Articles | Open Access | DOI: https://doi.org/10.37547/tajet/Volume06Issue10-06

MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY

Ashim Chandra Das , Master of Science in Information Technology, Washington University of Science and Technology, USA
Md Shahin Alam Mozumder , Master of Science in Information Technology, Washington University of Science and Technology, USA
Md Amit Hasan , Master of Science in Information Technology, Washington University of Science and Technology, USA
Maniruzzaman Bhuiyan , Satish & Yasmin Gupta College of Business, University of Dallas, Texas
Md Rasibul Islam , Department of Management Science and Quantitative Methods, Gannon University, USA
Md Nur Hossain , Master’s in information technology management, Webster University, USA
Salma Akter , Department of Public Administration, Gannon University, Erie, PA, USA
Md Imdadul Alam , Master of Science in Financial Analysis, Fox School of Business, Temple University, USA

Abstract

This study investigates the effectiveness of various machine learning models in predicting product demand based on customer satisfaction data. Four models—Linear Regression, Random Forest, Gradient Boosting, and Support Vector Machine (SVM)—were evaluated using performance metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R² score. The results indicate that Gradient Boosting achieved the highest accuracy, with an MAE of 2.56, MSE of 12.75, RMSE of 3.57, and R² score of 0.82, effectively capturing the complex, non-linear relationships inherent in customer satisfaction factors. Random Forest also demonstrated strong performance, while Linear Regression and SVM showed limitations in handling intricate datasets. These findings underscore the importance of utilizing advanced machine learning techniques for accurate demand forecasting, highlighting the critical role of customer satisfaction data in enhancing predictive capabilities. The insights gained from this research can guide organizations in optimizing inventory management and improving customer satisfaction in a rapidly evolving market.

zenodo DOI:- https://doi.org/10.5281/zenodo.13908001

Keywords

Product Demand Forecasting, Customer Satisfaction, Machine Learning

References

Anderson, E. W., & Mittal, V. (2000). Strengthening the satisfaction-profit chain. Journal of Service Research, 3(2), 107-120. https://doi.org/10.1177/109467050032002

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts. https://otexts.com/fpp3/

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (pp. 4765-4774).

Papachristos, G., Kourentzes, N., & Petropoulos, F. (2021). Ensemble methods for forecasting: A review and a case study. International Journal of Forecasting, 37(4), 1395-1412. https://doi.org/10.1016/j.ijforecast.2021.01.003

Zhang, J., Zhang, Z., & Chen, Y. (2017). The impact of online customer reviews on product sales: Evidence from the online retail market. Journal of Retailing and Consumer Services, 39, 334-339. https://doi.org/10.1016/j.jretconser.2017.07.007

Mozumder, M. A. S., Nguyen, T. N., Devi, S., Arif, M., Ahmed, M. P., Ahmed, E., ... & Uddin, A. (2024). Enhancing Customer Satisfaction Analysis Using Advanced Machine Learning Techniques in Fintech Industry. Journal of Computer Science and Technology Studies, 6(3), 35-41.

Modak, C., Ghosh, S. K., Sarkar, M. A. I., Sharif, M. K., Arif, M., Bhuiyan, M., ... & Devi, S. (2024). Machine Learning Model in Digital Marketing Strategies for Customer Behavior: Harnessing CNNs for Enhanced Customer Satisfaction and Strategic Decision-Making. Journal of Economics, Finance and Accounting Studies, 6(3), 178-186.

Mozumder, M. A. S., Nguyen, T. N., Devi, S., Arif, M., Ahmed, M. P., Ahmed, E., ... & Uddin, A. (2024). Enhancing Customer Satisfaction Analysis Using Advanced Machine Learning Techniques in Fintech Industry. Journal of Computer Science and Technology Studies, 6(3), 35-41.

Modak, C., Ghosh, S. K., Sarkar, M. A. I., Sharif, M. K., Arif, M., Bhuiyan, M., ... & Devi, S. (2024). Machine Learning Model in Digital Marketing Strategies for Customer Behavior: Harnessing CNNs for Enhanced Customer Satisfaction and Strategic Decision-Making. Journal of Economics, Finance and Accounting Studies, 6(3), 178-186.

Sarkar, M. A. I., Reja, M. M. S., Arif, M., Uddin, A., Sharif, K. S., Tusher, M. I., Devi, S., Ahmed, M. P., Bhuiyan, M., Rahman, M. H., Mamun, A. A., Rahman, T., Asaduzzaman, M., & Ahmmed, M. J. (2024). Credit risk assessment using statistical and machine learning: Basic methodology and risk modeling applications. International Journal on Computational Engineering, 1(3), 62-67. https://www.comien.org/index.php/comien

Arif, M., Hasan, M., Al Shiam, S. A., Ahmed, M. P., Tusher, M. I., Hossan, M. Z., ... & Imam, T. (2024). Predicting Customer Sentiment in Social Media Interactions: Analyzing Amazon Help Twitter Conversations Using Machine Learning. International Journal of Advanced Science Computing and Engineering, 6(2), 52-56.

Mozumder, M. A. S., Nguyen, T. N., Devi, S., Arif, M., Ahmed, M. P., Ahmed, E., ... & Uddin, A. (2024). Enhancing Customer Satisfaction Analysis Using Advanced Machine Learning Techniques in Fintech Industry. Journal of Computer Science and Technology Studies, 6(3), 35-41.

Shahid, R., Mozumder, M. A. S., Sweet, M. M. R., Hasan, M., Alam, M., Rahman, M. A., ... & Islam, M. R. (2024). Predicting Customer Loyalty in the Airline Industry: A Machine Learning Approach Integrating Sentiment Analysis and User Experience. International Journal on Computational Engineering, 1(2), 50-54.

Modak, C., Ghosh, S. K., Sarkar, M. A. I., Sharif, M. K., Arif, M., Bhuiyan, M., ... & Devi, S. (2024). Machine Learning Model in Digital Marketing Strategies for Customer Behavior: Harnessing CNNs for Enhanced Customer Satisfaction and Strategic Decision-Making. Journal of Economics, Finance and Accounting Studies, 6(3), 178-186.

Mozumder, M. A. S., Mahmud, F., Shak, M. S., Sultana, N., Rodrigues, G. N., Al Rafi, M., ... & Bhuiyan, M. S. M. (2024). Optimizing Customer Segmentation in the Banking Sector: A Comparative Analysis of Machine Learning Algorithms. Journal of Computer Science and Technology Studies, 6(4), 01-07.

Chowdhury, M. S., Shak, M. S., Devi, S., Miah, M. R., Al Mamun, A., Ahmed, E., ... & Mozumder, M. S. A. (2024). Optimizing E-Commerce Pricing Strategies: A Comparative Analysis of Machine Learning Models for Predicting Customer Satisfaction. The American Journal of Engineering and Technology, 6(09), 6-17.

Miah, J., Ca, D. M., Sayed, M. A., Lipu, E. R., Mahmud, F., & Arafat, S. Y. (2023, November). Improving Cardiovascular Disease Prediction Through Comparative Analysis of Machine Learning Models: A Case Study on Myocardial Infarction. In 2023 15th International Conference on Innovations in Information Technology (IIT) (pp. 49-54). IEEE.

Miah, J., Cao, D. M., Sayed, M. A., Taluckder, M. S., Haque, M. S., & Mahmud, F. (2023). Advancing Brain Tumor Detection: A Thorough Investigation of CNNs, Clustering, and SoftMax Classification in the Analysis of MRI Images. arXiv preprint arXiv:2310.17720.

Article Statistics

Copyright License

Download Citations

How to Cite

Ashim Chandra Das, Md Shahin Alam Mozumder, Md Amit Hasan, Maniruzzaman Bhuiyan, Md Rasibul Islam, Md Nur Hossain, Salma Akter, & Md Imdadul Alam. (2024). MACHINE LEARNING APPROACHES FOR DEMAND FORECASTING: THE IMPACT OF CUSTOMER SATISFACTION ON PREDICTION ACCURACY. The American Journal of Engineering and Technology, 6(10), 42–53. https://doi.org/10.37547/tajet/Volume06Issue10-06