Articles | Open Access | DOI: https://doi.org/10.37547/tajet/Volume07Issue03-07

Enhancing Banking Cybersecurity: An Ensemble-Based Predictive Machine Learning Approach

Sharmin Sultana Akhi , Department of Computer Science, Monroe University, USA
Farhan Shakil , Master’s in Cybersecurity Operations, Webster University, Saint Louis, MO, USA
Sonjoy Kumar Dey , McComish Department of Electrical Engineering and Computer Science, South Dakota State University, USA
Mazharul Islam Tusher , Department Of Computer Science, Monroe College, New Rochelle, New York, United States
Fnu Kamruzzaman , Department of Information Technology Project Management & Business Analytics, St. Francis College, USA
Sakib Salam Jamee , Department of Management Information Systems, University of Pittsburgh, PA, USA
Sanjida Akter Tisha , Master of Science in Information Technology, Washington University of Science and Technology, USA
Nabila Rahman , Master’s in information technology management, Webster University, USA

Abstract

In this study, we propose a predictive cybersecurity framework for the banking sector by integrating ensemble-based machine learning models. Our approach leverages heterogeneous datasets—including internal firewall and intrusion detection system logs, banking transaction records, user behavior data, and external threat intelligence—to capture a comprehensive view of the cyber threat landscape. Following rigorous data preprocessing, feature selection, and feature engineering, we evaluated multiple models, including Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, and Deep Neural Networks. Comparative analysis revealed that while advanced individual models demonstrated strong predictive capabilities, the Ensemble Model consistently outperformed all others, achieving an accuracy of 92% and a ROC-AUC of 94%. These results underscore the model’s superior ability to minimize false negatives, which is critical for safeguarding financial assets. Our findings advocate for the adoption of ensemble techniques in real-world banking cybersecurity applications, providing a robust, scalable solution that adapts to evolving threat patterns while significantly enhancing detection performance.

Keywords

Cybersecurity, Banking, Predictive Modeling, Ensemble Learning

References

Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12), 3448–3470.

Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network intrusion detection. In 2010 IEEE Symposium on Security and Privacy (pp. 305–316).

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 1-58.

Scarfone, K., & Mell, P. (2007). Guide to intrusion detection and prevention systems (IDPS). NIST Special Publication, 800, 94.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794).

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D., ... & Zissman, M. A. (2000). Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. In Proceedings DARPA Information Survivability Conference and Exposition (pp. 12–26).

Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016). A deep learning approach for network intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (BICT).

Kumar, A., & Chandrasekaran, M. (2018). Cyber threat intelligence: A study in cybersecurity for banking. Journal of Financial Cybersecurity, 4(2), 112-128.

Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection techniques. Journal of Network and Computer Applications, 60, 19-31.

Chowdhury, M. S., Shak, M. S., Devi, S., Miah, M. R., Al Mamun, A., Ahmed, E., ... & Mozumder, M. S. A. (2024). Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction. The American Journal of Engineering and Technology, 6(09), 6-17.

Naznin, R., Sarkar, M. A. I., Asaduzzaman, M., Akter, S., Mou, S. N., Miah, M. R., ... & Sajal, A. (2024). ENHANCING SMALL BUSINESS MANAGEMENT THROUGH MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS FOR CUSTOMER RETENTION, FINANCIAL FORECASTING, AND INVENTORY OPTIMIZATION. International Interdisciplinary Business Economics Advancement Journal, 5(11), 21-32.

Nguyen, A. T. P., Jewel, R. M., & Akter, A. (2025). Comparative Analysis of Machine Learning Models for Automated Skin Cancer Detection: Advancements in Diagnostic Accuracy and AI Integration. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 15-26.

Nguyen, A. T. P., Shak, M. S., & Al-Imran, M. (2024). ADVANCING EARLY SKIN CANCER DETECTION: A COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR MELANOMA DIAGNOSIS USING DERMOSCOPIC IMAGES. International Journal of Medical Science and Public Health Research, 5(12), 119-133.

Phan, H. T. N., & Akter, A. (2025). Predicting the Effectiveness of Laser Therapy in Periodontal Diseases Using Machine Learning Models. The American Journal of Medical Sciences and Pharmaceutical Research, 7(01), 27-37.

Phan, H. T. N. (2024). EARLY DETECTION OF ORAL DISEASES USING MACHINE LEARNING: A COMPARATIVE STUDY OF PREDICTIVE MODELS AND DIAGNOSTIC ACCURACY. International Journal of Medical Science and Public Health Research, 5(12), 107-118.

Rahman, M. M., Akhi, S. S., Hossain, S., Ayub, M. I., Siddique, M. T., Nath, A., ... & Hassan, M. M. (2024). EVALUATING MACHINE LEARNING MODELS FOR OPTIMAL CUSTOMER SEGMENTATION IN BANKING: A COMPARATIVE STUDY. The American Journal of Engineering and Technology, 6(12), 68-83.

Das, P., Pervin, T., Bhattacharjee, B., Karim, M. R., Sultana, N., Khan, M. S., ... & Kamruzzaman, F. N. U. (2024). OPTIMIZING REAL-TIME DYNAMIC PRICING STRATEGIES IN RETAIL AND E-COMMERCE USING MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(12), 163-177.

Hossain, M. N., Hossain, S., Nath, A., Nath, P. C., Ayub, M. I., Hassan, M. M., ... & Rasel, M. (2024). ENHANCED BANKING FRAUD DETECTION: A COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS. American Research Index Library, 23-35.

Rishad, S. S. I., Shakil, F., Tisha, S. A., Afrin, S., Hassan, M. M., Choudhury, M. Z. M. E., & Rahman, N. (2025). LEVERAGING AI AND MACHINE LEARNING FOR PREDICTING, DETECTING, AND MITIGATING CYBERSECURITY THREATS: A COMPARATIVE STUDY OF ADVANCED MODELS. American Research Index Library, 6-25.

Uddin, A., Pabel, M. A. H., Alam, M. I., KAMRUZZAMAN, F., Haque, M. S. U., Hosen, M. M., ... & Ghosh, S. K. (2025). Advancing Financial Risk Prediction and Portfolio Optimization Using Machine Learning Techniques. The American Journal of Management and Economics Innovations, 7(01), 5-20.

Ahmed, M. P., Das, A. C., Akter, P., Mou, S. N., Tisha, S. A., Shakil, F., ... & Ahmed, A. (2024). HARNESSING MACHINE LEARNING MODELS FOR ACCURATE CUSTOMER LIFETIME VALUE PREDICTION: A COMPARATIVE STUDY IN MODERN BUSINESS ANALYTICS. American Research Index Library, 06-22.

Md Risalat Hossain Ontor, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo, & Ashequr Rahman. (2024). LEVERAGING DIGITAL TRANSFORMATION AND SOCIAL MEDIA ANALYTICS FOR OPTIMIZING US FASHION BRANDS’ PERFORMANCE: A MACHINE LEARNING APPROACH. International Journal of Computer Science & Information System, 9(11), 45–56. https://doi.org/10.55640/ijcsis/Volume09Issue11-05

Rahman, A., Iqbal, A., Ahmed, E., & Ontor, M. R. H. (2024). PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT. International journal of business and management sciences, 4(12), 18-32.

Iqbal, A., Ahmed, E., Rahman, A., & Ontor, M. R. H. (2024). ENHANCING FRAUD DETECTION AND ANOMALY DETECTION IN RETAIL BANKING USING GENERATIVE AI AND MACHINE LEARNING MODELS. The American Journal of Engineering and Technology, 6(11), 78-91.

Nguyen, Q. G., Nguyen, L. H., Hosen, M. M., Rasel, M., Shorna, J. F., Mia, M. S., & Khan, S. I. (2025). Enhancing Credit Risk Management with Machine Learning: A Comparative Study of Predictive Models for Credit Default Prediction. The American Journal of Applied sciences, 7(01), 21-30.

Bhattacharjee, B., Mou, S. N., Hossain, M. S., Rahman, M. K., Hassan, M. M., Rahman, N., ... & Haque, M. S. U. (2024). MACHINE LEARNING FOR COST ESTIMATION AND FORECASTING IN BANKING: A COMPARATIVE ANALYSIS OF ALGORITHMS. Frontline Marketing,Management and Economics Journal, 4(12), 66-83.

Hossain, S., Siddique, M. T., Hosen, M. M., Jamee, S. S., Akter, S., Akter, P., ... & Khan, M. S. (2025). Comparative Analysis of Sentiment Analysis Models for Consumer Feedback: Evaluating the Impact of Machine Learning and Deep Learning Approaches on Business Strategies. Frontline Social Sciences and History Journal, 5(02), 18-29.

Nath, F., Chowdhury, M. O. S., & Rhaman, M. M. (2023). Navigating produced water sustainability in the oil and gas sector: A Critical review of reuse challenges, treatment technologies, and prospects ahead. Water, 15(23), 4088.

Chowdhury, O. S., & Baksh, A. A. (2017). IMPACT OF OIL SPILLAGE ON AGRICULTURAL PRODUCTION. Journal of Nature Science & Sustainable Technology, 11(2).

Nath, F., Asish, S., Debi, H. R., Chowdhury, M. O. S., Zamora, Z. J., & Muñoz, S. (2023, August). Predicting hydrocarbon production behavior in heterogeneous reservoir utilizing deep learning models. In Unconventional Resources Technology Conference, 13–15 June 2023 (pp. 506-521). Unconventional Resources Technology Conference (URTeC).

Article Statistics

Copyright License

Download Citations

How to Cite

Sharmin Sultana Akhi, Farhan Shakil, Sonjoy Kumar Dey, Mazharul Islam Tusher, Fnu Kamruzzaman, Sakib Salam Jamee, Sanjida Akter Tisha, & Nabila Rahman. (2025). Enhancing Banking Cybersecurity: An Ensemble-Based Predictive Machine Learning Approach. The American Journal of Engineering and Technology, 7(03), 88–97. https://doi.org/10.37547/tajet/Volume07Issue03-07