About One Theorem Of 2x2 Jordan Blocks Matrix
Hojiyev Dilmurodjon Bahodirovich , Math Teacher Of The Lyceum Of Andijan State University, Uzbekistan Muhammadjonov Akbarshoh Akramjon Og`Li , The Third-Year Student Of Andijan State University, Uzbekistan Muzaffarova Dilshoda Botirjon Qizi , The First-Year Student Of Andijan State University, Uzbekistan Ibrohimjonov Islombek Ilhomjon O`G`Li , The First-Year Student Of Andijan State University, Uzbekistan Ahmadjonova Musharrafxon Dilmurod Qizi , The First-Year Student Of Andijan State University, UzbekistanAbstract
In this paper, we have studied one theorem on 2x2 Jordan blocks matrix. There are 4 important statements which is used for proving other theorems such as in the differensial equations. In proving these statements, we have used mathematic induction, norm of matrix, Taylor series of .
Keywords
Matrix, vector, mathematic induction method, equality, inequality, norm, expansion of series, estimation
References
V.G. Miladjanov, R.V. Mullajonov, K.X. Turg’unova, SH.N. Abdug’apporova, J.V. Mullajonova, “Matritsalar nazariyasining tanlangan boblari”, Toshkent 2014.
Р.В.Белман ведение теории матриц.-М., Наука, 1976.
Д. П. Гроссман, Р. Фрезер, В. Дункан и А. Коллар, “Теория матриц и её приложения к дифференциальным уравнениям и динамике”, УМН, 1952, том 7, выпуск 3(49), 190–192
Bhatia, R. (1997). Matrix Analysis. Graduate Texts in Mathematics. 169. Springer. ISBN 978-0-387-94846-1.
Householder, Alston S. (2006). The Theory of Matrices in Numerical Analysis. Dover Books on Mathematics. ISBN 978-0-486-44972-2.
Van Kortryk, T. S. (2016). "Matrix exponentials, SU(N) group elements, and real polynomial roots". Journal of Mathematical Physics. 57 (2): 021701. arXiv:1508.05859.
Article Statistics
Downloads
Copyright License
Copyright (c) 2021 The American Journal of Applied sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.