AI-Driven Strategies for Reducing Deforestation
Rakibul Hasan , Master Of Business Administration (Information Technology), Westcliff University, California 90020, USA Syeda Farjana Farabi , Doctorate In Business Administration, Westcliff University, California 90020, USA Md Kamruzzaman , Dba In Business Intelligence And Data Analytics, Westcliff University, California 90020, USA Md Khokan BHUYAN , Masters Of Science In Engineering Management, Westcliff University, California 90020, USA Sadia Islam Nilima , Doctorate In Business Administration, International American University, California 90004, USA Atia Shahana , Masters Of Science, National University, BangladeshAbstract
Recent advancements in data science, coupled with the revolution in digital and satellite technology, have catalyzed the potential for artificial intelligence (AI) applications in forestry and wildlife sectors. Recognizing the critical importance of addressing land degradation and promoting regeneration for climate regulation, ecosystem services, and population well-being, there is a pressing need for effective land use planning and interventions. Traditional regression approaches often fail to capture underlying drivers' complexity and nonlinearity. In response, this research investigates the efficacy of AI in monitoring, predicting, and managing deforestation and forest degradation compared to conventional methods, with a goal to bolster global forest conservation endeavors. Employing a fusion of satellite imagery analysis and machine learning algorithms, such as convolutional neural networks and predictive modelling, the study focuses on key forest regions, including the Amazon Basin, Central Africa, and Southeast Asia. Through the utilization of these AI-driven strategies, critical deforestation hotspots have been successfully identified with an accuracy surpassing 85%, markedly higher than traditional methods. This breakthrough underscores the transformative potential of AI in enhancing the precision and efficiency of forest conservation measures, offering a formidable tool for combating deforestation and degradation on a global scale.
Keywords
Fraud Detection, Traditional fraud detection, Artificial Intelligence, Banking Security, Risk Management
References
References
Aditto, F. S., Sobuz, M. H. R., Saha, A., Jabin, J. A., Kabbo, M. K. I., Hasan, N. M. S., & Islam, S. (2023). Fresh, mechanical and microstructural behaviour of high-strength self-compacting concrete using supplementary cementitious materials. Case Studies in Construction Materials, 19, e02395.
Akid, A. S. M., Shah, S. M. A., Sobuz, M. D. H. R., Tam, V. W. Y., & Anik, S. H. (2021). Combined influence of waste steel fibre and fly ash on rheological and mechanical performance of fibre-reinforced concrete. Australian Journal of Civil Engineering, 19(2), 208-224. https://doi.org/10.1080/14488353.2020.1857927
Akid, A. S. M., Wasiew, Q. A., Sobuz, M. H. R., Rahman, T., & Tam, V. W. (2021). Flexural behavior of corroded reinforced concrete beam strengthened with jute fiber reinforced polymer. Advances in Structural Engineering, 24(7), 1269-1282. https://doi.org/10.1177/1369433220974783
Bellassen, V., & Luyssaert, S. (2014). Carbon sequestration: Managing forests in uncertain times. Nature, 506(7487), 153-155.
Castro, A. C. (2020). Pan-tropical modelling of land cover and land-use change trajectories for newly deforested areas King's College London].
Fenton, N., & Neil, M. (2018). Risk assessment and decision analysis with Bayesian networks. Crc Press.
Finer, M., Novoa, S., Weisse, M. J., Petersen, R., Mascaro, J., Souto, T., Stearns, F., & Martinez, R. G. (2018). Combating deforestation: From satellite to intervention. science, 360(6395), 1303-1305.
Freitas, S. R., Hawbaker, T. J., & Metzger, J. P. (2010). Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. Forest Ecology and Management, 259(3), 410-417. https://doi.org/https://doi.org/10.1016/j.foreco.2009.10.036
Fromm, M., Schubert, M., Castilla, G., Linke, J., & McDermid, G. (2019). Automated detection of conifer seedlings in drone imagery using convolutional neural networks. Remote Sensing, 11(21), 2585. https://doi.org/ 10.3390/rs11212585
Gómez-Ossa, L. F., & Botero-Fernández, V. (2017). Application of artificial neural networks in modeling deforestation associated with new road infrastructure projects. Dyna, 84(201), 68-73.
Hallgren, W., Beaumont, L., Bowness, A., Chambers, L., Graham, E., Holewa, H., Laffan, S., Mackey, B., Nix, H., Price, J., Vanderwal, J., Warren, R., & Weis, G. (2016). The Biodiversity and Climate Change Virtual Laboratory: Where ecology meets big data. Environmental Modelling & Software, 76, 182-186. https://doi.org/https://doi.org/10.1016/j.envsoft.2015.10.025
Jabin, J. A., Khondoker, M. T. H., Sobuz, M. H. R., & Aditto, F. S. (2024). High-temperature effect on the mechanical behavior of recycled fiber-reinforced concrete containing volcanic pumice powder: An experimental assessment combined with machine learning (ML)-based prediction. Construction and Building Materials, 418, 135362. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2024.135362
Kampichler, C., Wieland, R., Calmé, S., Weissenberger, H., & Arriaga-Weiss, S. (2010). Classification in conservation biology: A comparison of five machine-learning methods. Ecological Informatics, 5(6), 441-450. https://doi.org/https://doi.org/10.1016/j.ecoinf.2010.06.003
Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021). Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24-49. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2020.12.010
Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., Rizzoli, A. E., van Delden, H., & Voinov, A. A. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159-181. https://doi.org/https://doi.org/10.1016/j.envsoft.2013.05.005
Khan, S., & Gupta, P. K. (2018). Comparitive study of tree counting algorithms in dense and sparse vegetative regions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 801-808.
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäinen, M. (2020). Deep learning for generic object detection: A survey. International journal of computer vision, 128, 261-318.
Marcot, B. G., & Penman, T. D. (2019). Advances in Bayesian network modelling: Integration of modelling technologies. Environmental Modelling & Software, 111, 386-393. https://doi.org/https://doi.org/10.1016/j.envsoft.2018.09.016
Mayfield, H. J., Smith, C., Gallagher, M., & Hockings, M. (2020). Considerations for selecting a machine learning technique for predicting deforestation. Environmental Modelling & Software, 131, 104741. https://doi.org/https://doi.org/10.1016/j.envsoft.2020.104741
Metcalf, O. C., Ewen, J. G., McCready, M., Williams, E. M., & Rowcliffe, J. M. (2019). A novel method for using ecoacoustics to monitor post‐translocation behaviour in an endangered passerine. Methods in Ecology and Evolution, 10(5), 626-636.
Nay, J., Burchfield, E., & Gilligan, J. (2018). A machine-learning approach to forecasting remotely sensed vegetation health. International Journal of Remote Sensing, 39(6), 1800-1816. https://doi.org/10.1080/01431161.2017.1410296
Novotny, V., Drozd, P., Miller, S. E., Kulfan, M., Janda, M., Basset, Y., & Weiblen, G. D. (2006). Why are there so many species of herbivorous insects in tropical rainforests? science, 313(5790), 1115-1118. https://doi.org/DOI: 10.1126/science.1129237
Rana, M. J., Hasan, M. R., & Sobuz, M. H. R. (2022). An investigation on the impact of shading devices on energy consumption of commercial buildings in the contexts of subtropical climate. Smart and Sustainable Built Environment, 11(3), 661-691. https://doi.org/10.1108/SASBE-09-2020-0131
Rodrigues, M., & de la Riva, J. (2014). An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software, 57, 192-201. https://doi.org/https://doi.org/10.1016/j.envsoft.2014.03.003
Rudel, T. A. (2005). Tropical forests: regional paths of destruction and regeneration in the late twentieth century. Columbia University Press.
Samardžić-Petrović, M., Kovačević, M., Bajat, B., & Dragićević, S. (2017). Machine learning techniques for modelling short term land-use change. ISPRS International journal of geo-information, 6(12), 387. https://doi.org/10.3390/ijgi6120387
Schmitt, C. B., Burgess, N. D., Coad, L., Belokurov, A., Besançon, C., Boisrobert, L., Campbell, A., Fish, L., Gliddon, D., Humphries, K., Kapos, V., Loucks, C., Lysenko, I., Miles, L., Mills, C., Minnemeyer, S., Pistorius, T., Ravilious, C., Steininger, M., & Winkel, G. (2009). Global analysis of the protection status of the world’s forests. Biological Conservation, 142(10), 2122-2130. https://doi.org/https://doi.org/10.1016/j.biocon.2009.04.012
Shahana, A., Hasan, R., Farabi, S. F., Akter, J., Al Mahmud, M. A., Johora, F. T., & Suzer, G. (2024). AI-Driven Cybersecurity: Balancing Advancements and Safeguards. Journal of Computer Science and Technology Studies, 6(2), 76-85.
Silva, A. C. O., Fonseca, L. M. G., Körting, T. S., & Escada, M. I. S. (2020). A spatio-temporal Bayesian Network approach for deforestation prediction in an Amazon rainforest expansion frontier. Spatial Statistics, 35, 100393. https://doi.org/https://doi.org/10.1016/j.spasta.2019.100393
Singh, S., Reddy, C. S., Pasha, S. V., Dutta, K., Saranya, K. R. L., & Satish, K. V. (2017). Modeling the spatial dynamics of deforestation and fragmentation using Multi-Layer Perceptron neural network and landscape fragmentation tool. Ecological Engineering, 99, 543-551. https://doi.org/https://doi.org/10.1016/j.ecoleng.2016.11.047
Sobuz, M. H. R., Al, I., Datta, S. D., Jabin, J. A., Aditto, F. S., Sadiqul Hasan, N. M., Hasan, M., & Zaman, A. A. U. (2024). Assessing the influence of sugarcane bagasse ash for the production of eco-friendly concrete: Experimental and machine learning approaches. Case Studies in Construction Materials, 20, e02839. https://doi.org/https://doi.org/10.1016/j.cscm.2023.e02839
Sobuz, M. H. R., Datta, S. D., & Akid, A. S. M. (2023). Investigating the combined effect of aggregate size and sulphate attack on producing sustainable recycled aggregate concrete. Australian Journal of Civil Engineering, 21(2), 224-239. https://doi.org/10.1080/14488353.2022.2088646
Sobuz, M. H. R., Datta, S. D., & Rahman, M. (2022, 2022//). Evaluating the Properties of Demolished Aggregate Concrete with Non-destructive Assessment. Advances in Civil Engineering, Singapore.
Sobuz, M. H. R., Joy, L. P., Akid, A. S. M., Aditto, F. S., Jabin, J. A., Hasan, N. M. S., Meraz, M. M., Kabbo, M. K. I., & Datta, S. D. (2024). Optimization of recycled rubber self-compacting concrete: Experimental findings and machine learning-based evaluation. Heliyon, 10(6). https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e27793
Tayyebi, A., Pijanowski, B. C., Linderman, M., & Gratton, C. (2014). Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world. Environmental Modelling & Software, 59, 202-221. https://doi.org/https://doi.org/10.1016/j.envsoft.2014.05.022
Uddin, M. A., Jameel, M., Sobuz, H. R., Hasan, N. M. S., Islam, M. S., & Amanat, K. M. (2012). The Effect of Curing Time on Compressive Strength of Composite Cement Concrete. Applied Mechanics and Materials, 204-208, 4105-4109. https://doi.org/10.4028/www.scientific.net/AMM.204-208.4105
Uddin, M. A., Jameel, M., Sobuz, H. R., Islam, M. S., & Hasan, N. M. S. (2013). Experimental study on strength gaining characteristics of concrete using Portland Composite Cement. KSCE Journal of Civil Engineering, 17(4), 789-796. https://doi.org/10.1007/s12205-013-0236-x
Weatherley-Singh, J., & Gupta, A. (2015). Drivers of deforestation and REDD+ benefit-sharing: A meta-analysis of the (missing) link. Environmental Science & Policy, 54, 97-105. https://doi.org/https://doi.org/10.1016/j.envsci.2015.06.017
Zhu, J., & Collette, M. (2015). A dynamic discretization method for reliability inference in Dynamic Bayesian Networks. Reliability Engineering & System Safety, 138, 242-252. https://doi.org/https://doi.org/10.1016/j.ress.2015.01.017
Rakibul Hasan, Syeda Farjana Farabi, Md Abdullah Al Mahmud, Jahanara Akter, Md Azhad Hossain, "Information Technologies For The Next Future World: Implications, Impacts And Barriers: Part - I", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.12, Issue 5, pp.a323-a330, May 2024.
MD ABDULLAH AL MAHMUD, MD AZHAD HOSSAIN, MD ABDUL BAREK SAJU, MD WALI ULLAH4, RAKIBUL HASAN, GURKAN SUZER, “Information Technology for The Next Future World: Adoption of It for Social and Economic Growth: Part II” International Journal Of Innovative Research In Technology, ISSN: 2349-6002, Volume.10, Issue 12, May 2024.
Article Statistics
Copyright License
Copyright (c) 2024 Rakibul Hasan, Syeda Farjana Farabi, Md Kamruzzaman, MD KHOKAN BHUYAN, Sadia Islam Nilima , Atia Shahana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright of their manuscripts, and all Open Access articles are disseminated under the terms of the Creative Commons Attribution License 4.0 (CC-BY), which licenses unrestricted use, distribution, and reproduction in any medium, provided that the original work is appropriately cited. The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.