Applied Sciences | Open Access | DOI: https://doi.org/10.37547/tajas/Volume07Issue08-06

Data-Driven Healthcare: The Role of Business Intelligence Tools in Optimizing Clinical and Operational Performance

Mahzabin Binte Rahman , Master of Science in Business Analytics, Trine University, Detroit, Michigan, USA
Maham Saeed , Master of Science in Healthcare Management, St. FRANCIS COLLEGE, Brooklyn, New York
Kami Yangzen Lama , Department of Information Technology, Washington University of Science and Technology (wust), 2900 Eisenhower Ave, Alexandria, VA 22314, USA
Keya Karabi Roy , Master of Science in Healthcare Management, St. FRANCIS COLLEGE, Brooklyn, New York

Abstract

With the rise of the digital transformation era, healthcare organizations are getting more inclined toward using Business Intelligence (BI) tools as a means of improving clinical outcomes and operational efficiency. This article explores the diverse nature of BI in the healthcare system in the optimization of data-driven decisions. Through secondary data analysis (mixed-method approach with the empirical case studies), the research focuses on the ways of implementing the BI tools (dashboards, predictive analytics platforms, and real-time reporting systems) to enhance clinical diagnostics, workflow efficiency, and operational cost-reduction. The study notes the application of BI to Electronic Medical Records (EMRs), hospital performance dashboards, and administrative systems to deliver actionable insights by analysing huge, disparate data sources. Results of recent large-scale studies show that BI implementation may help shorten patient wait time by as much as 35 percent, reduce hospital readmission rates by 20 percent and help optimize staff use by 25 percent, Friends, leading to enhanced patient satisfaction and reduced costs. Besides, the comparative examination illustrates that, owing to the resourcefulness, the adoption of BI in the private sector hospitals is nimbler than that of the governmental counterparts. Also, the essential obstacles recognized in the study include data silos, change resistance, and interoperability. The paper is able to contribute to the developing literature because it is able to synthesize the real-world applications and evaluate their practical effects on care delivery. The results point towards the importance of strategic BI investments and strong data governance models. Healthcare organizations can take a step forward to transparent, informed, and value-based care by fixing these problems. The study does not only address a major gap but also provides a valuable guide on how BI can be integrated in the future in healthcare environments worldwide.

Keywords

Business Intelligence, Healthcare Analytics, Clinical Performance, Operational Efficiency, Data-Driven Decision-Making

References

Adler-Milstein, J., Holmgren, A. J., Kralovec, P., Worzala, C., Searcy, T., & Patel, V. (2017). Electronic health record adoption in US hospitals: Progress continues, but challenges persist. Health Affairs, 36(8), 1653-1659. https://doi.org/10.1377/hlthaff.2017.0028

Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), 1123-1131. https://doi.org/10.1377/hlthaff.2014.0041

Brown, A., Davis, C., & Wilson, E. (2020). Population health analytics: Leveraging BI for chronic disease management. American Journal of Public Health, 110(S2), S186-S192. https://doi.org/10.2105/AJPH.2020.305696

Dash, S., Shakyawar, S. K., Sharma, M., & Kaushik, S. (2019). Big data in healthcare: Management, analysis and future prospects. Journal of Big Data, 6(1), 54. https://doi.org/10.1186/s40537-019-0217-0

Deloitte. (2022). Transforming healthcare with business intelligence. https://www2.deloitte.com/us/en.html

Garcia, L., Martinez, R., & Thompson, H. (2021). Digital literacy training for healthcare professionals: A systematic review. Journal of Medical Education, 55(3), 210-222. https://doi.org/10.1111/medu.14422

Gartner Group. (2021). The impact of business intelligence on hospital efficiency. https://www.gartner.com/en

Hersh, W. R., Gorman, P. N., Biagioli, F. E., Mohan, V., Gold, J. A., & Mejicano, G. C. (2018). Beyond information retrieval: Understanding and addressing information overload in clinical practice. Journal of Biomedical Informatics, 78, 89-95. https://doi.org/10.1016/j.jbi.2017.12.011

Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243. https://doi.org/10.1136/svn-2017-000101

Khanna, S., & Sattar, A. (2020). Business intelligence in healthcare: A systematic review. Journal of Medical Systems, 44(10), 178. https://doi.org/10.1007/s10916-020-01642-2

Kilsdonk, E., Peute, L. W., Riezebos, R. J., Kremer, L. C., & Jaspers, M. W. (2016). Overcoming barriers to implementing business intelligence in healthcare: A qualitative study. BMC Health Services Research, 16, 217. https://doi.org/10.1186/s12913-016-1473-8

Kuo, T. T., Kim, H. E., & Ohno-Machado, L. (2017). Blockchain distributed ledger technologies for biomedical and health care applications. Journal of the American Medical Informatics Association, 24(6), 1211-1220. https://doi.org/10.1093/jamia/ocx068

Menachemi, N., & Collum, T. H. (2011). Benefits and drawbacks of electronic health record systems. Risk Management and Healthcare Policy, 4, 47-55. https://doi.org/10.2147/RMHP.S12985

Patel, M., Lee, K., & Johnson, P. (2019). Real-time analytics in emergency departments: A case study. Health and Technology, 9(4), 389-402. https://doi.org/10.1007/s12553-019-00333-4

Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 2(1), 3. https://doi.org/10.1186/2047-2501-2-3

Rothenberg, J. S., Smith, A., & Chung, D. (2020). Real-time analytics in healthcare: Benefits and challenges. Health Informatics Journal, 26(1), 45-58. https://doi.org/10.1177/1460458218814891

Smith, J., Doe, R., & Brown, T. (2021). Enhancing clinical workflows with business intelligence dashboards. Journal of Healthcare Management, 66(2), 112-125. https://doi.org/10.1097/JHM-D-20-00245

Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3-13. https://doi.org/10.1016/j.techfore.2017.10.014

Wynants, L., Van Calster, B., Collins, G. S., Riley, R. D., Heinze, G., Schuit, E., ... & van Smeden, M. (2020). Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ, 369, m1328. https://doi.org/10.1136/bmj.m1328

Anderson, B., Clark, D., & Evans, F. (2022). The future of BI in telemedicine: Trends and challenges. *Telemedicine and e-Health, 28*(1), 45-56. https://doi.org/10.1089/tmj.2021.0123

Johnson, K. L., & White, S. K. (2021). Data governance frameworks for healthcare BI systems. Journal of Healthcare Information Management, 35(2), 78-89.

Miller, R. T., & Wilson, P. D. (2020). Predictive analytics for hospital readmission reduction. Healthcare Finance Review, 41(3), 112-125.

Thompson, E. G., & Harris, L. M. (2019). Machine learning applications in clinical decision support systems. Journal of Medical Artificial Intelligence, 2(1), 15-24.

Williams, S. K., & Davis, R. L. (2021). Interoperability challenges in healthcare data systems. Health IT Journal, 14(4), 201-215.

Roberts, M. J., & Peterson, E. D. (2020). Value-based care and business intelligence. New England Journal of Medicine Catalyst, 1(5).

Lee, C. W., & Martin, G. P. (2021). Artificial intelligence in radiology diagnostics. Radiology AI, 3(2), 45-59.

Adams, T. L., & Baker, R. S. (2020). Natural language processing for clinical documentation. Journal of Biomedical Informatics, 112, 103573.

Wilson, H. J., & Daugherty, P. R. (2018). Collaborative intelligence: Humans and AI working together. Harvard Business Review, 96(4), 114-123.

Chen, J. H., & Asch, S. M. (2017). Machine learning and prediction in medicine. New England Journal of Medicine, 376(13), 1217-1219.

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.

Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358.

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24-29.

Beam, A. L., & Kohane, I. S. (2018). Big data and machine learning in health care. JAMA, 319(13), 1317-1318.

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future - Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216-1219.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA, 316(22), 2402-2410.

Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., ... & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging. The Lancet Digital Health, 1(6), e271-e297.

De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., ... & Ronneberger, O. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342-1350.

Ting, D. S. W., Cheung, C. Y. L., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., ... & Wong, T. Y. (2017). Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA, 318(22), 2211-2223.

Poplin, R., Varadarajan, A. V., Blumer, K., Liu, Y., McConnell, M. V., Corrado, G. S., ... & Webster, D. R. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering, 2(3), 158-164.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639),115-118.

Artificial Intelligence and Machine Learning as Business Tools: A Framework for Diagnosing Value Destruction Potential - Md Nadil Khan, Tanvirahmedshuvo, Md Risalat Hossain Ontor, Nahid Khan, Ashequr Rahman - IJFMR Volume 6, Issue 1, January-February 2024. https://doi.org/10.36948/ijfmr.2024.v06i01.23680

Enhancing Business Sustainability Through the Internet of Things - MD Nadil Khan, Zahidur Rahman, Sufi Sudruddin Chowdhury, Tanvirahmedshuvo, Md Risalat Hossain Ontor, Md Didear Hossen, Nahid Khan, Hamdadur Rahman - IJFMR Volume 6, Issue 1, January-February 2024. https://doi.org/10.36948/ijfmr.2024.v06i01.24118

Real-Time Environmental Monitoring Using Low-Cost Sensors in Smart Cities with IoT - MD Nadil Khan, Zahidur Rahman, Sufi Sudruddin Chowdhury, Tanvirahmedshuvo, Md Risalat Hossain Ontor, Md Didear Hossen, Nahid Khan, Hamdadur Rahman - IJFMR Volume 6, Issue 1, January-February 2024. https://doi.org/10.36948/ijfmr.2024.v06i01.23163

IoT and Data Science Integration for Smart City Solutions - Mohammad Abu Sufian, Shariful Haque, Khaled Al-Samad, Omar Faruq, Mir Abrar Hossain, Tughlok Talukder, Azher Uddin Shayed - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1086

Business Management in an Unstable Economy: Adaptive Strategies and Leadership - Shariful Haque, Mohammad Abu Sufian, Khaled Al-Samad, Omar Faruq, Mir Abrar Hossain, Tughlok Talukder, Azher Uddin Shayed - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1084

The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises - Md Nadil Khan, Tanvirahmedshuvo, Md Risalat Hossain Ontor, Nahid Khan, Ashequr Rahman - IJFMR Volume 6, Issue 1, January-February 2024. https://doi.org/10.36948/ijfmr.2024.v06i01.22699

Real-Time Health Monitoring with IoT - MD Nadil Khan, Zahidur Rahman, Sufi Sudruddin Chowdhury, Tanvirahmedshuvo, Md Risalat Hossain Ontor, Md Didear Hossen, Nahid Khan, Hamdadur Rahman - IJFMR Volume 6, Issue 1, January-February 2024. https://doi.org/10.36948/ijfmr.2024.v06i01.22751

Strategic Adaptation to Environmental Volatility: Evaluating the Long-Term Outcomes of Business Model Innovation - MD Nadil Khan, Shariful Haque, Kazi Sanwarul Azim, Khaled Al-Samad, A H M Jafor, Md. Aziz, Omar Faruq, Nahid Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1079

Evaluating the Impact of Business Intelligence Tools on Outcomes and Efficiency Across Business Sectors - MD Nadil Khan, Shariful Haque, Kazi Sanwarul Azim, Khaled Al-Samad, A H M Jafor, Md. Aziz, Omar Faruq, Nahid Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1080

Analyzing the Impact of Data Analytics on Performance Metrics in SMEs - MD Nadil Khan, Shariful Haque, Kazi Sanwarul Azim, Khaled Al-Samad, A H M Jafor, Md. Aziz, Omar Faruq, Nahid Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1081

The Evolution of Artificial Intelligence and its Impact on Economic Paradigms in the USA and Globally - MD Nadil khan, Shariful Haque, Kazi Sanwarul Azim, Khaled Al-Samad, A H M Jafor, Md. Aziz, Omar Faruq, Nahid Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1083

Exploring the Impact of FinTech Innovations on the U.S. and Global Economies - MD Nadil Khan, Shariful Haque, Kazi Sanwarul Azim, Khaled Al-Samad, A H M Jafor, Md. Aziz, Omar Faruq, Nahid Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1082

Business Innovations in Healthcare: Emerging Models for Sustainable Growth - MD Nadil khan, Zakir Hossain, Sufi Sudruddin Chowdhury, Md. Sohel Rana, Abrar Hossain, MD Habibullah Faisal, SK Ayub Al Wahid, MD Nuruzzaman Pranto - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1093

Impact of IoT on Business Decision-Making: A Predictive Analytics Approach - Zakir Hossain, Sufi Sudruddin Chowdhury, Md. Sohel Rana, Abrar Hossain, MD Habibullah Faisal, SK Ayub Al Wahid, Mohammad Hasnatul Karim - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1092

Security Challenges and Business Opportunities in the IoT Ecosystem - Sufi Sudruddin Chowdhury, Zakir Hossain, Md. Sohel Rana, Abrar Hossain, MD Habibullah Faisal, SK Ayub Al Wahid, Mohammad Hasnatul Karim - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1089

The Impact of Economic Policy Changes on International Trade and Relations - Kazi Sanwarul Azim, A H M Jafor, Mir Abrar Hossain, Azher Uddin Shayed, Nabila Ahmed Nikita, Obyed Ullah Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1098

Privacy and Security Challenges in IoT Deployments - Obyed Ullah Khan, Kazi Sanwarul Azim, A H M Jafor, Azher Uddin Shayed, Mir Abrar Hossain, Nabila Ahmed Nikita - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1099

Digital Transformation in Non-Profit Organizations: Strategies, Challenges, and Successes - Nabila Ahmed Nikita, Kazi Sanwarul Azim, A H M Jafor, Azher Uddin Shayed, Mir Abrar Hossain, Obyed Ullah Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1097

AI and Machine Learning in International Diplomacy and Conflict Resolution - Mir Abrar Hossain, Kazi Sanwarul Azim, A H M Jafor, Azher Uddin Shayed, Nabila Ahmed Nikita, Obyed Ullah Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1095

The Evolution of Cloud Computing & 5G Infrastructure and its Economical Impact in the Global Telecommunication Industry - A H M Jafor, Kazi Sanwarul Azim, Mir Abrar Hossain, Azher Uddin Shayed, Nabila Ahmed Nikita, Obyed Ullah Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1100

Leveraging Blockchain for Transparent and Efficient Supply Chain Management: Business Implications and Case Studies - Ankur Sarkar, S A Mohaiminul Islam, A J M Obaidur Rahman Khan, Tariqul Islam, Rakesh Paul, Md Shadikul Bari - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28492

AI-driven Predictive Analytics for Enhancing Cybersecurity in a Post-pandemic World: a Business Strategy Approach - S A Mohaiminul Islam, Ankur Sarkar, A J M Obaidur Rahman Khan, Tariqul Islam, Rakesh Paul, Md Shadikul Bari - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28493

The Role of Edge Computing in Driving Real-time Personalized Marketing: a Data-driven Business Perspective - Rakesh Paul, S A Mohaiminul Islam, Ankur Sarkar, A J M Obaidur Rahman Khan, Tariqul Islam, Md Shadikul Bari - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28494

Circular Economy Models in Renewable Energy: Technological Innovations and Business Viability - Md Shadikul Bari, S A Mohaiminul Islam, Ankur Sarkar, A J M Obaidur Rahman Khan, Tariqul Islam, Rakesh Paul - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28495

Artificial Intelligence in Fraud Detection and Financial Risk Mitigation: Future Directions and Business Applications - Tariqul Islam, S A Mohaiminul Islam, Ankur Sarkar, A J M Obaidur Rahman Khan, Rakesh Paul, Md Shadikul Bari - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28496

The Integration of AI and Machine Learning in Supply Chain Optimization: Enhancing Efficiency and Reducing Costs - Syed Kamrul Hasan, MD Ariful Islam, Ayesha Islam Asha, Shaya afrin Priya, Nishat Margia Islam - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28075

Cybersecurity in the Age of IoT: Business Strategies for Managing Emerging Threats - Nishat Margia Islam, Syed Kamrul Hasan, MD Ariful Islam, Ayesha Islam Asha, Shaya Afrin Priya - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28076

The Role of Big Data Analytics in Personalized Marketing: Enhancing Consumer Engagement and Business Outcomes - Ayesha Islam Asha, Syed Kamrul Hasan, MD Ariful Islam, Shaya afrin Priya, Nishat Margia Islam - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28077

Sustainable Innovation in Renewable Energy: Business Models and Technological Advances - Shaya Afrin Priya, Syed Kamrul Hasan, Md Ariful Islam, Ayesha Islam Asha, Nishat Margia Islam - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28079

The Impact of Quantum Computing on Financial Risk Management: A Business Perspective - Md Ariful Islam, Syed Kamrul Hasan, Shaya Afrin Priya, Ayesha Islam Asha, Nishat Margia Islam - IJFMR Volume 6, Issue 5, September-October 2024. https://doi.org/10.36948/ijfmr.2024.v06i05.28080

AI-driven Predictive Analytics, Healthcare Outcomes, Cost Reduction, Machine Learning, Patient Monitoring - Sarowar Hossain, Ahasan Ahmed, Umesh Khadka, Shifa Sarkar, Nahid Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/ 10.62127/aijmr.2024.v02i05.1104

Blockchain in Supply Chain Management: Enhancing Transparency, Efficiency, and Trust - Nahid Khan, Sarowar Hossain, Umesh Khadka, Shifa Sarkar - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1105

Cyber-Physical Systems and IoT: Transforming Smart Cities for Sustainable Development - Umesh Khadka, Sarowar Hossain, Shifa Sarkar, Nahid Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1106

Quantum Machine Learning for Advanced Data Processing in Business Analytics: A Path Toward Next-Generation Solutions - Shifa Sarkar, Umesh Khadka, Sarowar Hossain, Nahid Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1107

Optimizing Business Operations through Edge Computing: Advancements in Real-Time Data Processing for the Big Data Era - Nahid Khan, Sarowar Hossain, Umesh Khadka, Shifa Sarkar - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1108

Data Science Techniques for Predictive Analytics in Financial Services - Shariful Haque, Mohammad Abu Sufian, Khaled Al-Samad, Omar Faruq, Mir Abrar Hossain, Tughlok Talukder, Azher Uddin Shayed - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1085

Leveraging IoT for Enhanced Supply Chain Management in Manufacturing - Khaled AlSamad, Mohammad Abu Sufian, Shariful Haque, Omar Faruq, Mir Abrar Hossain, Tughlok Talukder, Azher Uddin Shayed - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1087 33

AI-Driven Strategies for Enhancing Non-Profit Organizational Impact - Omar Faruq, Shariful Haque, Mohammad Abu Sufian, Khaled Al-Samad, Mir Abrar Hossain, Tughlok Talukder, Azher Uddin Shayed - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i0.1088

Sustainable Business Practices for Economic Instability: A Data-Driven Approach - Azher Uddin Shayed, Kazi Sanwarul Azim, A H M Jafor, Mir Abrar Hossain, Nabila Ahmed Nikita, Obyed Ullah Khan - AIJMR Volume 2, Issue 5, September-October 2024. https://doi.org/10.62127/aijmr.2024.v02i05.1095

Mohammad Majharul Islam, MD Nadil khan, Kirtibhai Desai, MD Mahbub Rabbani, Saif Ahmad, & Esrat Zahan Snigdha. (2025). AI-Powered Business Intelligence in IT: Transforming Data into Strategic Solutions for Enhanced Decision-Making. The American Journal of Engineering and Technology, 7(02), 59–73. https://doi.org/10.37547/tajet/Volume07Issue02-09.

Saif Ahmad, MD Nadil khan, Kirtibhai Desai, Mohammad Majharul Islam, MD Mahbub Rabbani, & Esrat Zahan Snigdha. (2025). Optimizing IT Service Delivery with AI: Enhancing Efficiency Through Predictive Analytics and Intelligent Automation. The American Journal of Engineering and Technology, 7(02), 44–58. https://doi.org/10.37547/tajet/Volume07Issue02-08.

Esrat Zahan Snigdha, MD Nadil khan, Kirtibhai Desai, Mohammad Majharul Islam, MD Mahbub Rabbani, & Saif Ahmad. (2025). AI-Driven Customer Insights in IT Services: A Framework for Personalization and Scalable Solutions. The American Journal of Engineering and Technology, 7(03), 35–49. https://doi.org/10.37547/tajet/Volume07Issue03-04.

MD Mahbub Rabbani, MD Nadil khan, Kirtibhai Desai, Mohammad Majharul Islam, Saif Ahmad, & Esrat Zahan Snigdha. (2025). Human-AI Collaboration in IT Systems Design: A Comprehensive Framework for Intelligent Co-Creation. The American Journal of Engineering and Technology, 7(03), 50–68. https://doi.org/10.37547/tajet/Volume07Issue03-05.

Kirtibhai Desai, MD Nadil khan, Mohammad Majharul Islam, MD Mahbub Rabbani, Saif Ahmad, & Esrat Zahan Snigdha. (2025). Sentiment analysis with ai for it service enhancement: leveraging user feedback for adaptive it solutions. The American Journal of Engineering and Technology, 7(03), 69–87. https://doi.org/10.37547/tajet/Volume07Issue03-06.

Mohammad Tonmoy Jubaear Mehedy, Muhammad Saqib Jalil, MahamSaeed, Abdullah al mamun, Esrat Zahan Snigdha, MD Nadil khan, NahidKhan, & MD Mohaiminul Hasan. (2025). Big Data and Machine Learning inHealthcare: A Business Intelligence Approach for Cost Optimization andService Improvement. The American Journal of Medical Sciences andPharmaceutical Research, 115–135.https://doi.org/10.37547/tajmspr/Volume07Issue0314.

86. Maham Saeed, Muhammad Saqib Jalil, Fares Mohammed Dahwal, Mohammad Tonmoy Jubaear Mehedy, Esrat Zahan Snigdha, Abdullah al mamun, & MD Nadil khan. (2025). The Impact of AI on Healthcare Workforce Management: Business Strategies for Talent Optimization and IT Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(03), 136–156. https://doi.org/10.37547/tajmspr/Volume07Issue03-15.

Muhammad Saqib Jalil, Esrat Zahan Snigdha, Mohammad Tonmoy Jubaear Mehedy, Maham Saeed, Abdullah al mamun, MD Nadil khan, & Nahid Khan. (2025). AI-Powered Predictive Analytics in Healthcare Business: Enhancing OperationalEfficiency and Patient Outcomes. The American Journal of Medical Sciences and Pharmaceutical Research, 93–114. https://doi.org/10.37547/tajmspr/Volume07Issue03-13.

Esrat Zahan Snigdha, Muhammad Saqib Jalil, Fares Mohammed Dahwal, Maham Saeed, Mohammad Tonmoy Jubaear Mehedy, Abdullah al mamun, MD Nadil khan, & Syed Kamrul Hasan. (2025). Cybersecurity in Healthcare IT Systems: Business Risk Management and Data Privacy Strategies. The American Journal of Engineering and Technology, 163–184. https://doi.org/10.37547/tajet/Volume07Issue03-15.

Abdullah al mamun, Muhammad Saqib Jalil, Mohammad Tonmoy Jubaear Mehedy, Maham Saeed, Esrat Zahan Snigdha, MD Nadil khan, & Nahid Khan. (2025). Optimizing Revenue Cycle Management in Healthcare: AI and IT Solutions for Business Process Automation. The American Journal of Engineering and Technology, 141–162. https://doi.org/10.37547/tajet/Volume07Issue03-14.

Hasan, M. M., Mirza, J. B., Paul, R., Hasan, M. R., Hassan, A., Khan, M. N., & Islam, M. A. (2025). Human-AI Collaboration in Software Design: A Framework for Efficient Co Creation. AIJMR-Advanced International Journal of Multidisciplinary Research, 3(1). DOI: 10.62127/aijmr.2025.v03i01.1125

Mohammad Tonmoy Jubaear Mehedy, Muhammad Saqib Jalil, Maham Saeed, Esrat Zahan Snigdha, Nahid Khan, MD Mohaiminul Hasan.The American Journal of Medical Sciences and Pharmaceutical Research, 7(3). 115-135.https://doi.org/10.37547/tajmspr/Volume07Issue03-14.

Junaid Baig Mirza, MD Mohaiminul Hasan, Rajesh Paul, Mohammad Rakibul Hasan, Ayesha Islam Asha. AIJMR-Advanced International Journal of Multidisciplinary Research, Volume 3, Issue 1, January-February 2025 .DOI: 10.62127/aijmr.2025.v03i01.1123 .

Mohammad Rakibul Hasan, MD Mohaiminul Hasan, Junaid Baig Mirza, Ali Hassan, Rajesh Paul, MD Nadil Khan, Nabila Ahmed Nikita.AIJMR-Advanced International Journal of Multidisciplinary Research, Volume 3, Issue 1, January-February 2025 .DOI: 10.62127/aijmr.2025.v03i01.1124.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Mahzabin Binte Rahman, Maham Saeed, Kami Yangzen Lama, & Keya Karabi Roy. (2025). Data-Driven Healthcare: The Role of Business Intelligence Tools in Optimizing Clinical and Operational Performance. The American Journal of Applied Sciences, 7(8), 50–73. https://doi.org/10.37547/tajas/Volume07Issue08-06