Articles | Open Access | DOI: https://doi.org/10.37547/tajas/Volume07Issue01-02

Sentiment Analysis of Consumer Feedback and Its Impact on Business Strategies by Machine Learning

Pinky Akter , Master Of Science in Information Technology, Washington University of Science and Technology, USA
Safayet Hossain , Master of Science in Cybersecurity, Washington University of Science and Technology, USA
Md Tarake Siddique , Master of Science in Information Technology, Washington University of Science and Technology, USA
Mohammad Iftekhar Ayub , Master of Science in Information Technology, Washington University of Science and Technology, USA
Ayan Nath , Master’s in computer and information science, International American University, USA
Paresh Chandra Nath , Master of Science in Information Technology, Washington University of Science and Technology, USA
Mohammad Rasel , Masters in Business Analytics, International American University, LA, California, USA
Md Mehedi Hassan , Master of Science in Information Technology, Washington University of Science and Technology, USA

Abstract

Sentiment analysis is a powerful tool for transforming consumer feedback into actionable insights, enabling businesses to refine strategies and improve customer experiences. This study evaluates the performance of machine learning models, including Logistic Regression, Random Forest, SVM, LSTM, and BERT, for sentiment classification on a diverse dataset of customer reviews. BERT outperformed other models, achieving an AUC-ROC of 0.97 and an accuracy of 94.2%, showcasing its ability to capture complex semantic patterns in text. The findings provide businesses with critical insights into consumer sentiment, guiding decision-making and enhancing competitive advantage. The study also addresses challenges such as data ambiguity, ethical considerations, and computational demands, offering practical recommendations for implementing scalable and effective sentiment analysis solutions. These results demonstrate the potential of machine learning-driven sentiment analysis in shaping customer-focused business strategies and fostering growth in a data-driven market.

Keywords

References

Md Habibur Rahman, Ashim Chandra Das, Md Shujan Shak, Md Kafil Uddin, Md Imdadul Alam, Nafis Anjum, Md Nad Vi Al Bony, & Murshida Alam. (2024). TRANSFORMING CUSTOMER RETENTION IN FINTECH INDUSTRY THROUGH PREDICTIVE ANALYTICS AND MACHINE LEARNING. The American Journal of Engineering and Technology, 6(10), 150–163. https://doi.org/10.37547/tajet/Volume06Issue10-17

Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. https://doi.org/10.1016/j.jocs.2010.12.007

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of NAACL-HLT 2019. https://doi.org/10.48550/arXiv.1810.04805

Esuli, A., & Sebastiani, F. (2006). SentiWordNet: A publicly available lexical resource for opinion mining. Proceedings of LREC 2006.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson Education.

Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: Sentiment classification using machine learning techniques. Proceedings of EMNLP 2002.

Sharma, A., Kumar, A., & Bhardwaj, R. (2020). Role of sentiment analysis in improving customer satisfaction. International Journal of Advanced Research in Computer Science, 11(1), 12-18.

Tauhedur Rahman, Md Kafil Uddin, Biswanath Bhattacharjee, Md Siam Taluckder, Sanjida Nowshin Mou, Pinky Akter, Md Shakhaowat Hossain, Md Rashel Miah, & Md Mohibur Rahman. (2024). BLOCKCHAIN APPLICATIONS IN BUSINESS OPERATIONS AND SUPPLY CHAIN MANAGEMENT BY MACHINE LEARNING. International Journal of Computer Science & Information System, 9(11), 17–30. https://doi.org/10.55640/ijcsis/Volume09Issue11-03

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Bhandari, A., Cherukuri, A. K., & Kamalov, F. (2023). Machine learning and blockchain integration for security applications. In Big Data Analytics and Intelligent Systems for Cyber Threat Intelligence (pp. 129-173). River Publishers.

Diro, A., Chilamkurti, N., Nguyen, V. D., & Heyne, W. (2021). A comprehensive study of anomaly detection schemes in IoT networks using machine learning algorithms. Sensors, 21(24), 8320.

Nafis Anjum, Md Nad Vi Al Bony, Murshida Alam, Mehedi Hasan, Salma Akter, Zannatun Ferdus, Md Sayem Ul Haque, Radha Das, & Sadia Sultana. (2024). COMPARATIVE ANALYSIS OF SENTIMENT ANALYSIS MODELS ON BANKING INVESTMENT IMPACT BY MACHINE LEARNING ALGORITHM. International Journal of Computer Science & Information System, 9(11), 5–16. https://doi.org/10.55640/ijcsis/Volume09Issue11-02

Shahbazi, Z., & Byun, Y. C. (2021). Integration of blockchain, IoT and machine learning for multistage quality control and enhancing security in smart manufacturing. Sensors, 21(4), 1467.

Das, A. C., Mozumder, M. S. A., Hasan, M. A., Bhuiyan, M., Islam, M. R., Hossain, M. N., ... & Alam, M. I. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42-53.

Akter, S., Mahmud, F., Rahman, T., Ahmmed, M. J., Uddin, M. K., Alam, M. I., ... & Jui, A. H. (2024). A COMPREHENSIVE STUDY OF MACHINE LEARNING APPROACHES FOR CUSTOMER SENTIMENT ANALYSIS IN BANKING SECTOR. The American Journal of Engineering and Technology, 6(10), 100-111.

Shahid, R., Mozumder, M. A. S., Sweet, M. M. R., Hasan, M., Alam, M., Rahman, M. A., ... & Islam, M. R. (2024). Predicting Customer Loyalty in the Airline Industry: A Machine Learning Approach Integrating Sentiment Analysis and User Experience. International Journal on Computational Engineering, 1(2), 50-54.

Ontor, M. R. H., Iqbal, A., Ahmed, E., & Rahman, A. LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS'PERFORMANCE: A MACHINE LEARNING APPROACH. SYSTEM (eISSN: 2536-7919 pISSN: 2536-7900), 9(11), 45-56.

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.

Md Jamil Ahmmed, Md Mohibur Rahman, Ashim Chandra Das, Pritom Das, Tamanna Pervin, Sadia Afrin, Sanjida Akter Tisha, Md Mehedi Hassan, & Nabila Rahman. (2024). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR BANKING FRAUD DETECTION: A STUDY ON PERFORMANCE, PRECISION, AND REAL-TIME APPLICATION. International Journal of Computer Science & Information System, 9(11), 31–44. https://doi.org/10.55640/ijcsis/Volume09Issue11-04

Arif, M., Ahmed, M. P., Al Mamun, A., Uddin, M. K., Mahmud, F., Rahman, T., ... & Helal, M. (2024). DYNAMIC PRICING IN FINANCIAL TECHNOLOGY: EVALUATING MACHINE LEARNING SOLUTIONS FOR MARKET ADAPTABILITY. International Interdisciplinary Business Economics Advancement Journal, 5(10), 13-27.

Uddin, M. K., Akter, S., Das, P., Anjum, N., Akter, S., Alam, M., ... & Pervin, T. (2024). MACHINE LEARNING-BASED EARLY DETECTION OF KIDNEY DISEASE: A COMPARATIVE STUDY OF PREDICTION MODELS AND PERFORMANCE EVALUATION. International Journal of Medical Science and Public Health Research, 5(12), 58-75.

Das, A. C., Rishad, S. S. I., Akter, P., Tisha, S. A., Afrin, S., Shakil, F., ... & Rahman, M. M. (2024). ENHANCING BLOCKCHAIN SECURITY WITH MACHINE LEARNING: A COMPREHENSIVE STUDY OF ALGORITHMS AND APPLICATIONS. The American Journal of Engineering and Technology, 6(12), 150-162.

Shak, M. S., Uddin, A., Rahman, M. H., Anjum, N., Al Bony, M. N. V., Alam, M., ... & Pervin, T. (2024). INNOVATIVE MACHINE LEARNING APPROACHES TO FOSTER FINANCIAL INCLUSION IN MICROFINANCE. International Interdisciplinary Business Economics Advancement Journal, 5(11), 6-20.

Naznin, R., Sarkar, M. A. I., Asaduzzaman, M., Akter, S., Mou, S. N., Miah, M. R., ... & Sajal, A. (2024). ENHANCING SMALL BUSINESS MANAGEMENT THROUGH MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS FOR CUSTOMER RETENTION, FINANCIAL FORECASTING, AND INVENTORY OPTIMIZATION. International Interdisciplinary Business Economics Advancement Journal, 5(11), 21-32.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing, Management and Economics Journal, 4(12), 66-83.

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. Frontline Marketing, Management and Economics Journal, 4(12), 84-106.

Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.

Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.

Al Mamun, A., Hossain, M. S., Rishad, S. S. I., Rahman, M. M., Shakil, F., Choudhury, M. Z. M. E., ... & Sultana, S. (2024). MACHINE LEARNING FOR STOCK MARKET SECURITY MEASUREMENT: A COMPARATIVE ANALYSIS OF SUPERVISED, UNSUPERVISED, AND DEEP LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 63-76.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Pinky Akter, Safayet Hossain, Md Tarake Siddique, Mohammad Iftekhar Ayub, Ayan Nath, Paresh Chandra Nath, Mohammad Rasel, & Md Mehedi Hassan. (2025). Sentiment Analysis of Consumer Feedback and Its Impact on Business Strategies by Machine Learning. The American Journal of Applied Sciences, 7(01), 6–16. https://doi.org/10.37547/tajas/Volume07Issue01-02