

Journal Website: http://usajournalshub.c om/index,php/tajssei

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

ABSTRACT

New Scheme For Security Of DBMS

Kurbonov Feruz Yaxshimurodovich Tashkent University Of Information Technologies Named After Muhammad Al-Khwarizmi, Uzbekistan

Baxromova Yulduz Sheren Kizi

Tashkent University Of Information Technologies Named After Muhammad Al-Khwarizmi, Uzbekistan

In this paper is presented security matrix sub-module, analyzing of vulnerabilities, threats and security methods. At the end of the work is proposed new scheme of Security of DBMS.

KEYWORDS

Matrix, security, DBMS, threats, vulnerability, scheme.

INTRODUCTION

Database security refers to the various measures organizations take to ensure their databases are protected from internal and external threats. Database security includes protecting the database itself, the data it contains, its database management system, and the various applications that access it. Organizations must secure databases from deliberate attacks such as cyber security threats, as well as the misuse of data and databases from those who can access them. In the last several years, the number of data breaches has risen considerably. In addition to the considerable damage these threats pose to a company's reputation and customer base, there are an increasing number of regulations and penalties for data breaches that organizations must deal with, such as those in the General Data Protection Regulation (GDPR)—some of which are extremely costly. Effective database security is key for remaining compliant, protecting organizations' reputations, and keeping their customers.

MAIN PART

A Security Matrix sub-module is presented in Figure 1. A customer-order scenario is depicted. Seven tables are listed across the top. Seven forms are listed down the lefthand side [1]. Scanning the matrix left to right shows that the Order Form requires access to five tables including modification rights to three of them. Specifically the Order Form needs only read access to the Customers and Employees tables, requires read, insert, update, and delete rights to the Order_Details and Orders table, and requires read and update rights to the Products table. Scanning top to bottom shows that three applications, Customer Labels, Customer Information, and Order Form, access the Customers table. The Customer Labels and Orders Form require read access to the Customers table while the Customer Information form requires read, insert, update, and delete rights. The Security Matrix sub-module includes an accompanying set of interactive questions that ask users to identify relationships between the tables and the application programs.

CRUD Matrix:								
	CATEGONIES	CUBTOMERS	EMPLOYEES	ORDER_DETALS	ORDERS	SUPPLIERS	PRODUCTE	
Categories Form	CRUD							f
Customer Labels								
Customer Info		CRUP						
Order Form		8	8	CRIAD	SRID		-	-
Employee Farm			CRUD					
Supplier Form						SINR		
Product Fam							CRUD	

Figure 1. Security Matrix Sub-module: Example Security Matrix

Also there are security level and solutions:

- Database Level: Masking, Tokenization, Encryption.
- Access Level: Access Control Lists, Permissions.
- Perimeter Level: Firewalls, Virtual Private Networks.

In table 1 have identified the vulnerabilities, threats and security methods of database management system with the help survey conducted on researches of data-base security [2].

	,	•
Vulnerabilities	Threats	Security methods
Vendor Bug: Buffer	May damage or vio-	Unauthorized access control policy
Overflow,	late the database	
Programming errors		

Table 1. Vulnerabilities, Threats and Security methods

MPACT FACTOR
2020: 5. 525
OCLC - 1121105668

Poor Architecture:	May damage	Security Models
Weak	database envi-	
form of encryption	ronment components	
	(net-	
	works, applications,	
	operat-	
	ing systems, DBMS	
	and data)	
Misconfiguration: Not	Loss of integrity of	Physical database integrity protection,
prop-	the database	Logical data
erly locking database		integrity protection, Data element
		integrity protection
Incorrect usage: SQL	Misuse of availabil-	Intrusion Detection System:
injection	ity of database	1. A Misuse Detection System for
		Database System
		2.SQL Injection and Insider Misuse
		Detection System
		3. Detecting Intrusion in Databases
		through Fingerprinting Transactions
		4. Semantic inference model
Irresponsible DBA:	Easy access of data	Two principles should be followed:
Deactivation of		1. The access control models for
necessary		databases should
security mechanism		be expressed in terms of the logical
		data
		model; thus authorizations for a
		relational
		database should be expressed in
		terms of

OCLC - 1121105668

		relations, relation attributes, and
		tuples.
		2. For databases, in addition to
		name-based
		access control, where the protected
		objects
		are specified by giving their names,
		content-
		based access control has to be
		supported.
Hidden Flaws in DB:	Allow hackers to	Intrusion Detection System
Undetected defects	connect	
	to the database	
	server by	
	exploring those	
	defects.	
Unauthorized Users:	Easy access of da-	Intrusion Detection System
Unauthorized users	tabase servers	
"still" the		
credentials of		
authorized users		
Misused Privileges:	Maliciously access	Database Administrator should
Authorized users take	or destroy data	provide securi-
ad-		ty on the basis of above mentioned
vantage of their		principles.
privileges.		

In figure 2 is presented security scheme and mechanisms of protection of the DBMS. Here, main threats are added and protection tools

are installed. Also, we can add fallowing configurations [3]:

• Mandatory auditing

Figure 2. New scheme of Security of DBMS

CONLUSION

The result of the survey we have described in the paper and summarized in tabular form. As a result

we can conclude that though remarkable work has been done in this field, with the invention of internet

Technology, the risk to database has increased.

REFERENCES

- Murray M. C. Database security: What students need to know //Journal of information technology education: Innovations in practice. – 2010. – T. 9. – C. IIP-61.
- Muntjir M. et al. Security Issues and Their Techniques in DBMS-A Novel Survey //International Journal of Computer Applications. – 2014. – T. 85. – №. 13.

 Basharat I., Azam F., Muzaffar A. W. Database security and encryption: A survey study //International Journal of Computer Applications. – 2012. – T. 47. – N^o. 12.