Articles | Open Access | DOI: https://doi.org/10.37547/tajet/Volume06Issue12-21

STUDY OF THE KINETICS OF THE PROPANE-BUTANE FRACTION PYROLYSIS PROCESS

Sanjar H. Saidqulov , Laboratory Assistant, Department Of Polymer Chemistry And Chemical Technologies, Institute Of Biochemistry, Samarkand State University Named After Sharof Rashidov, Samarkand, Uzbekistan

Abstract

This study investigates the kinetics of the pyrolysis process of a propane-butane fraction. The thermal decomposition reaction was conducted in a quartz reactor packed with 0.3–0.5 mm quartz chips (hereinafter referred to as "quartz") under an oxygen-free environment and elevated temperatures. The research focused on analyzing the decomposition process, which involves breaking C-C and C-H bonds in the absence of air at high temperatures. Before propane and butane undergo physical adsorption on the quartz surface, they first decompose into radicals. The subsequent thermal decomposition of the propane-butane fraction, primarily driven by C-C and C-H bond cleavage, is hypothesized to occur predominantly on the quartz surface within the reactor specifically designed for this process. At temperatures ranging from 500 to 800 °C, the catalytic decomposition of primary hydrocarbons on the quartz surface was examined under helium conditions, both with and without quartz. The results demonstrated the suppression of coke formation under these conditions, highlighting the significant catalytic role of the quartz surface in facilitating hydrocarbon decomposition.

Keywords

Propane-butane fraction, pyrolysis, empty reactor

References

Kabir, G.; Hameed, B.H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew. Sustain. Energy Rev. 2017, 70, 945–967.

Gurevich-Messina, L.I.; Bonelli, P.R.; Cukierman, A.L. In-situ catalytic pyrolysis of peanut shells using modified natural zeolite. Fuel Process. Technol. 2017, 159, 160–167.

Bhoi, P.R.; Ouedraogo, A.S.; Soloiu, V.; Quirino, R. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renew. Sustain. Energy Rev. 2020, 121, 109676

Ayyash, A.; Apaydın Varol, E.; Kılıç, M.; Özsin, G. Influence of aging on the rheological behavior and characteristics of bio-oil produced from olive pomace via slow pyrolysis. Biomass Convers. Biorefin. 2022, 1–14

Rahman, M.M.; Liu, R.; Cai, J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil—A review. Fuel Process. Technol. 2018, 180, 32–46

Dada, T.D.; Sheehan, M.; Murugavelh, S.; Antunes, E. A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Convers. Biorefin. 2023, 13, 2595–2614.

Puértolas, B.; Veses, A.; Callen, M.; Sharon, M.; Garcia, T.; Ramirez-Pérez, J. Porosity–acidity interplay in hierarchical ZSM-5 zeolites for pyrolysis oil valorization to aromatics. ChemSusChem 2015, 8, 3283–3293.

Pütün, E.; Uzun, B.B.; Pütün, A.E. Fixed-bed catalytic pyrolysis of cotton-seed cake: Effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate. Bioresour. Technol. 2006, 97, 701–710.

Galadima, A.; Muraza, O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Convers. Manag. 2015, 105, 338–354.

Rezaei, P.S.; Shafaghat, H.; Daud, W.M.A.W. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review. Appl. Catal. A Gen. 2014, 469, 490–511.

Kantarli, I.C.; Stefanidis, S.D.; Kalogiannis, K.G.; Lappas, A.A. Utilisation of poultry industry wastes for liquid biofuel production via thermal and catalytic fast pyrolysis. Waste Manag. Res. 2019, 37, 157–167.

Mante, O.D.; Agblevor, F.A.; Oyama, S.T.; McClung, R. Catalytic pyrolysis with ZSM-5 based additive as co-catalyst to Y-zeolite in two reactor configurations. Fuel 2014, 117, 649–659.

Wang, L.; Lei, H.; Ren, S.; Bu, Q.; Liang, J.; Wei, Y.; Liu, Y.; Lee, G.S.J.; Chen, S.; Tang, J.; et al. Aromatics and phenols from catalytic pyrolysis of Douglas fir pellets in microwave with ZSM-5 as a catalyst. J. Anal. Appl. Pyrol. 2012, 98, 194–200

Naqvi, S.R.; Uemura, Y.; Yusup, S.; Sugiura, Y.; Nishiyama, N. In situ catalytic fast pyrolysis of paddy husk pyrolysis vapors over MCM-22 and ITQ-2 zeolites. J. Anal. Appl. Pyrol. 2015, 114, 32–39.

Pütün, E.; Uzun, B.B.; Pütün, A.E. Rapid pyrolysis of olive residue. 2. Effect of catalytic upgrading of pyrolysis vapors in a two-stage fixed-bed reactor. Energy Fuels 2009, 23, 2248–2258.

Angın, D. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions. Bioresour. Technol. 2014, 168, 259–266.

Sugumaran, P.; Priya-Susan, V.; Ravichandran, P.; Seshadri, S. Production and Characterization of Activated Carbon from Banana Empty Fruit Bunch and Delonix regia Fruit Pod. J. Sustain. Energy Environ. 2012, 3, 125–132

Yarbay-Şahin, R.Z.; Ozbay, N. Perspective on catalytic biomass pyrolysis bio-oils: Essential role of synergistic effect of metal species co-substitution in perovskite type catalyst. Catal. Lett. 2021, 151, 1406–1417

Özbay, N.; Apaydın-Varol, E.; Uzun, B.B.; Pütün, A.E. Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy 2008, 33, 1233–1240

Pehlivan, E.; Özbay, N.; Yargıç, A.Ş.; Şahin, R. Production and characterization of chars from cherry pulp via pyrolysis. J. Environ. Manag. 2017, 203, 1017–1025.

Pehlivan, E.; Özbay, N. Chapter 3.11. Evaluation of Bio-Oils Produced from Pomegranate Pulp Catalytic Pyrolysis. In Exergetic, Energetic and Environmental Dimensions; Academic Press: Cambridge, MA, USA, 2018; pp. 895–909.

Özbay, N.; Yargıç, A.Ş.; Yarbay-Şahin, R.Z. Tailoring Cu/Al2O3 catalysts for the catalytic pyrolysis of tomato waste. J. Energy Inst. 2018, 91, 424–433.

Toro-Trochez, J.L.; De Haro Del Río, D.A.; Sandoval-Rangel, L.; Bustos-Martínez, D.; García-Mateos, F.J.; Ruiz-Rosas, R.; Rodríguez-Mirasol, J.; Cordero, T.; Carrilo-Pedraza, E.S. Catalytic fast pyrolysis of soybean hulls: Focus on the products. J. Anal. Appl. Pyrol. 2022, 163, 105492.

Varol-Apaydın, E.; Erülken, Y. A study on the porosity development for biomass based carbonaceous materials. J. Taiwan Inst. Chem. E 2015, 54, 37–44

Saynik, P.B.; Moholkar, V.S. Investigations in influence of different pretreatments on A. donax pyrolysis: Trends in product yield, distribution & chemical composition. J. Anal. Appl. Pyrol. 2021, 158, 105276.

Choi, S.J.; Park, S.H.; Jeon, J.K.; Lee, I.G.; Ryu, C.; Suh, D.J.; Park, Y.K. Catalytic conversion of particle board over microporous catalysts. Renew. Energy 2013, 54, 105–110

Bilgiç, C. Inverse Gas Chromatographic Determination of the Surface Properties of ZSM-5 Zeolite. Nevsehir. J. Sci. Technol. 2019, 8, 63–70

Xing, S.; Lv, P.; Fu, J.; Wang, J.; Fan, P.; Yang, L.; Yuan, Z. Direct synthesis and characterization of pore-broadened Al-SBA-15. Microporous Mesoporous Mater. 2017, 239, 316–327

Önal, E.; Uzun, B.B.; Pütün, A.E. The effect of pyrolysis atmosphere on bio-oil yields and structure. Int. J. Green Energy 2017, 14, 1–8.

Sharma, A.; Pareek, V.; Zhang, D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies. Renew. Sustain. Energy Rev. 2015, 50, 1081–1089.

Ateş, F.; Tophanecioğlu, S.; Pütün, A.E. The Evaluation of Mesoporous Materials as Catalyst in Fast Pyrolysis of Wheat Straw. Int. J. Green Energy 2015, 12, 57–64.

Maisano, S.; Urbani, F.; Mondello, N.; Chiodo, V. Catalytic pyrolysis of Mediterranean sea plant for bio-oil production. Int. J. Hydrogen Energy 2017, 42, 28082–28092.

Akhtar, J.; Saidina-Amin, N. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain. Energy Rev. 2012, 16, 5101–5109.

Lappas, A.A.; Kalogiannis, K.G.; Iliopoulou, E.F.; Triantafyllidis, K.S.; Stefanidis, S.D. Catalytic pyrolysis of biomass for transportation fuels. Wiley Interdiscip. Rev. Energy Environ. 2012, 1, 285–297

Soongprasit, K.; Sricharoenchaikul, V.; Atong, D. Catalytic fast pyrolysis of Millettia (Pongamia) pinnata waste using zeolite Y. J. Anal. Appl. Pyrol. 2017, 124, 696–703.

Patel, A.D.; Zabeti, M.; Seshan, K.; Patel, M.K. Comparative Technical Process and Product Assessment of Catalytic and Thermal Pyrolysis of Lignocellulosic Biomass. Processes 2020, 8, 1600.

Wądrzyk, M.; Plata, M.; Zaborowska, K.; Janus, R.; Lewandowski, M. Py-GC-MS Study on Catalytic Pyrolysis of Biocrude Obtained via HTL of Fruit Pomace. Energies 2021, 14, 7288.

Fayzullaev N., Pardaeva S. B. Cleaning of natural gas from sulphur preservative compounds //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Fayzullaev N. et al. Thermodynamic evaluation of methane oxycondensation reaction //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Tursunova N., Musulmanov N., Fayzullaev N. Modification and functionalization of mesoporous carbon //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Rakhmatov S., Fayzullaev N. Technology of obtaining ethylene by catalytic oxycondensation of methane //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Fayzullaev N. et al. Study of aromatic hydrocarbons amount composition of (MoO3)x·(ZnO)y·(ZrO2)z•(B2O3)k containing catalyst //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Sarimsakova N., Fayzullaev N., Ergasheva Z. Chemical changes in the structure as a result of mechanical activation of clinoptilolite //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Sarimsakova N., Fayzullaev N., Bakieva K. The process of delumination and the mechanisms of formation of acid centers in clinoptylolite //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Shukurov B., Salaydinova G., Fayzullaev N. The kinetic laws of the catalytic degidroaromatization reaction of methane //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Karjavov A. R., Fayzullaev N. Determination of technological parameters of producing vinylchloride from acetylene //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Fayzullaev N., Tursunova N. Study of the activity of a catalyst containing (Mn2O3)x·(Na2MoO4)y·(ZrO2)z in methane oxycondensation reaction //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Shukurov J., Fayzullaev N. Direct synthesis of dimethyl ether from synthesis gas //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Karjavov A. R., Fayzullaev N. Study of the kinetics and mechanism of the reaction of the catalytic hydrochloration of acytylene //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Shukurov B., Tursunova N., Fayzullaev N. Catalyst selection for the catalytic dehydroaromation reaction of methane //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Fayzullaev N. et al. Study of the effect of the amount of zinc promoter on the performance of a high-silica zeolite catalyst containing 6% molybdenum //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Ibraheem Shelash Al-Hawary S. et al. Synthesis of N, N′-alkylidene bisamides and Suzuki–Miyaura coupling reaction derivatives with Pd organometallic catalyst anchored to channels of mesoporous silica MCM-41 //Scientific Reports. – 2024. – Т. 14. – №. 1. – С. 7688.

Parsaee F. et al. Co-Fe dual-atom isolated in N-doped graphydine as an efficient sulfur conversion catalyst in Li-S batteries //Journal of Alloys and Compounds. – 2024. – Т. 988. – С. 174136.

Shukurov B. et al. Characteristics of mesoporous aluminosilicate obtained from Navbahor bentonite for the process of obtaining benzene homologues flavoring methane //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3244. – №. 1.

Mamadoliev I. et al. Enrichment and modification of bentonite clay processes influence on structural characteristics //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3244. – №. 1.

Egamberdiyev N., Ibadullaeva M., Fayzullaev N. Thermodynamics and kinetics of the process of preparation of alkenes from dimethyl ether //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3244. – №. 1.

Fayzullayev N., Javharov J., Ergashev N. Kinetics of the decomposition of monochloromethane at high temperature in a vacuum environment with air absorption //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3244. – №. 1.

Fayzullayev N., Javharov J., Iskandarov A. Study of Some Kinetic Laws of Methyl Monochloride Pyrolysis Reaction //E3S Web of Conferences. – EDP Sciences, 2024. – Т. 555. – С. 03003.

Fayzullayev N., Javharov J., Ergashev N. Kinetics of the decomposition of monochloromethane at high temperature in a vacuum environment with air absorption //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3244. – №. 1.

Fayzullayev N., Javharov J., Iskandarov A. Study of Some Kinetic Laws of Methyl Monochloride Pyrolysis Reaction //E3S Web of Conferences. – EDP Sciences, 2024. – Т. 555. – С. 03003.

Fayzullayev N., Javharov J., Ergashev N. Kinetics of the decomposition of monochloromethane at high temperature in a vacuum environment with air absorption //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3244. – №. 1.

Sarimsakova N., Fayzullaev N., Ergasheva Z. Chemical changes in the structure as a result of mechanical activation of clinoptilolite //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Sarimsakova N., Fayzullaev N., Bakieva K. The process of delumination and the mechanisms of formation of acid centers in clinoptylolite //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Fayzullaev N. et al. Study of the effect of the amount of zinc promoter on the performance of a high-silica zeolite catalyst containing 6% molybdenum //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Fayzullaev N. et al. Study of aromatic hydrocarbons amount composition of (MoO3) x·(ZnO) y·(ZrO2) z•(B2O3) k containing catalyst //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Shukurov B., Tursunova N., Fayzullaev N. Catalyst selection for the catalytic dehydroaromation reaction of methane //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Shukurov B., Salaydinova G., Fayzullaev N. The kinetic laws of the catalytic degidroaromatization reaction of methane //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Fayzullaev N., Pardaeva S. B. Cleaning of natural gas from sulphur preservative compounds //AIP Conference Proceedings. – AIP Publishing, 2024. – Т. 3045. – №. 1.

Article Statistics

Copyright License

Download Citations

How to Cite

Sanjar H. Saidqulov. (2024). STUDY OF THE KINETICS OF THE PROPANE-BUTANE FRACTION PYROLYSIS PROCESS. The American Journal of Engineering and Technology, 6(12), 206–221. https://doi.org/10.37547/tajet/Volume06Issue12-21