Articles | Open Access | DOI: https://doi.org/10.37547/tajas/Volume05Issue04-03

BIOGENIC CARBON NANOFIBER SYNTHESIZED FROM AGRO-WASTE FOR REMOVAL OF HEAVY-METAL FROM WASTEWATER

Madhuri Sharon , Sharon Institute Of Nanotechnology, Parishkar College Of Global Excellence, Jaipur, Rajasthan, India
Anuradha Pandey-Dubey , Sharon Institute Of Nanotechnology, Parishkar College Of Global Excellence, Jaipur, Rajasthan, India
Jayashree Shukla , Department Of Chemistry, Agrawal College, Kalyan, Maharashtra, India

Abstract

The advent of inexorable human, and industrial activities as well as the input of nature has impacted the environment by releasing Heavy Metals into the aquatic system. Hence, the physical removal of hazardous HM remains a demand of the day. This review envisages the use of agro-waste with the incorporation of nanotechnology for the removal of HM from aquatic systems. The focus is on plant parts, plant metabolites, and plant-cellulose-derived Carbon Nanofibers (CNF) as materials used for the removal of Heavy Metals. Owing to their high surface area, high mechanical strength, greater chemical reactivity due to the presence of dangling bonds, non-toxicity, high porosity,channel-like morphology, and lower costas the precursor, energy-efficient production; makes CNF an effective adsorbent of Heavy Metals.CNF synthesized from agro-waste and plant-metabolite to adsorb Heavy Metals; as well as acts as a filtration base has been touched upon with the hope of bridging the gap between ever-increasing demand and available clean water. A brief introduction to the CNF, its structure, properties as well as common methods of synthesis of CNF is given. Moreover, Physico-Chemical and Biological methods that are being used is also touched upon. The article suggests the need for innovative, low-cost, and environmentally friendly surface modification techniques and the use of agro-waste-derived CNF for the removal of HM from water.

Keywords

Adsorption, Agro-waste, Bioremediation

References

Abbas, M, S. Kaddour and M. Trari, 2014. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon, J. Ind. Eng. Chem., 20: 745–751. DOI:10.1016/j.jiec.2013.06.030.

Abdul Khalil, H.P.S., Y. Davoudpour,C.K. Saurabh, S. Hossain, A.S. Adnan, R. Dungani, M.T. Paridah, M.Z.I. Sarker, M.R.N. Fazita, M.I. Syakir and M.K. Haafiz. 2016. A review on nanocellulosic fibers as new material for sustainable packaging: process and applications. Renew. Sustai. Energy Rev.; 64: 823–836. DOI: 10.1016/j.rser.2016.06.072

Abustan Ismail, H. Harmuni and Remy Rozainy M. A. Z. Mohd. 2017. Removal of iron and manganese using granular activated carbon and zeolite in artificial barrier of riverbank filtration. AIP Conference Proceedings 1835, 020056; https://doi.org/10.1063/1.4983796

Al-Degs, Y.S., M.I. El-Barghouthi, A.H. El-Sheikh, G.M. Walker. 2008. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm., 77: 16–23, DOI:10.1016/j.dyepig.2007.03.001.

Ahmad, M., K. Yang, L. Li, Y. Fan, T. Shah, Q. Zhang, B. Zhang, 2020. Modified Tubular Carbon Nanofibers for Adsorption of Uranium(VI) from Water, ACS Appl. Nano Mater.; 3: 6394–6405. DOI: 10.1021/acsanm.0c00837

Ahmed, Y.M., A. Al-Mamun, S.A. Muyibi, M.F.R. A-Khatib, A.T. Jameel, and M.A. Alsaadi, 2020. Study of Pb Adsorption by Caron Nanofiber Grown on Powdered Activated Carbon, Journal of Applied Science; 10(7): 1983-1986.

Ahmad Mudasir, J. Wang, J. Xua, Z. Yang, Q. Zhang, and B. Zhang, 2020. Novel synthetic method for magnetic sulphonated tubular trap for efficient mercury removal from wastewater.Journal of Colloid and Interface Science; 565: 523-535. https://doi.org/10.1016/j.jcis.2020.01.024

Al-Anzi Bader Shafaq and O.C. Siang 2017. Recent Developments of Carbon Nanomaterials and Membrane.RSC Adv.;7: 20981-20994.

Al-Degs, Y.S., M.I. El-Barghouthi, A.H. El-Sheikh and G.M. Walker, 2008. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon, Dyes Pigm.; 77:16–23. DOI:10.1016/j.dyepig.2007.03.001

Ali, A.M., 2011.Removal of Zinc from Water Using Modified and Non-Modified Carbon Nanofibers, in 2nd Int. Conf. Environ. Sci. Technol.; pp. 220–223.

Alimohammadi Vahid, M. S.EhsanJabbari, 2017.Experimental study on efficient removal of total iron from wastewater using magnetic-modified multi-walled carbon nanotubes.Ecological Engineering; 102: 90-97. https://doi.org/10.1016/j.ecoleng.2017.01.044

Alvarez, M.T., C. Crespo andB. Mattiasson, 2007 Precipitation of Zn(II), Cu(II) and Pb(II) at Bench-Scale Using Biogenic Hydrogen Sulfide from the Utilization of Volatile Fatty Acids. Chemosphere; 66: 1677.

Bae, J., andJ.Y. Hong, 2021 Fabrication of nitrogen-doped porous carbon nanofibers for Heavy-metal ions removal. Carbon Lett. 31:1339–1347. https://doi.org/10.1007/s42823-021-00291-w

Bernabé, I., P. Sáez, J.M.. Gómez, E. Díez, A. Rodríguez and N. García, 2017. EFFECTIVE ADSORPTIVE REMOVAL OF GALLIUM ON SYNTHESIZED MESOPOROUS CARBONS. Conference: WORKSHOP OF TECHNOLOGIES FOR MONITORING AND TREATMENT OF CONTAMINANTS OF EMERGING CONCERN.

Basso,M.C., E.G. Cerrella andA.L. Cukierman, 2002. Activated Carbons Developed from a Rapidly Renewable Biosource for Removal of Cadmium(II) and Nickel(II) Ions from Dilute Aqueous Solutions. Ind. Eng. Chem. Res.; 41(2): 180–189.

Bhardwaj, S., S. Jaybhaye, Madhuri Sharon, D. Sathiyamoorthy, K. Dasgupta, P. Jagadale, A. Gupta, B. Patil, G. Oza, S. Pandey, T Soga, R. Afre, G. Kalita and Maheshwar Sharon, 2008. Carbon Nanomaterial from Tea Leaves as An Anode in Lithium Secondary Batteries Asian J. Exp. Sci., 22 (2): 89-93.

Bingöl,A., UO. Handan , K.B. Yalcin, A. Karagunduz, A. Cakici and Bulent Keskinler. 2004. Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast. Bioresource Technology; 94(3):245-249. DOI: 10.1016/j.biortech.2004.01.018

Brinchi, L., F. Cotana, E. Fortunati andJ.M. Kenny, 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1):154-169.

Chakraborty, A., M. Sain and M. Kortschot, 2006. Reinforcing potential of wood pulp-derived microfibres in a PVA matrix Holzforschung, 60: 53–58. DOI 10.1515/HF.2006.010

Chakraborty A., D.Deva, A. Sharma and N. Verma, 2011. Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water. J Colloid Interface Sci.; 359(1):228-39. doi: 10.1016/j.jcis.2011.03.057.

Chella, S., R. Nivetha, P. Kollu, V. Srivastava, M. Sillanpää, A. N. Grace and A. Bhatnagar, 2017. Removal of cationic and anionic Heavy-metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles. Scientific Reports; 7: 14107-14461. DOI:10.1038/s41598-017-14461-2

Chen, L., H. Xie, Y. Li and W. Yu, 2008. Surface Chemical Modification of Multiwalled Carbon Nanotubes by a Wet-Mechanochemical Reaction. J. Nanomater.; 783981: 1–5.

Chitpong, N., Husson SM. Polyacid functionalized cellulose nanofiber membranes for removal of Heavy-metals from impaired waters. Journal of Membrane Science;523: 418- 429,2017

Chitpong, Nithinart, 2016 "Functionalized Cellulose Nanofiber Membranes for Heavy-metals removal from Impaired Waters". All Dissertations. 1851. https://tigerprints.clemson.edu/all_dissertations/1851

Deb, A.K. and C.C. Chusuei, 2013. Physical and Chemical Properties of Carbon Nanotubes, in Chapter 11, Aqueous solution surface chemistry of carbon nanotubes, S. Suzuki (Ed.), pp. 263–283, Intech Open, Ltd., London

Demiral, İ., C. Samdan and H. Demiral, 2021. Enrichment of the surface functional groups of activated carbon by modification method. Surf. Interfaces; 22:100873,

Demirbas, E., M. Kobya andM.T. Sulak.2008.Adsorption kinetics of a basic dye from aqueous solutions onto apricot stone activated carbon. Bioresource Technology, 99(13): 5368-5373.

Duman, O. and E. Ayranci, 2010. Attachment of benzo-crown ethers onto activated carbon cloth toenhance removal of Chromium, Cobalt and Nickel ions from aqueous solutions by adsorption., Journal of Hazardous Materials, 176,231-238.

Elsehly, E.M.I., N.G. Chechenin, K.A. Bukuno, A.V. Makunin, A.B. Priselkova, E.A. Vorobyeva and H.A. Motaweh. 2016. Removal of Iron and Manganese from Aqueous Solutions Using Carbon Nanotubes Filters. Water Science and Technology Water Supply; 16(2),347–353. DOI: 10.2166/ws.2015.143

Fahad, A. Al-Khaldi, B. Abu-Sharkh, A.M. Abulkibash and M.A. Ali, 2013. Desalination and Water Treatment: Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study, Desalination and Water Treatment, 53(5): 1417-1429. DOI: 10.1080/19443994.2013.847805

Fische,r R., H. Seidel, P. Morgenstern, HJ. Förster, W. Thiele andP. Krebs, 2005. Treatment of Process Water Containing Heavy-metals with a Two-Stage Electrolysis Procedure in a Membrane Electrolysis Cell. Eng. Life Sci.; 5: 163.

García-Díaz, Irene, F.A. López and F.J. Alguacil, 2018. Carbon Nanofibers: A New Adsorbent for Copper Removal from Wastewater. Metals; 8: 914-227. doi:10.3390/met8110914

Gijare, S., S. Jebin andMadhuri Sharon, 2016. Impact of Catalyst on the Synthesis of Carbon Nano Materials from Castor Seeds by Chemical Vapour Deposit. Advanced Science Letters; 22(4): 103 – 107. DOI:10.1166/asl.2016.6917

Grazuleviciene, R., R. Nadisauskiene, J. Buinauskiene and T. Grazulevicius, 2009. Effects of Elevated Levels of Manganese and Iron in Drinking Water on Birth Outcomes. Polish J of Environ Stud.;18(5):819–825.

Haghseresht, F., S. Nouri, J.J. Finnerty and G.Q .Lu, 2002. Effects of surface chemistry on aromatic compound adsorption from dilute aqueous solutions by activated carbon, J. Phys.Chem.B, 106: 10935–10943.DOI: 10.1021/jp025522a.

Hema, M. and Srinivasan K. 2011. Removal of cadmium(II) from wastewater using activated carbon prepared from Agro Industrial by-products. J Environ Sci Eng.;53(4):387-396.

Herrick, F.W., R.L. Casebier, J.K. Hamilton and K.R. Sandber 1983. Microfibrillated cellulose: morphology and accessibility. Conference: 9. cellulose conference, Syracuse, NY, USA, J. Appl. Polym. Sci.: Appl. Polym. Symp.; (United States).

Hossein, F., M. Kooravand and H. Atarodi. 2013. Synthesis of a novel carbon nanofiber structure for removal of lead. Korean J. Chem. Eng., 30(2): 357-363. DOI: 10.1007/s11814-012-0152-7

Hu, X., S. You, F. Li and Y. Liu, 2022. Recent advances in antimony removal using carbon-based nanomaterials: A review. Front. Environ. Sci. Eng.; 16, 48. https://doi.org/10.1007/s11783-021-1482-7

Hughes, T.V. and C.R. Chambers,1889. "Manufacture of Carbon Filaments", U.S. Patent 405,480

Ji, L., and X. Zhang. 2009. Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology; 20(15):155705.

Ji, L., Y. Zhang, X. Wang, A.A. Ahmed, J. Yu and B. Ding, 2019. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. NATURE COMMUNICATIONS; 10: 5584.

Jing, X., Y. Cao,X. Zhang, D. Wang, X. Wu andH. Xu, 2011. Biosorption of Cr(VI) from simulated wastewater using a cationic surfactant modified spent mushroom. Desalination.269(1–3): 120-127.

Kotsyubynsky, V., B. Rachiy, I. Budzulyak, V. Boychuk, S. Budzulyak and M. Hodlevska, 2021. SAXS and Raman Study of the Structural Evolution in Hemp Bast Fiber Derived Porous Carbon. 2020 IEEE 11th International Conference“ Nanomaterials: Applications and Properties” Odesa, Ukraine, Sept. 5-11, 2021 978-1-6654-3907-7/21/$31.00 c2021 IEEE NEE06-1

Kovacova, Z, 2019. Study of zinc removal from water solutions using hornbeam wooden sawdust. IOP Conference Series Materials Science and Engineering; 566(1):01. DOI: 10.1088/1757-899X/566/1/012019

Kshirsagar, D.E., V. Puri, Maheshwar Sharon and Madhuri Sharon, 2007. Electromagnetic Wave-Absorbing Properties of Pongamia Glabra Based-CNMs in the 8-12 GHz Range. Synthesis Chemicaand Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 37(6): 477-479.

Kshirsagar D.E., V,Puri, Sharon Madhuri, S. Jaybhaye, R. Afre, S. Prakash and Sharon Maheshwar. 2009.Carbon Nanobeads from Brassica Nigra Oil: Synthesis and Characterization. Advanced Science Letters, 2(3): 388-390.

Kumar,R.,P. Raizada, N. Verma, A. Hosseini-Bandegharaei, V.K. Thakur, Q. Li, V.H. Nguyen,R. Selvasembian. 2021.Recent advances on water disinfection using bismuth based modified photocatalysts: Strategies and challenges. Journal of Cleaner Production; 297: 126617.

Lee, D., Edmond J. Tellurium species in seawater. Nature 313,782–785,1985. https://doi.org/10.1038/313782a0

Leng YQ, W.I. Guo, S.N. Su, C.L. Yi and L.T. Xing, 2012. Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chemical Engineering Journal, 211–212: 406–411.

Li, H., J. Xiong , G. Zhang, A. Liang, J. Long, T. Xiao, Y. Chen, P. Zhang, D. Liao, L. Lin and H. Zhang, 2020. Enhanced thallium(I) removal from wastewater using hypochlorite oxidation coupled with magnetite-based biochar adsorption.Sci Total Environ.; 698:134166. doi:10.1016/j.scitotenv.2019.134166.

Li, X., Y, Tang,Z. Xuan, Y. Liu and F. Luo, 2007.Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2þ from aqueous solution. Sep. Purif. Technol., 55 (1): 69–75.

Li, L., N. Hu, D. Ding, X. Xin, Y. Wang, J. Xue, H. Zhang andY. Tan, 2015. Adsorption and Recovery of U(vi) from Low Concentration Uranium Solution by Amidoxime Modified Aspergillus Niger. RSC Adv.; 5: 65827.

Li, M., Y. Liu, S. Liu, D. Shu, G. Zeng, X. Hu, X. Tan, L. Jiang, Z. Yan and X Cai, 2017. Cu(II)-Influenced Adsorption of Ciprofloxacin from Aqueous Solutions by Magnetic Graphene Oxide/Nitrilotriacetic Acid Nanocomposite: Competition and enhancement Mechanisms. Chem. Eng. J.; 319: 219.

Li. Y., l. Fernandez-Recio, P. Gerstel, V. Srot, P.A.V. Aken,G. Kaiser, M. Burghard and J. Bill, 2008. Chem. Mater., 20: 5593–5599.

Lin, J. and C. Harichund, 2012. Production and Characterization of Heavy-Metal Removing Bacterial Bioflocculants. Afr. J. Biotechnol., 11(40): 9619-9729. DOI: 10.5897/AJB11.1698.

Liu, J., S. Ren, J. Cao, D.C.W. Tsang, J. Beiyuan, Y. Peng, F. Fang, J. She, M. Yin, N. Shen and J. Wang, 2021. Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite. J Hazard Mater.; 5;401:123311.

doi: 10.1016/j.jhazmat.2020.123311.

Lu,C.,H. Chiu andC. Liu, 2006. Removal of Zinc(II) from Aqueous Solution by Purified Carbon Nanotubes: Kinetics and Equilibrium Studies. Ind. Eng. Chem. Res.; 45(8): 2850–2855. https://doi.org/10.1021/ie051206h

Luo, J., X. Luo, J. Crittenden, J. Qu, Y. Bai, Y. Peng and J. Li, 2015. Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environmental Science and Technology, 49(18): 11115–11124.

Machida, M., T. Mochimaru and H. Tatsumoto, 2006. Lead (II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon; 44(13): 2681–2688.

Mal, J., Y.V. Nancharaiah, N. Maheshwari, E.D. van Hullebusch amd P.N. Lens, 2017. Continuous removal and recovery of tellurium in an upflow anaerobic granular sludge bed reactor. J Hazard Mater.; 5;327:79-88. doi:10.1016/j.jhazmat.2016.12.052.

Memon, S.Q., N. Memon, S.W. Shaw, M.Y. Khuhawar, and M.I. Bhanger, 2007.Saw dust—A green economical sorbent for the removal of cadmium(II) ions. J. Hazard. Mater.;139 (1): 116–121

Mosby, C.V., W.D.Glanze, K.N.Anderson and St. Louis; 1996. Mosby Medical Encyclopedia, The Signet: Revised Edition.

Moon, R.J., A. Martini, J. Nairn, J. Simonsen and J. Youngblood, 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40:394.doi: 10.1039/c0cs00108b

Mukherjee, B., G. Kalita, Madhuri Sharon and Maheshwar Sharon, 2013. Hydrogen storage by carbon fibers from cotton; QScience Connect; 201: 45. DOI: 10.5339/connect.2013.45

Nabeel, Z. and A. Al-Hazeem, 2018. Nanofibers and Electrospinning Method., In book: Novel Nanomaterials - Synthesis and Applications. DOI: 10.5772/intechopen.72060

Nadeem, M., M. Shabbir, M.A. Abdullah, S.S. Shah and G. McKay, 2009. Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chemical Engineering Journal; 148: 365–370.

Navarro, P., andF.J. Alguacil, 2002. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy; 66(1–3): 101–105.

Nohier, El-Bendary, H. Kh. El-Etriby and H. Mahanna, 2021. High-performance removal of iron from aqueous solution using modified activated carbon prepared from corn cobs and luffa sponge. Desalination and Water Treatment,213: 348–357. doi: 10.5004/dwt.2021.26721

Norfadhilatuladha, A., M.H. Tajuddin, N. Yusof, J. Jaafar, F. Azizand N. Misdan, 2017. REMOVAL OF LEAD(II) FROM AQUEOUS SOLUTION USING POLYACRYLONITRILE/ZINC OXIDE ACTIVATED CARBON NANOFIBERS. Malaysian Journal of Analytical Sciences; 21(3):619–626. DOI: https://doi.org/10.17576/mjas-2017-2103-11

Owalude, S.O. andA.C. Tella, 2016. Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-Suef Univ. J. Basic Appl. Sci.; 5: 377–388.

Park, J.Y., I.H. Lee andG.N. Bea, 2008. Optimization of the electrospinning conditions for preparation of nanofibers from polyvinyl acetate (PVAc) in ethanol solvent. Journal of Industrial and Engineering Chemistry; 14:707-713.

DOI: 10.1016/j.jiec.2008.03.006

Pennesi, C., C. Totti andF. Beolchini, 2013. Removal of Vanadium(III) and Molybdenum(V) from Wastewater Using Posidonia oceanica (Tracheophyta) Biomass. PLoS ONE; 8(10), e76870. https://doi.org/10.1371/journal.pone.0076870

Pradhan,Debabrata. Synthesis of carbon nanomaterials and their applications, Ph.D. thesis, IIT Bombay, Powai, Maharashtra, India, 2003.

Qi, Wang, J. Li , C. Chen, X. Ren and J. Hu, 2011. Xiangke Wang. Removal of cobalt from aqueous solution by magnetic multiwalled carbon nanotube/iron oxide composites. Chemical Engineering Journal; 174(1):126-133. DOI: 10.1016/j.cej.2011.08.059

Qiu, Y.R. andL.J.Mao,2013. Removal of Heavy-metal Ions from Aqueous Solution by Ultrafiltration Assisted with Copolymer of Maleic Acid and Acrylic Acid. Desalination; 329: 78.

Radushkevich, L.V. and V.M. Lukyanovich, 1952. On the structure of carbon produced at the thermal decomposition of carbon monoxide on an iron contact, Journal of Physical Chemistry; 26(1): 88-95.

Rao, M.M., A. Ramesh, G.P.C. Rao andK. Seshaiah, 2006. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard. Mater.;129(1): 123–129.

Ren SC, Ai YJ, Zhang XY, Ruan M, Hu ZN, Liu L, Li JF, Wang Y, Liang JX, Jia HN, Liu YY, Niu D, Sun HB, Liang QL. Recycling antimony(III) by magnetic carbon nanospheres: turning waste to recoverable catalytic for synthesis of esters and triazoles. ACS Sustainable Chemistry and Engineering; 8(1),469–477, 2020

Rodrı´guez, A., G. Ovejero, J.L. Sotelo, M. Mestanza andJ. Garcı´a, 2010. Adsorption of dyes on carbon nanomaterials from aqueous solutions. J. Environ. Sci. Health Part A; 45(12):1642–1653.

Romanovicz, V., B.A. Berns, S.D. Carpenter and S. Carpenter, 2013, Carbon Nanotubes Synthesized Using Sugar Cane as a Precursor. Int. J. Chem. Mol. Nucl. Mater.Metall. Eng.; 7(12): 665–668.

Rosen, Milton J. Ed. SURFACTANTS AND INTERFACIAL PHENOMENA, 3rd Edition, JOHN WILEY and SONS, INC

Sabzehmeidani, M.M., S. Mahnaee, M. Ghaedi, H. Heidari and V.A.L. Roy, 2021. Carbon based materials: a review of adsorbents for inorganic and organic compounds. Mater. Adv., 2: 598 – 627.

Salam, M.A. and R.M. Mohamed, 2013. Removal of antimony(III) by multi-walled carbon nanotubes from model solution and environmental samples. Chemical Engineering Research and Design; 91(7): 1352–1360.

Santos, E.A. andA.C.Q. Ladeira, 2011. Recovery of Uranium from Mine Waste by Leaching with Carbonate-Based Reagents. Environ. Sci. Technol.; 45: 3591-3597.

Saravanan, R., V.K. Gupta, V. Narayanan and A. Stephen, 2014. Visible Light Degradation of Textile Effluent Using Novel Catalyst ZnO/γ- Mn2O3. J. Taiwan Inst. Chem. Eng.; 45: 1910.

Shannon, M.A., P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas andA.M. Mayes, 2008. Science and technology for water purification in the coming decades. Nature, 452(7185): 301-310.

Sharma, Y., V. Srivastava, V. Singh, S. Kaul and C. Weng, 2009. Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ. Technol.; 30(6): 583–609.

Sharon, Maheshwar, P.R. Apte, S.C. Purandara and R. Zacharia, 2005a. Application of the Taguchi Analytical Method for optimization of Effective parameters of the chemical vapor deposition controlling the production of nanotube/ nanobeads. J. Nanosci. Nanotechnol.; 5(2): 288–295.

Sharon, Maheshwar, D.K. Mishra and N. Bejoy, 2005b. Application of Taguchi Methodology for Optimization of Parameters of CVD Influencing Formation of a Desired Optical Bandgap of Carbon Film. Carbon Sci.; 6(2): 96–100.

Sharon Maheshwar and Madhuri Sharon, 2008. Carbon Nanomaterials: Applications in Physico-Chemical and Bio-Systems. Defence Science Journal; 58(4): 5491-5516.

Sharon, Maheshwar, Sharon Madhuri, G. Kalita and B. Mukherjee, 2011. Hydrogen Storage by Carbon Fibers Synthesized by Pyrolysis of Cotton Fibers. Carbon Lett.; 12(1): 39–43.

Sharon Madhuri. Biogenic Carbon Nanofibers pp. 21-45, Sharon and Sharon (Ed). Carbon Nanofibers Fundamentals and Applications, Wiley Scrivener, USA, 2021

Shukla J., N.N. Maldar,Maheshwar Sharon,S. Tripathi, Madhuri Sharon, 2012.Synthesis of carbon nanomaterial from different parts of maize using transition metal catalysts, Der Chemica Sinica; 3(5): 1058-1070.

Shukla, Jayashri. 2012 Ph.D. Thesis; Solapur University, Solapur, Maharashtra, India.

Sun, Y., Z.Y. Wu, X. Wang, C. Ding, W. Cheng, S.H. Yu and X. Wang, 2016. Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers, Environ. Sci. Technol.; 50: 4459–4467. DOI: 10.1021/acs.est.6b00058

Somaia, G.M., S.M. Ahmed, A.F.M. Badawi and D.S. El-Desouk, 2015. Activated Carbon Derived from Egyptian Banana Peels for Removal of Cadmium from Water Journal of Applied Life Sciences International 3(2): 77-88. Article no.JALSI.2015.028

Sun, W., H. Wu, Z. Xu, C. Li, X. Qian and L. Chen, 2018. Adsorption of Heavy-metal Ions by Carbon-Nanofibers-Blended Carbon Nanotubes. Chemistry Select; 3(44): 12410-12414. https://doi.org/10.1002/slct.201800203

Thamer, B.M., A. Aldalbahi, A.M. Moydeen, A.M. Al-Enizi, H. El-Hamshary and M.H. El-Newehy, 2019. Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Scientific Reports; 9(1):19467.

Thamilarasi,M.J.V., P. Anilkumar, C. Theivarasu and M.V. Suresh, 2018. Removal of vanadium from wastewater usingsurface-modified lignocellulosic material. Environ Sci Pollut. Res.; 25, 26182–26191. https://doi.org/10.1007/s11356-018-2675-x

Tripathi, S., Maheshwar Sharon, N.N. Maldar, J. Shukla andMadhuri Sharon, 2012a. Carbon Nano Spheres and Nano Tubes Synthesized from Castor Oil as Precursor: For Removal of Arsenic Dissolved in Water.Archives of Applied Science Research;4(4):1788-1795.

Tripathi Suman, Ph.D. Thesis; Solapur University, Solapur, Maharashtra, India.2012b

Tripathi,S., Maheshwar Sharon, N.N. Maldar, J. Shukla and Madhuri Sharon, 2013. Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using Taguchi method. Carbon Letters; 14(4):210-217

Turbak, A.F., F.W.Snyder and K.R. Sandberg, 1983. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. United States.

Utsunamyia, T., 1980. Japanese Patent Application No. 55- 72959

Viswanathan, G., S. Bhowmik and Sharon Madhuri, 2014. Synthesis and characterization of carbon nanomaterials from plant derivatives. Int. J. Mater. Mech. Manuf.; 2: 25–28.

Vishwakarma, R., A.R. Phatak, G. Kalita, N. Sharma, Madhuri Sharon and Maheshwar Sharon, 2016. Microwave wideband absorption by carbon from Corn cob, J. Adv. In Phys.; 12(2): 4204.

Vithanage, M., A.U. Rajapaksha, M. Ahmad, M. Uchimiya, X. Dou, D.S. Alessi and Y.S. Ok, 2015. Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management; 151: 443–449.

Weifang, C. , R. Parette, J. Zou, F.S. Cannon and B.A. Dempsey, 2007. Arsenic removal by iron-modified activated carbon. Water Res.; 41(9):1851-1858. doi: 10.1016/j.watres.2007.01.052.

Wei-Lung Chou, Chih-Ta Wang andYen-Hsiang Huang, 2010. Removal of gallium ions from aqueous solution using tea waste by adsorption. Foresenius Environmental Bulletin; 19(12):2848-2856.

Xinying P., H. Nan, P. Yang, L. Yang, G. Wang, H. Chen, H. Lin and X. Zhao, 2018. Nanofiber Web via Electrospinning and Their Efficient Removal of Cr(VI) Ions. Chemistry Select; 3: 10543–10548.

Xu, H., Y. Luo, P. Wang, J. Zhu, Z. Yang andZ. Liu, 2019. Removal of thallium in water/wastewater: A review. Water Res.; 15,165:114981. doi: 10.1016/j.watres.2019.114981.

Xu, J., E..F Krietemeyer, V.M. Boddu, S.X. Liu and Wen-Ching Liu, 2018. Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohydrate Polymers; 192: 202–207.

Yan, J., K. Dong, Y. Zhang, X. Wang, A.A. Abolhassan. J. Yu. and B. Ding, 2019. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity. Nat Commun.; 10: 5584. https://doi.org/10.1038/s41467-019-13430-9

Yang, H. Sun. 2011. “Bismuth: Environmental Pollution and Health Effects.” Encyclopedia of Environmental Health: 414–420. doi:10.1016/B978-0-444-52272-6.00374-3

Xiuzhen, Z. S., M. Yuan and L. Liu 2015. Adsorption of Trivalent Antimony from aqueous Solution Using Graphene Oxide: Kinetic and Thermodynamic Studies. J. Chem. Eng. Data; 60(3): 806–813. https://doi.org/10.1021/je5009262

Yaqi, Yu, Q. Wei, J. Li and J. Yang, 2017. Removal of vanadium from wastewater by multi-walled carbon nanotubes, Fullerenes, Nanotubes and Carbon Nanostructures; 25(3):170-178.DOI: 10.1080/1536383X.2016.1274306

Yu Ting-chao; X. Wang and C. Li, 2021. Removal of Antimony by FeCl3FeCl3-Modified Granular-Activated Carbon in Aqueous Solution. Journal of Environmental Engineering, 140(9). https://doi.org/10.1061/(ASCE)EE.1943-7870.0000736

Zahari, M.Z. 2014. GREEN FUNCTIONALIZATION OF CARBON NANOFIBERS FOR HEAVY-METAL REMOVAL -Dissertation for the Bachelor of Engineering. Universiti Teknologi PETRONAS , Bandar Seri Iskandar , 31750 Tronoh

Zaltauskaitė J, I. Kniuipytė andR. Kugelytė, 2020. Lead Impact on the Earthworm Eisenia fetida and Earthworm Recovery after Exposure. Water Air Soil Pollut.; 231: 49. https://doi.org/10.1007/s11270-020-4428-y

Zhu, J., J. Jia, F.L. Kwong, G.d.h. Leung andS.C. Tjong. 2012. Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. Biomass Bioenergy, 36: 12–19.

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Madhuri Sharon, Anuradha Pandey-Dubey, & Jayashree Shukla. (2023). BIOGENIC CARBON NANOFIBER SYNTHESIZED FROM AGRO-WASTE FOR REMOVAL OF HEAVY-METAL FROM WASTEWATER. The American Journal of Applied Sciences, 5(04), 24–60. https://doi.org/10.37547/tajas/Volume05Issue04-03