Articles | Open Access | DOI: https://doi.org/10.37547/tajet/Volume03Issue02-09

Pseudo Polynomial Reduction Of Problems And Strong Np-Hard Problems

Tatyana Matveevna Kosovskaya , Doctor Of Science, Professor, St. Petersburg State University, St. Petersburg, Russia
Elmurod Solijon Ugli Kodirov , Postgraduate Student, St. Petersburg State University, St. Petersburg, Russia

Abstract

This scientific article is devoted to the study of complexity theory for solving artificial intelligence (AI) problems and the classification of problems according to NP completeness. is similar to NP-complexity generation methods for boundary programming problems. It is wiser and more efficient to look for sufficiently accurate prediction algorithms than to find evidence that the problem in question belongs to the NP class and therefore wastes time. This scientific article provides a typical example that illustrates all algorithms.

Keywords

NP-complexity, NP hardness, polynomial time, NP completion problem, NP-kit

References

Gary M., Johnson D. "Computing machines and intractable problems". M .: Mir 1982-466 pp.

Ivanova A.P. “Introduction to Applied Programming. Models and Computational Algorithms”. M .: Fizmatlit 2002

Perepelitsa V.A. “Asymptotic approach and solution of some extremal problems on graphs. Problems of Cybernetics "M .: Nauka, 1973

A.V. Yakovlev, A.A. Bezbogov, V.V. Rodin, V. N. Shamkin, CRYPTOGRAPHIC PROTECTION OF INFORMATION

Eremeev A.V., Romanova A.A., Servakh V.V., Chaukhan S.S. Approximate solution of one problem of supply management // Diskretn. analysis and issled. operations. Series 2. 2006. T. 13, No. 1. P. 27–39.

Кодиров Э. С. У., Халилов З. Ш. ВЗАИМОСВЯЗИ И РАЗЛИЧИЯ МЕЖДУ “DEEP LEARNING” И “MACHINE LEARNING” //Universum: технические науки. – 2020. – №. 7-1 (76).

Кодиров Э. С. У., Халилов З. Ш. ВОЗМОЖНОСТИ И ПРЕИМУЩЕСТВА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА (ИИ) И ЛОГИЧЕСКИХ ВЫЧИСЛЕНИЙ //Universum: технические науки. – 2020. – №. 6-1 (75).

Karimov U. et al. USING NEW INFORMATION TECHNOLOGIES IN DISTANCE LEARNING SYSTEM //НОВАЯ ПРОМЫШЛЕННАЯ РЕВОЛЮЦИЯ В ЗЕРКАЛЕ СОВРЕМЕННОЙ НАУКИ. – 2018. – С. 9-11.

R.Khamdamov, U.Begimkulov, N.Taylokov. Information technology in education. Tashkent, 2010.

Article Statistics

Copyright License

Download Citations

How to Cite

Kosovskaya, T. M. . ., & Kodirov, E. S. U. . . (2021). Pseudo Polynomial Reduction Of Problems And Strong Np-Hard Problems. The American Journal of Engineering and Technology, 3(02), 55–66. https://doi.org/10.37547/tajet/Volume03Issue02-09