Some Estimates For The Carleman Function
Ashurova Zebiniso Raximovna , Candidate Physical-Mat. Sciences, Associate Professor, Department Of Mathematical Analysis, Samarkand State University, Uzbekistan Juraeva Nodira Yunusovna , Candidate Physical-Mat Sciences, Associate Professor, Department Of Natural Sciences, Samarkand Branch Of University IT, UzbekistanAbstract
In this article we consider Carlеman’s functions, to find integral representation for the polygarmonious functions defined in unbounded domain of Euclidean space which Satisfies .
Keywords
Soft drinks, antioxidant activity, herbal ingredients, green tea, local raw materials, multicomponent teas, coulometric analysis method, healthy food products
References
Ашурова З.Р. Фазлиддинова Нилуфар. ФУНКЦИИ КАРЛЕМАНА ДЛЯ ПОЛИГАРМОНИЧЕСКИХ ФУНКЦИЙ ВТОРОГО ПОРЯДКА, ОПРЕДЕЛЕННЫХ В ОБЛАСТИ. УДК 51, 53 ЛУЧШАЯ научноисследовательская Работа 2019 сборник статей XXI Международного научно-исследовательского конкурса, Состоявшегося 30 июля 2019г. в г. Пенза Пенза МЦНС «НАУКА И ПРОСВЕЩЕНИЕ»
Ашурова З.Р.Жўраева Н.Ю. Жўраева У.Ю. Problem of regularization for growing polygarmonic functions of some class Monografia pokonferencyjna. Берлин 31.08.2020. Германия. p. 198-201
Ашурова З.Р.Жўраева Н.Ю. Жўраева У.Ю. Полигармонические функции и задача Коши SCIENCE AND EDUCATION: PROBLEMS AND INNOVATIONS. 7 май 2020г. Российская Федерация, г.Пенза.cтр. 42-45
Ашурова З.Р.Жўраева Н.Ю. Жўраева У.Ю. TASK CAUCHY AND CARLEMAN FUNCTION ACADEMICIA: An International Multidisciplinary Research Journal. https://saarj.com.5 May 2020. Affiliated to Kurukshetra University, Kurukshetra India.p.1784-1789
5. Ашурова З.Р.Жўраева Н.Ю. Жўраева У.Ю. GROWING POLYGARMONIC FUNCTIONS AND THE CAUCHY PROBLEM SCOPUS http://dx.doi.org/10. 31838/jcr.07.07.62 Journal of Critical Reviews Vol 7, Issue 7, 2020. ISSN 2394-5125. P371-378 Country: India.
Article Statistics
Downloads
Copyright License
Copyright (c) 2021 The American Journal of Applied sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.