Applied Sciences | Open Access | DOI: https://doi.org/10.37547/tajas/Volume02Issue08-04

Bisingular Integral In The Space Of Summable Functions

Тolliboy Absalomov , Ph.D., Associate Professor, Samarkand State University, Uzbekistan
Buvraziya Fayzullayeva , Ph.D., Associate Professor, Samarkand State University, UzbekistanPh.D., Associate Professor, Samarkand State University, Uzbekistan

Abstract

It is obtained a Zigmund type estimate for the bisingular integral in the space of Summation
functions. It is constructed an invariant functional space based on the inequality. Using the method
of successive approximations it is proven the solvability of the nonlinear bisingular integral equation
in invariant space.

Keywords

Bisingular integral operator, Zigmund type estimate

References

Abdullaev S.K., Babaev A.A. Some

estimates for a singular integral with

summable density. Dokl. Akad. Nauk

SSSR, 188:2(1969), 263-265.

Abdullaev S.K., Babaev A.A. On a

singular integral with summable

density. Func. anal. and appl., Baku,

(1978), 3-32.

Babaev A.A. Some properties of a

singular integral with a continuous

density, and its applications. Dokl.

Akad. Nauk SSSR, 170, 5(1966), 255-

Гусейнов Е.Г. Салаев В.В. Особый

интеграл по отрезку прямой в

пространствах суммируемых

функций. Науч. р. МВ и ССО Азерб.

ССР серия физ.-мат. наук 979) 8 -

Zak I.E. On conjugate double

trigonometric series. Mat.Sb.31,

(1952), 469-484.

Luzin N.N. The Integral and

Trigonometric Series, 2^nded.

Gostekhizdat, Moscow (1951).

Салаев В.В. Некоторые свойства

особого интеграла. Уч. зап. АГУ им.

С.М.Кирова сер. физ.-мат.н. 44

(1966).

Hardy G.H., Littlwood J.E., Polya G.

Inequalities. 2^nd ed. Cambridge

University Press, Cambridge, 1967.

Khvedelidze B. Modern problems of

mathematics. Moscow: "VINITI",

(1975), 5-162.

Холмуродов Э. Некоторые оценки

для особого интеграла с локально

суммируемой плотностью. Уч. зап.

АГУ им. С.М.Кирова сер. физ.-мат.н.

(1978), 71-80.

Jean-Michel Bony. Resolution des

conjectures de Calderon et espaces de

Hardy generalizes. "Asterisque", 92-

(1982), 293-300.

Calderon A.P. Cauchy integrals on

Lipschitz curves and related operators.

Proc. Nat. Acad. Sci. USA, 74(1977),

-1327

Article Statistics

Downloads

Download data is not yet available.

Copyright License

Download Citations

How to Cite

Тolliboy Absalomov, & Buvraziya Fayzullayeva. (2020). Bisingular Integral In The Space Of Summable Functions. The American Journal of Applied Sciences, 2(08), 21–30. https://doi.org/10.37547/tajas/Volume02Issue08-04