Articles | Open Access | DOI: https://doi.org/10.37547/tajet/Volume02Issue11-05

Catalytic Synthesis Of Lower Olefins From Methanol And Dimethyl Ether

Sh.Ch.Aslanov , Shurtan Gas Chemical Complex LLC, Uzbekistan
A.Q.Buxorov , Shurtan Gas Chemical Complex LLC, Uzbekistan
N. I. Fayzullaev , Doctor Of Technical Sciences, Professor, Samarkand State University, Uzbekistan

Abstract

Currently, the main source of feedstock for the production of lower olefins is oil. The implementation of the sequential change "CH4 → CH3OH → lower olefins" allows us to consider natural gas as an alternative raw material for the production of expensive raw materials for petrochemicals-ethylene and propylene. The most promising catalysts for converting methanol to olefins are crystalline microporous silicoaluminophosphates (SAPO-34 and SAPO-18) With a chabazite structure and high siliceous zeolites (HSZ) synthesized from kaolin. Despite the existence of industrial processes for converting methanol using HSZ to olefins, the improvement of these catalysts is an urgent task in order to increase the selectivity and stability of the operation of ethylene and propylene. Therefore, we conducted the process of producing ethylene and propylene from methanol by incorporating metals of various nature from natural kaolin to HSZ. The purpose of this work is to study the effect of the nature and amount of the introduced metal on the physicochemical and catalytic properties of the HSZ.

Keywords

Alternative fuel, catalysts, economical use of natural gas, high siliceous zeolites, low-carbon, natural gas

References

Rakhmatov, S. B., & Fayzullayev, N. I. (2020). Coke Formation of Catalyst on the Ethylene Preparation from the Oxycondensation of Methane and its Regeneration. International Journal of Advanced Science and Technology, 29(03), 7875-7884.

Лисицын, Н. В., Сладковский, Д. А., Семикин, К. В., Куличков, А. В., & Кузичкин, Н. В. (2013). Установка для получения этилена. №2013119053/04

Treger, Y. A., & Rozanov, V. N. (2016). Technologies for the synthesis of ethylene and propylene from natural gas. Review Journal of Chemistry, 6(1), 83-123.

Chang, C. D., & Silvestri, A. J. (1977). The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of catalysis, 47(2), 249-259.

Bjørgen, M., Joensen, F., Lillerud, K. P., Olsbye, U., & Svelle, S. (2009). The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catalysis Today, 142(1-2), 90-97.

Fayzullayev, N. I., Shoymardanov, T. B., Begimqulova, D. M., Hamidov, D. R., & Rakhmatov, K. B. (2020). Kinetic Laws of Methane Carbonate Conversion Reaction. International Journal of Control and Automation, 13(4), 268-276.

Tursunova, N. S., & Fayzullaev, N. I. (2020). Kinetics of the Reaction of Oxidative Dimerization of Methane. International Journal of Control and Automation, 13(2), 440-446.

Хамидов, Д., Ахмедова, Ф., Хидирова, Ю., & Файзуллаев, Н. (2020). Каталитический пиролиз метилхлорида. Збірник наукових праць ΛΌГOΣ, 79-85.

Fayzullaev, N. I., Akmalaev, K. A., Karjavov, A., Akbarov, H. I., & Qobilov, E. (2020). Catalytic Synthesis Of Acetone And Acetaldehyde From Acetylene In Fluoride-Based Catalysts. The American Journal of Interdisciplinary Innovations and Research, 2(09), 89-100.

Jean, L. (2005). Effect of process parameters on methanol to olefins reactions over SAPO catalysts, (Doctoral dissertation).

Fayzullaev, N. I., & Sh, S. B. (2018). Catalytic aromatization of methane with non-mo-contained catalysts. Austrian Journal of Technical and Natural Sciences, (7-8).

Anvarjon o’g, S. R. Z. (2020). Mathematical Modeling Taking Into Account Features Of Different Drive States Of Pump Station Electric Drive Systems. The American Journal of Engineering and Technology, 2(09), 120-127.

Fayzullayev, N. I. (2019). Kinetics and mechanism of the reaction of the catalytic oxycondensation reaction of methane. Austrian Journal of Technical and Natural Sciences, (5-6).

Fayzullayev, N. I., & Turobjonov, S. M. (2015). Catalytic Aromatization of Methane. International Journal of Chemical and Physical Science, 4, 27-34.

Roziqova, D. A., Sobirov, M. M., Nazirova, R. M., & Hamdamova, S. (2020). Production of nitrogen-phosphorus-potassium fertilizers based on washed hot concentrate, ammonium nitrate and potassium chloride. ACADEMICIA: An International Multidisciplinary Research Journal, 10(9), 215-220.

Rakhmatov, S. B., & Fayzullaev, N. I. (2019). Technology for the production of ethylene by catalytic oxycondensation of methane. European Journal of Technical and Natural Sciences, (5-6), 44-49.

Barger, P. (2002). Zeolites for cleaner technologies. Catalytic Science Series, 3, 239-248.

Fayzullaev, N. I., & Tursunova, N. S. (2020). Termodynamic Basis of Methane Oxidation Dimerization Reaction and Process Approval. International Journal of Advanced Science and Technology, 29(5), 6522-6531.

Fayzullaev, N. I., Yusupov, D., Egamberdiev, R., & Korotoev, A. V. (2000). About mechanizm of investigation of acetone in hydration of acetilene multifunctional catalist. Uzbekskii Khimicheskii Zhurnal, (6), 40-42.

Cai, G., Liu, Z., Shi, R., Changqing, H., Yang, L., Sun, C., & Chang, Y. (1995). Light alkenes from syngas via dimethyl ether. Applied Catalysis A: General, 125(1), 29-38.

Chen, W. H., Lin, B. J., Lee, H. M., & Huang, M. H. (2012). One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity. Applied energy, 98, 92-101.

Fayzullayev, N. I., & Turobjonov, S. M. (2015). Catalytic Aromatization of Methane. International Journal of Chemical and Physical Science, 4, 27-34.

Air Liquide. Lurgi MTP™ - Methanol-to-Propylene [Electronic resource], 2016. URL: https://www.engineering-airliquide.com/lurgi-mtp-methanol-propylene.

Bobomurodova, S. Y., Fayzullaev, N. I., & Usmanova, K. A. (2020). Catalytic Aromatization of Oil Satellite Gases. International Journal of Advanced Science and Technology, 29(5), 3031-3039.

Fayzullaev, N. I., Saginaev, A. T., Shukurov, B. S., & Holliyev, S. K. Catalytic dehydroaromatization oil associated gas. С. Өтебаев Атындағы Атырау Мұнай Және Газ Университетінің Хабаршысы, 27.

Fayzullayev, N., Akmalaiuly, K., & Karjavov, A. (2020). Catalytic synthesis of a line by acetylene hydration. News of the National Academy of Sciences of the Republic of Kazakhstan, Series chemistry and technology, 2(440), 23-30.

Mamadoliev, I. I., & Fayzullaev, N. I. (2020). Optimization of the Activation Conditions of High Silicon Zeolite. International Journal of Advanced Science and Technology, 29(03), 6807-6813.

Fayzullaev, N. I., & Raxmatov, S. B. (2020). Kinetics and Mechanisms of Oxycondensation Reaction in Methane Molybden-Marganets-Zirconium Catalysis. International Journal of Psychosocial Rehabilitation, 24(04).

Ibodullayevich, F. N., Yunusovna, B. S., & Anvarovna, X. D. (2020). Physico-chemical and texture characteristics of Zn-Zr/VKTS catalyst. Journal of Critical Reviews, 7(7), 917-920.

Fayzullaev, N. I., Akmalaev, K. A., Karjavov, A., Akbarov, H. I., & Qobilov, E. (2020). Catalytic Synthesis Of Acetone And Acetaldehyde From Acetylene In Fluoride-Based Catalysts. The American Journal of Interdisciplinary Innovations and Research, 2(09), 89-100.

Fayzullaev, N. I., Jumanazarov, R. B., & Turabjanov, S. M. (2015). Heterogeneous Catalytic Synthesis of Vinylchloride by Hydrochlorination of Acetylene. IJISET-International Journal of Innovative Science, Engineering & Technology, 2(9).

Akmalaiuly, K., Ibodullaevich, F. N., & Rahmonovich, K. A. (2020). Joint Synthesis Of Acetone And Acetaldehyde From Acetylene. The American Journal of Engineering and Technology, 2(09), 109-119.

Omanov, B. S., Fayzullayev, N. I., & Xatamova, M. S. (2020). Catalytic synthesis of acetylene ut of vynil acetate and texture characteristics of catalysts. Asian Journal of Multidimensional Research (AJMR). Special Issue, March, 157-164.

Fayzullaev, N. I., Akmalaev, K. A., & Karjavov, A. (2020). Catalytic Synthesis Of Acetone From Acetylene. The American Journal of Applied sciences, 2(09), 101-109.

Ugli, O. B. S., Ibodullayevich, F. N., Anorboevich, E. K., & Sattorovna, K. M. (2020). Production of vinyl acetate from acetylene. ACADEMICIA: An International Multidisciplinary Research Journal, 10(6), 1031-1038.

Omanov, B. S., Fayzullayev, N. I., & Xatamova, M. S. (2019). Vinylacetate Production out of acetylene. International Journal of Advanced Research in Science, Engineering and Technology, 6(12).

Article Statistics

Copyright License

Download Citations

How to Cite

Sh.Ch.Aslanov, A.Q.Buxorov, & N. I. Fayzullaev. (2020). Catalytic Synthesis Of Lower Olefins From Methanol And Dimethyl Ether. The American Journal of Engineering and Technology, 2(11), 31–39. https://doi.org/10.37547/tajet/Volume02Issue11-05