POLYMER CONJUGATED CARBON NANO FIBER TO ENHANCE ITS APPLICATION: A REVIEW
Anuradha Pandey Dubey , Sharon Institute of Nanotechnology, Parishkar College of Global Excellence, Jaipur, Rajasthan, India Madhuri Sharon , Sharon Institute of Nanotechnology, Parishkar College of Global Excellence, Jaipur, Rajasthan, IndiaAbstract
Carbon nanofiber (CNF) is an important nano form of graphitic carbon. It is competing with Carbon Nano Tubes (CNT) in many aspects, in both fundamental scientific research and practical applications. It is a promising material as an additive in polymers for its applications in many fields. The electrical property of CNF composites largely counts on the dispersion and percolation status of CNFs in matrix materials. In this review properties and applications of CNF nanocomposites are dealt with. Fabrication methods of CNF composites have also been discussed in brief. The suitable polymers that have been used for conjugating with CNF vary from natural biopolymers such as polysaccharides, fibrin, and proteins to various synthetic polymers. The review also encompasses various approaches involved in synthesizing polymer and CNF nanoconjugates as well as their application ranging from cosmetics to batteries and solar cells.
Keywords
Biopolymer, Carbon Nanofiber, Composites, Nanocomposites
References
Andy Tay, Magnetic Bacteria; High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria; Appl Environ Microbiol.; 84(17): e01308-18, 2018. DOI: 10.1128/AEM.01308-18
Denault J, Labrecque, Technology Group on Polymer Nanocomposites – PNC-Tech. Industrial Materials Institute. National Research Council Canada, 75 de Mortagne Blvd. Boucherville, Québec, J4B 6Y4.2004.
Wang Y, Ameer GA, Sheppard BJ, Langer R.A tough biodegradable elastomer, Nature Biotechnology. 20(6): 602-606, 2002. DOI: 10.1038/nbt0602-602.
Tevlek Atakan, Halil Murat Aydin. Poly(Glycerol-Sebacate) Elastomer: A Mini Review. Orthoplastic Surgery & Orthopedic Care International Journal. 1(2), 2017, DOI: 10.31031/OOIJ.2017.01.000507
Kim C, Choi YO, Lee WJ, Yang KS, Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions, Electrochim. Acta, 50: 883, 2004
Madhuri Sharon & Maheshwar Sharon (Ed) An Introduction to Carbon Nanofiber, Wiley Scrivener Publisher the USA, 2021, https://doi.org/10.1002/9781119769149.ch1
Sanchez M, Rams J, Campo M, Jiménez-Suarez A, Urena A (2011) Characterization of carbon nanofiber/epoxy nanocomposites by the nanoindentation technique, Compos Part B Eng 42:638–644
Sandler J., Werner P., Shaffer M.S.P., Demchuk V., Altstädt V., Windle A.H. Carbon-nanofibre-reinforced poly (ether ether ketone) composites, Compos. Part A Appl. Sci. Manuf.; 33:1033–1039, 2002. doi: 10.1016/S1359-835X(02)00084-2..
K. Lozano, J. Bonilla-Rios and E. V. Barrera, A Study on Nanofiber-Reinforced
Thermoplastic Composites (II): Investigation of the Mixing Rheology and Conduction
Properties, J. Applied Polymer Science, 80(8):1162-1172, 2001
http://dx.doi.org/10.1002/app.1200.
Tibbetts G.G., Finegan I.C., Kwag C, Mechanical and electrical properties of vapor-grown carbon fiber thermoplastic composites, Mol. Cryst. Liq. Cryst.; 387:129–133, 2002. https://doi.org/10.1080/10587250215229
Yang, B.; Sato, M.; Kuriyama, T.; Inoue, T. Improvement of a gram-scale mixer for polymer Blending, J. Appl. Polym. Sci., 99: 1–5, 2006.
Al-Saleh, M.H.; Sundararaj, U. A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon, 47: 2–22, 2009
Lee B.O.; Woo W.J.; Park H.S.; Hahm H.S.; Wu J.P.; Kim M.S. Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF, J. Mater. Sci. 37: 1839–1843, 2002.
Li, J.; Vergne, M.J.; Mowles, E.D.; Zhong, W.H.; Hercules, D.M.; Lukehart, C.M. Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs). Carbon, 43: 2883–2893, 2005
Jeong Yong jin, Kyuhong Lee, Kinam Kim, and Sunghwan Kim, Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries. Materials, 9: 995; 2016 doi:10.3390/ma9120995
Zhang D, Qi J, Qiao S, Liu L, Wang P, Zhao Z. A strategy for controlling degradation in vitro of carbon fiber reinforced polylactic acid composite (by combining fiber modification and pulsed electromagnetic fields). J. Biomaterial Sc. Polymer Edition, 29: 16, 2018
Luo PG, Stutzenberger FJ. Nanotechnology in the Detection and Control of Microorganisms, Adv App Microbiol. 63: 145 - 181 2008;
DOI: 10.1016/S0065-2164(07)00004-4.
Cioffi Nicola, Luisa Torsi, Nicoletta Ditaranto, Giuseppina Tantillo, Lina Ghibelli, Luigia Sabbatini, Teresa Bleve-Zacheo, Maria D’Alessio, P. Giorgio Zambonin, Enrico Traversa. Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties, Chem. Mater. 17: 5255 – 5262, 2005,
Kumar R, Howdle S, Münstedt H. Polyamide/silver antimicrobials: Effect of filler types on the silver ion release, Jour. Biomed Mater Res B ApplBiomater. 75(2): 311- 319, 2005. https://doi.org/10.1002/jbm.b.30306
Carvalho Raissa Alvarenga, Taline Amorim Santos, Viviane Machado de Azevedo, Pedro Henrique Campelo Felix, Marali Vilela Dias, Soraia Vilela Borges. Bio-nanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical, and barrier properties. Polym. Int, 67(4): 386-392, 2018.DOI 10.1002/pi.5518
Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L Applications of bioplastics for food packaging, Trends in Food Sci Technol. 32:128–141 ,2013
Siracusa V, Rocculi P, Romani S, Rosa MD. Biodegradable polymers for food packaging: a review, Trends Food Sci Technol. 19: 634 – 643, 2008.
Tang DW, Yu SH, Ho YC, Huang BQ, Tsai GJ, Hsieh HY Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide, FoodHydrocoll. 30: 33–41, 2013
Margarita MAM, Delia RTB, Florencia CM. Bio-nanocomposites for food packaging applications, Rev Espec Ing Procesos Aliment Biomater5:11–28, 2011
Eichhorn SJ, cellulose nanowhiskers: promising materials for advanced applications, Soft Matter.; 7:303–315, 2011.
Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Journal of Food Science, 75:1–7, 2010.
Santos TM, Souza Filho MSM, Caceres CA, Rosa MF, Morais JPS, Pinto AMB, Fish gelatine films as affected by cellulose whiskers and sonication, FoodHydrocoll, 41:113–118, 2014.
Granda Luis Angel, Helena Oliver-Ortega, Maria José Fabra, Quim Tarrés, Maria Àngels Pèlach, José Maria Lagarón, José Alberto Méndez. Improved Process to Obtain Nanofibrillated Cellulose (CNF) Reinforced Starch Films with Upgraded Mechanical Properties and Barrier Character. Polymers ( Special Issue Nanocellulose-Reinforced Composites: Challenges and Opportunities), 12(5):1071, 2020
https://doi.org/10.3390/polym12051071
Chen Hao, Lin Ding, Xueji Zhang, Huangxian Ju. Biocompatible Conductive Architecture of Carbon Nanofiber-Doped Chitosan Prepared with Controllable Electrodeposition for Cytosensing. Anal. Chem., 79(12): 4442–4447, 2007. https://doi.org/10.1021/ac062344z
Sanmartín-Santos Isaías, Sofía Gandía-Llop, Beatriz Salesa, Miguel Martí, Finn LillelundAachmann, Ángel Serrano-Aroca. Enhancement of Antimicrobial Activity of Alginate Films with a Low Amount of Carbon Nanofibers (0.1%w/w). Appl. Sci., 11(5): 2311, 2021; https://doi.org/10.3390/app11052311
Llorens-Gámez M, BeatrizSalesa, ÁngelSerrano-Aroca, Physical and biological properties of alginate/carbon nanofibers hydrogel films. International Journal of Biol. Macromolecules. 151: 499-507, 2020. https://doi.org/10.1016/j.ijbiomac.2020.02.213
Toshiaki Takezawa , Aya Nitani, Tadashi Shimo-Oka, Yoshiharu Takayama. A protein-permeable scaffold of a collagen vitrigel membrane is useful for reconstructing crosstalk models between two different cell types. Cells Tissues Organs;185(1-3):237-41. 2007 DOI: 10.1159/000101325.
Vats A, N.S. Tolley, J.M. Polak, J.E. Gough. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clinical Oncology and Allied Subjects. 28(3): 165-172, 2003
Lanza Robert, Langer Robert. Joseph Vacanti Eds. Principles of Tissue Engineering, 2nd Edition. eBook ISBN: 9780080539676, Academic Press, 2000
MacDonaldRebecca A, Brendan F Laurenzi, Gunaranjan Viswanathan, Jan P Stegemann. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. Journal of Biomedical Materials Research Part A 74(3):489-96, 2005. DOI: 10.1002/jbm.a.30386
Sun Hongyu, Jing Zhou, Zhu Huang, Linlin Qu, Ning Lin, Chengxiao Liang, Ruiwu Dai, Lijun Tang, and Fuzhou Tian. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int J Nanomedicine; 12: 3109–3120, 2017. DOI: 10.2147/IJN.S128030
Pei Baoqing, Wei Wang, Nicholas Dunne, Xiaoming Li. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects Nanomaterials, 9: 1501, 2019; doi:10.3390/nano9101501
Samadian Hadi, Hamid Mobasheri, Mahmoud Azami, Reza Faridi-Majidi. Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: in vitro and in vivo studies, Scientific Reports, 10, Article number 14853, 2020
Zeng Lijian, Xianrong Huang, Xueling Li, Renfu Li, Yichao Li, Yi Xiong, A gelatin-treated carbon nanofiber/epoxy nanocomposite with significantly improved multifunctional properties. Materials Today communication, 24: 101006, 2020
https://doi.org/10.1016/j.mtcomm.2020.101006
Muhammad A. S. Anwer, Jintian Wang, Hani E. Naguib. 1D/2D CNF/GNP Hybrid Nanofillers: Evaluation of the Effect of Surfactant on the Morphological, Mechanical, Fracture, and Thermal Characteristics of Their Nanocomposites with Epoxy Resin. Ind. Eng. Chem. Res. 58(19): 8131–8139, 2019. https://doi.org/10.1021/acs.iecr.9b00956
Li Zhe, Athanasios Milionis, Yu Zheng, Marcus Yee, Lukas Codispoti, Freddie Tan, Dimos Poulikakos, Choon Hwai Yap. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion. Nat. Commun.; 10: 5562. 2019a DOI: 10.1038/s41467-019-13512-8
Kokoszka S, Debeaufort F, Lenart A, Voilley A. Water vapor permeability, thermal and wetting properties of whey protein isolate based edible films, International Dairy Journal. 20:53–60, 2010
Celine de Carvalho Furtado1; Império Lombardi Jr2. Whey Protein Supplementation as a Strategy to Preserve Muscle Mass and Increase Protein Synthesis in the Elderly: a Review of Literature. International Journal of Aging Research, 2(2), 34, 2019 https://doi.org/10.28933/ijoar-2019-03-1805
Dirican Mahmut, Meltem Yanilmaz, Kun Fu, Ozkan Yildiz, Huseyin Kizil, Yi Hu, Xiangwu Zhang. Carbon-Confined PVA-Derived Silicon/Silica/Carbon Nanofiber Composites as Anode for Lithium-Ion Batteries. Journal of The Electrochemical Society, 161 (14): A2197-A2203, 2014
Takahashi Yusuke, Hirotaka Fujita, Wan-Hua Lin, Akiyoshi Sakoda. Synthesis of carbon nanofibers from poly(ethylene glycol) with controlled structure. Adsorption 16(1):57-68, 2010. DOI: 10.1007/s10450-010-9204-7
Ko, Yusuke Takahashi, Akiyoshi Sakoda, Yasuyuki Sakai, Kikuko Kimori. . Direct Synthesis of Cup-Stacked Carbon Nanofiber Microspheres by the Catalytic Pyrolysis of Poly(ethylene glycol). Langmuir, 28(23): 8760–8766, 2012 https://doi.org/10.1021/la3010745
Yu Zhiwei, Kai Xu, Zien Fu, Xin Liu Youxiong Zhang, Jun Peng, Mingcai Chen. AFT synthesis of polyethylene glycol (PEG) and amino-functionalized amphiphilic copolymers for dispersing carbon nanofibers. RSC Adv., 5: 23683-23690, 2015
Ma Zuweri, Wei He, Thomas Yong, S. Ramakrishna. Grafting of Gelatin on Electrospun Poly(caprolactone) Nanofibers to Improve Endothelial Cell Spreading and Proliferation and to Control Cell Orientation. Tissue Engineering. 11(7-8): 1149-1158, 2005, https://doi.org/10.1089/ten.2005.11.1149
Zhang Y. Z., X. Wang, Y. Feng, J. Li, C. T. Lim, S. Ramakrishna. Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for Sustained Release. Biomacromolecules, 7(4): 1049–1057, 2006 https://doi.org/10.1021/bm050743
Javid Jalvandi, Max White, Yuan Gao, Yen Bach Truong, Rajiv Padhye, Ilias Louis Kyratzis. Slow-release of levofloxacin conjugated on silica nanoparticles from poly(ɛ-caprolactone) nanofibers, International Journal of Polymeric Materials and Polymeric Biomaterials, 66(10): 507-513, 2017 DOI: 10.1080/00914037.2016.1252350
Gopinathan Janarthanan, Mamatha Muraleedharan Pillai, Kumari, Singaram Gnanapoongothai, Beliyur Krishna Dinakar Rai, Kulasekaran Santosh Sahanand, Rajendran Selvakumar, Amitava Bhattacharyya. Carbon nanofiber amalgamated 3D poly-ε-caprolactone scaffold functionalized porous-nano architectures for human meniscal tissue engineering: In vitro and in vivo biocompatibility studies. Nanomedicine, 14(7): 2247 - 2258, 2018, DOI: 10.1016/j.nano.2018.07.012
Kaviannasab Elham, Dariush Semnani Saied Nouri Khorasani, Jaleh Varshosaz, Shahla Khalili, Faezeh Ghahreman. Core-shell nanofibers of poly (ε–caprolactone) and Polyvinylpyrrolidone for drug delivery system. Materials Research Express, 6(11): 115015, 2019
Nasari Mina, Dariush Semnani, Mehdi Hadjianfar, Saeid Amanpour. Poly (ε-caprolactone)/poly (N-vinyl-2-pyrrolidone) core-shell nanofibers loaded by multi-walled carbon nanotubes and 5-fluorouracil: an anticancer drug delivery system. Journal of Materials Science; 55, 10185–10201; 2020
Boroghani, M.; Mirnia, S. K.; Vahhabi, J.; Ahmadi, S. J.; Charkhi, A.Nanozeolite Synthesis and the Effect of on the Runoff and Erosion Control under Rainfall Simulator. Australian Journal of Basic & Applied Sciences; 5(12) 156, 2011.
Ram Prasad, Vivek Kumar, Kumar Suranjit Prasad. Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology. 13 (6), 705 – 713, 2014
Öztaş, T., A.K. Özbek and E.L. Aksakal, Structural developments in soil treated with Polyvinylalcohol. International Conference on Sustainable Land Use and Management, Soil Sci. Soc. of Turkey Int. Symp., pp: 143-148, 2002.
Zein El-Din A.M., Hammed H. A. M. Hassan2, M.M. Abou El-Kheir1 and R.M. Youssef Controlling soil surface crust formation using Nanosized sulfonated polyaniline. Journal of Soil and Water Conservation, 1(1):001-009, 2016. http://www.unifiedjournals.org/jswc
Joshi MM, Bhattacharya A. Carbon Nanofiber Reinforced Carbon/Polymer Composite. NSTI-Nanotech 2004, www.nsti.org, ISBN 0-9728422-9-2 Vol. 3, 2004
Chou TW, Ko FK. Editors: Textile structural composites; Elsevier, Amsterdam (1989), pp. 209–263, 1989
Pervin F.; Zhou Y.; Rangari V.K.; Jeelani S. Testing and evaluation on the thermal and mechanical properties of carbon nano fiber-reinforced SC-15 epoxy. Mater. Sci. Eng., 405: 246–253, 2005
Kelarakis A., Yoon K., Somani R.H., Chen X., Hsiao B.S., Chu B., Polymer, Rheological study of carbon nanofiber induced physical gelation in polyolefin nanocomposite melt. Polymer, 46:11591–11599, 2005.
Choi Y.K.; Gotoh, Y.; Sugimoto, K.I.; Song, S.M.; Yanagisawa, T.; Endo, M. Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes. Polymer, 46, 11489–11498, 2005.
Bal S, Saha S. Fabrication and characterization of carbon nanofibre(CNF)based epoxy composites IOP Conf. Ser.: Mater. Sci. Eng. 75: 012018, 2015
Pozegic TR, Jayawardena K DGI, Chen J-S, Anguita JV, Ballocchi P, Stolojan VS. Ravi, Silva P, Hamerton I. Composites Part A: Applied Science and Manufacturing, 90, 306–319, 2016 https://doi.org/10.1016/j.compositesa.2016.07.012
Abbas Qaisar, Rizwan Raza, Imran Shabbir, cA.G.Olabi. Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. Journal of Science: Advanced Materials and Devices, 4 (3): 341-352, 2019
Emerson, W. H. Electromagnetic wave absorbers and anechoic chambers through the years, IEEE Trans. On Antennas and Propagation, 21(4): 484-490, 1973
Jang J, Bae J. Carbon nanofiber/polypyrrole nano cable as toxic gas sensor
Sens. Actuators B Chem. 122: 7–13, 2007, https://doi.org/10.1016/j.snb.2006.05.002
BM Fronza ,IY Rad, Shah PK, Barros MD, Giannini M,. Stansbury JW. Nanogel-based filler matrix interphase for polymerization stress reduction, Journal of dental research 98(7):779-785,2019.
Madhuri Sharon, S. Datta, S. Shah, Maheshwar Sharon, T. Soga & R. Afre. Photocatalytic degradation of E. coli & S. aureus by Multi-Walled Carbon Nanotubes. Carbon Letters, 8 (3): 184 – 190, 2007
Dmytro A. Grynko, Alexander N. Fedoryak, Petro S. Smertenko, Oleg P. Dimitriev, Nikolay A. Ogurtsov, and Alexander A. Pud. Hybrid solar cell on carbon fiber. Nanoscale Res Lett.; 11: 265, 2016 doi: 10.1186/s11671-016-1469-7
Fan Z Y, Javey A. Photovoltaics Solar cells on curtains. Nature Materials, 7(11): 835–836, 2008. DOI: 10.1038/nmat2312.
Sharon M, W.K. Hsu, H.W.Kroto, D.R.M. Walton, A. Kawahara, T. Ishihara, Y. Takita.
Camphor-based carbon nanotubes as an anode in lithium secondary batteries. Journal of Power Sources, 104 (1): 148-153, 2002
Ghasemi AR, MohammadiMM, Mohandes M.The role of carbon nanofibers on thermo-mechanical properties of polymer matrix composites and their effect on reduction of residual stresses. Composites Part B: Engineering; 77: 519-527, 2015
Kasinee Prakobna, Sylvain Galland, Lars A. Berglund. High-Performance and Moisture-Stable Cellulose–Starch Nanocomposites Based on Bioinspired Core-Shell Nanofibers. Biomacromolecules 2015, 16, 3, 904–912. https://doi.org/10.1021/bm5018194
Anuradha Rani, Sheetal Monga, MonicaBansal, Anupama Sharma. Bionanocomposites reinforced with cellulose nanofibers derived from sugarcane bagasse. POLYM. COMPOS., 39: E55–E64, 2018.
Shazleen SS, Yasim-Anuar TAT, Ibrahim NA, Hassan MA, Ariffin H. Functionality of Cellulose Nanofiber as Bio-Based Nucleating Agent and Nano-Reinforcement Material to Enhance Crystallization and Mechanical Properties of Polylactic Acid Nanocomposite. Polymers (Basel). 27;13(3):389, 2021. DOI: 10.3390/polym13030389.
Hai LV, Zhai L, Kim HC, Panicker PS, Pham DH, Kim J. Chitosan Nanofiber and Cellulose Nanofiber Blended Composite Applicable for Active Food Packaging. Nanomaterials (Basel).10(9):1752, 2020. doi:10.3390/nano10091752
Cheng, KC., Huang, CF., Wei, Y. et al. Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Mater 11: 25, 2019. https://doi.org/10.1038/s41427-019-0124-z
Nakayama, Ri, Takamatsu Y, Namiki N. Multiphase calcium alginate membrane composited with cellulose nanofibers for selective mass transfer. SN Appl. Sci. 21:799, 2020. https://doi.org/10.1007/s42452-020-03532-1
Sajedeh Lohrasbi, Esmaeil Mirzaei, Ayoob Karimizade, Sara Takallu, Anita Rezaei. Collagen/cellulose nanofiber hydrogel scaffold: physical, mechanical and cell biocompatibility properties; Cellulose; 27(2), 927-940. 2020
Wang W, Zhang X, Li C, Du G, Zhang H, Ni Y. Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction. J Sci Food Agric.; 98(8):3089-3097, 2018.
doi: 10.1002/jsfa.8809
Bianca-Ioana Dogaru, Vasile Stoleru, Gabriela Mihalache, Sems Yonsel, Maria-Cristina Popescu, Gelatin Reinforced with CNCs as Nanocomposite Matrix for Trichoderma harzianum KUEN 1585 Spores in Seed Coatings. Molecules, 26: 5755, 2021. https://doi.org/10.3390/molecules26195755
Ahmadi A, Ahmadi P, Ehsani A. Development of an active packaging system containing zinc oxide nanoparticles for the extension of chicken fillet shelf life. Food Sci Nutr.; 8(10):5461-547, 2020. doi:10.1002/fsn3.1812
David A.Stout, Bikramjit Basu, Thomas J. Webster. Poly (lactic-co-glycolic acid): Carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomaterialia; 7(8,): 3101-3112, 2011
Xiaran Miao, Feng Tian, Jinyou Lin, Hui Li,c Xiuhong Li, Fenggang Bian, Xiangzhi Zhang.Tuning the mechanical properties of cellulose nanofibrils reinforced polyvinyl alcohol composites via altering the cellulose polymorphs. RSC Adv., 6: 83356-83365, 2016. DOI https://doi.org/10.1039/C6RA14517E
Asiri AM, Marwani HM, Khan SB, Webster TJ. Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. Int J Nanomedicine. 28;9: 5533-5539, 2014. DOI: 10.2147/IJN.S71587.
Tongfei Wu, Martin Frydrych, Kevin O'Kelly, Biqiong Chen. Poly(glycerol sebacate urethane)-cellulose nanocomposites with water-active shape-memory effects. Biomacromolecules, 15(7):2663-71, 2014 DOI: 10.1021/bm500507z
Sengupta D, Chen SH., Michael A, Chee Yee Kwok, Sean Lim, Yutao Pei, Ajay Giri, Prakash Kottapalli. . Single and bundled carbon nanofibers as ultralightweight and flexible piezoresistive sensors. no Flex Electron 4:9,2020. https://doi.org/10.1038/s41528-020-0072-2
Xingbin Yan. Zhixin Tai, Jiangtao Chen, QunjiXue. Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitorNanoscale 3(1):212-6, 2010. DOI: 10.1039/c0nr00470g
Article Statistics
Downloads
Copyright License
Copyright (c) 2022 The American Journal of Applied sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.