H., & Long, Z. (2020). An improved deep learning model for predicting stock market price time series. Digital Signal Processing, 102, 102741. https://doi.org/10.1016/j.dsp.2020.102741

Lusby, R. M., & Stidsen, T. (2022). Mathematical programming with Julia: New open-source book. Research Portal Denmark. https://local.forskningsportal.dk/local/dki-cgi/ws/cris-link?src=dtu&id=dtu-9165028e-8bfa-42d3-911d-2f31b993a117

Maple, C., Szpruch, Ł., Epiphaniou, G., Staykova, K., Singh, S. B., Penwarden, W., Wen, Y., Wang, Z., Hariharan, J., & Avramović, P. (2023). The AI revolution: Opportunities and challenges for the finance sector. arXiv. https://doi.org/10.48550/arXiv.2308.16538

Mariani, M. C., Bhuiyan, M. A. M., Tweneboah, O. K., González-Huízar, H., & Florescu, I. (2018). Volatility models applied to geophysics and high frequency financial market data. Physica A: Statistical Mechanics and Its Applications, 503, 304–316. https://doi.org/10.1016/j.physa.2018.02.167

Michańków, J., Kwiatkowski, Ł., & Morajda, J. (2023). Combining deep learning and GARCH models for financial volatility and risk forecasting. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4589950

Milojević, N., & Redžepagić, S. (2021). Prospects of artificial intelligence and machine learning application in banking risk management. Journal of Central Banking Theory and Practice, 10(3), 41–62. https://doi.org/10.2478/jcbtp-2021-0023

Mirestean, A., Farias, A., Deodoro, J., Boukherouaa, E. B., AlAjmi, K., Iskender, E., Ravikumar, R., & Shabsigh, G. (2021). Powering the digital economy: Opportunities and risks of artificial intelligence in finance. IMF Departmental Paper, 2021(24), 1–42. https://doi.org/10.5089/9781589063952.087

Ndikum, P. (2020). Machine learning algorithms for financial asset price forecasting. arXiv. https://doi.org/10.48550/arXiv.2004.01504

Netti, A., Ott, M., Guillén, C., Tafani, D., & Schulz, M. (2022). Operational data analytics in practice: Experiences from design to deployment in production HPC environments. Parallel Computing, 113, 102950. https://doi.org/10.1016/j.parco.2022.102950

Özbayoğlu, A. M., Gudelek, M. U., & Sezer, Ö. B. (2020). Deep learning for financial applications: A survey. Applied Soft Computing, 93, 106384. https://doi.org/10.1016/j.asoc.2020.106384

Pérez-Moure, H., Lampón, J. F., Velando-Rodriguez, M.-E., & Rodríguez-Comesaña, L. (2023). Revolutionizing the road: How sustainable, autonomous, and connected vehicles are changing digital mobility business models. European Research on Management and Business Economics, 29(3), 100230. https://doi.org/10.1016/j.iedeen.2023.100230

Phien, N. N., & Platoš, J. (2023). The PSR-transformer nexus: A deep dive into stock time series forecasting. International Journal of Advanced Computer Science and Applications, 14(12), 68–76. https://doi.org/10.14569/ijacsa.2023.0141292

Rubio, L., Pinedo, A. P., Castaño, A. M., & Ramos, F. (2023). Forecasting volatility by using wavelet transform, ARIMA and GARCH models. Eurasian Economic Review, 13, 803–823. https://doi.org/10.1007/s40822-023-00243-x

Safiyari, M. H., & Nabati, H. (2023). Liquidity risk in banking: Integrating two hybrid machine learning models to introduce a comprehensive risk assessment system. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4677575

Sarker, N., & Bhowmik, P. K. (2021). Bank liquidity risk: Significance of financial disclosure and governance practice. Asian Economic and Financial Review, 11(9), 724–744. https://doi.org/10.18488/journal.aefr.2021.119.724

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Shounik, S. (2024). AI-Powered Monitoring Systems for Liquidity Risk: Predicting Cash Flows, Liquidity Coverage Ratio, and Liquidity Shortfall with Deep Learning and Real-Time Analytics. The American Journal of Applied Sciences, 6(06), 56–65. Retrieved from https://theamericanjournals.com/index.php/tajas/article/view/6661