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Abstract: This article examines contemporary 

algorithmic approaches to multiparametric 

immunization of interest rate risk in a fixed-income 

portfolio, explicitly accounting for non-parallel shifts in 

the yield curve. Using the Nelson–Siegel framework, the 

bond-price sensitivities to the three primary factors—

level, slope, and curvature—are characterized, and the 

traditional Duration and Duration–Convexity 

immunization strategies are reviewed. It is 

demonstrated that attempting to hedge all three factors 

simultaneously with classical techniques often yields 

extreme portfolio weights, excessive leverage, and poor 

out-of-sample performance. To overcome these 

limitations, we implement L¹ (Lasso) and L² (Ridge) 

regularization—subject to a strict overall leverage cap—

on U.S. Treasury data. An empirical replication of a 

“retirement bond” (a pension-payment stream) shows 

that leverage-constrained Lasso strategies reduce the 

median absolute deviation of the funding ratio while 

also lowering turnover. These results confirm the 

hypothesis that regularization improves both the 

robustness and economic efficiency of interest-rate 

hedging for institutional investors with long-dated 

liabilities. The insights presented will interest financial-

engineering researchers specializing in stochastic yield-

curve modeling and optimal portfolio-management 

methods. Portfolio managers, institutional risk officers, 

and quantitative teams at hedge funds seeking to 

integrate high-frequency and machine-learning 

algorithms into their volatility-reduction workflows and 

to ensure stable returns amid changing market rates will 

also find practical guidance here. 
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Introduction 

Interest rate risk remains a central challenge for 

participants in the fixed-income market, particularly 

institutional investors with long-dated liabilities 

(pension funds, insurance companies). Traditional 

immunization strategies based on Duration and 

Convexity effectively guard a portfolio only against 

parallel shifts of the yield curve. In practice, however, 

non-parallel moves in slope and curvature frequently 

occur, resulting in hedging errors and diminished risk-

management effectiveness [1]. 

The objective of this study is to investigate algorithmic, 

multiparameter immunization strategies for interest 

rate risk that employ L¹ (Lasso) and L² (Ridge) 

regularization in conjunction with leverage constraints, 

thereby optimally balancing the bias–variance trade-off 

of factor exposures. 

The scientific novelty lies in demonstrating, for the first 

time, that incorporating L¹ and L² regularization with a 

strict cap on total leverage within algorithmic 

multiparameter immunization frameworks produces 

sparse, leverage-controlled portfolios. These portfolios 

exhibit markedly lower median and maximum absolute 

deviations in the funding ratio and reduced transaction 

turnover compared with conventional Duration and 

Duration–Convexity methods when the yield curve 

experiences non-parallel shifts. 

The author’s hypothesis posits that the use of L¹ and L² 

regularization alongside leverage constraints materially 

enhances the robustness and efficacy of interest-rate 

risk hedging versus standard, unregularized strategies. 

The methodology of this paper is grounded in a 

comparative analysis of existing literature, providing a 

comprehensive overview of current algorithmic 

interest-rate hedging approaches in the fixed-income 

market. 

Materials And Methods 

The contemporary literature on algorithmic interest-

rate hedging strategies in the fixed-income market can 

be organized into several thematic strands. 

The first strand examines the use of machine-learning 

and regularization techniques to build adaptive hedging 

models. Mantilla-Garcia D. et al. [1] propose embedding 

Lasso and Ridge regularization into the bond-portfolio 

optimization process to curb overfitting and enhance 

robustness to yield-curve shifts. Pagnottoni P. and 

Spelta A. [7] describe deploying dynamic algorithms 

based on gradient boosting and recurrent neural 

networks to capture nonlinear currency effects when 

hedging interest-rate risk in a global portfolio, reporting 

superior hedge-efficiency metrics versus classical 

duration-based approaches. In the broader context of AI 

integration, Khatri C. A. [4] analyzes the application of 

deep-learning and reinforcement-learning methods to 

the pricing and hedging of currency and credit 

derivatives. 

The second strand focuses on state-switching stochastic 

models that reflect alternating market regimes. 

Gubareva M. and Keddad B. [5] apply Markov-switching 

models to emerging-market sovereign debt, enabling 

the hedging system to distinguish between “crisis” and 

“calm” regimes in interest-rate dynamics. They 

demonstrate that, under heightened volatility, 

traditional immunization strategies falter, whereas 

switching-state models automatically recalibrate hedge 

positions according to the prevailing regime. 

The third strand addresses the banking sector and 

strategies for hedging margin-rate risk. Cherrat H. and 

Prigent J. L. [6] concentrate on hedging the interest-rate 

risk inherent in banks’ marginal profitability on demand-

deposit portfolios. They devise algorithmic strategies 

combining interest-rate derivatives—such as swaps and 

rate options—with proprietary liquidity-transformation 

models that account for the multifactor dynamics of 

bank liabilities. 

The fourth strand investigates interest-rate risk 

management within pension planning and pension-

product frameworks. Martellini L. and Milhau V. [2], in 

their monograph Advances in Retirement Investing, 

explore immunization strategies aligned with 

responsible-investment principles: bond portfolios are 

structured around projected pension-payment 

schedules, and interest-rate risk is hedged using 

derivatives and embedded-option bonds. Martellini L., 

Milhau V., and Mulvey J. [3] further propose a goal-

based approach, treating rate-risk hedging as part of an 

overarching strategy to meet target retirement-income 

objectives, which entails dynamic rebalancing as 

retirees’ needs and risk appetites evolve. 

Despite the diversity of methods, the literature reveals 

several key contradictions. First, although machine-

learning–based algorithms often deliver superior hedge-

efficiency metrics, they typically demand substantial 
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computational resources, calling into question their 

real-time applicability for large portfolios. Such 

portfolios require rapid access to high-frequency 

liquidity indicators (bid–ask spreads, order-book depth), 

fine-grained risk-free yield-curve parameters, current 

issuer credit spreads, trading volumes and turnover 

rates, volatility estimates for bonds and derivatives, as 

well as carefully calibrated correlation matrices and 

scenario-based deltas to forecast intra-portfolio risk. 

Second, regime-switching models perform well in 

backtests but their ability to anticipate regime 

transitions remains contentious, hinging on the quality 

of “hidden-state” identification—whether that concerns 

component degradation levels, operational-phase 

conditions, process modes, equipment health metrics, 

internal stress and plastic deformation intensities, load 

classes, latent control parameters, or unobserved 

transition events. 

Moreover, several topics remain underexplored. Stress-

testing of algorithmic strategies seldom incorporates 

liquidity constraints; the integration of ESG criteria into 

interest-rate hedging is still nascent; and hybrid 

frameworks that combine stochastic and machine-

learning approaches have received scant attention. 

Regulatory-compliance challenges and the impact of 

evolving rule-sets on hedge-fund algorithmic 

architectures are also rarely addressed. 

Together, these gaps and contradictions point to fertile 

ground for future research aimed at reconciling 

methodological disparities and broadening the practical 

toolkit for interest-rate risk hedging in the fixed-income 

market. 

 
Results 

The Nelson–Siegel yield‐curve model at time t for 

maturity u is approximated by three factors: 

 

where: 

● b0t is the baseline (“level”) term at time t; 

● b1t, b2t are time‐varying (“slope” and “curvature”) loadings; 

● the decay parameter s is chosen so that the first three principal components explain nearly 100 % of yield‐

curve variability. 

Here, b0t (“level”) captures the overall interest‐rate 

level; b1t (“slope”) measures the steepness; and b2t 

(“curvature”) reflects the curve’s convexity. 

To immunize a bond portfolio against shifts in the factor 

vector bt, one selects portfolio weights x so that the first 

and/or second derivatives of portfolio price with respect 

to each factor match the corresponding liability 

sensitivities. However, under non‐parallel yield‐curve 

moves, these “pure” solutions produce extreme weights 

and very high leverage, yielding poor out‐of‐sample 

hedging performance. 

Attempting to hedge all three Nelson–Siegel factors 

simultaneously leads, for n=k+1=4, to the square system 

 

whose direct solution is 

 

i.e. the product of the inverse of H with D. Yet even small 

estimation “noise” triggers explosive growth in weights 

and leverage (maximum leverage > 6000), causing 

enormous out‐of‐sample errors . 

An alternative is to minimize the mean‐squared 

exposure mismatch: 

 

which, unconstrained, yields the ordinary‐least‐squares 

solution 

 

While classical point solutions (𝐻 ∈ 𝑅^(𝑘 + 1 × 𝑘 + 1), 

n=k+1) formally match the factor exposures, they suffer 

in practice from extreme weights and instability. The 
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next section demonstrates how introducing 

regularization and leverage constraints produces more 

stable, economically viable hedging portfolios. 

Discussion 

One of the key issues with classical factor‐based 

immunization strategies is the extreme sensitivity of 

portfolio weights to even the smallest errors in 

sensitivity estimates: when n>k+1, the matrix H′H 

becomes singular, and the ordinary‐least‐squares 

solution 

 

yields extreme weights and leverage, resulting in 

unstable out‐of‐sample exposures [1, 4]. 

To “shrink” weights and control leverage, one 

introduces regularization—adding a penalty on large 

weights to the objective. Starting from the MSE 

formulation with full investment: 

 

(which in the unconstrained, square case reduces to (4)), we then add an L¹ leverage penalty: 

 

where λ is chosen so that 

 

enforces an overall leverage cap d [2]. By introducing nonnegative auxiliary variables x+,x− such that x=x+−x− and 

∣x∣=x++x−, this problem can be cast as a standard quadratic program in dimension 3n with linear constraints. 

Below, Table 1 summarizes the main advantages and disadvantages of the Lasso approach. 

 

Table 1. Advantages and disadvantages of Lasso [4] 

Advantages of Lasso Disadvantages of Lasso 

Leverage control is “built in” via the L¹ 

penalty 

Introduces bias toward zero in weight estimates due to the hard 

L¹ penalty 

Produces sparse solutions (few nonzero 

weights), reducing transaction turnover 

Selection instability when factors are highly correlated: from a 

group of strongly related variables, only one may be chosen 

 Does not provide group selection: correlated variables are not 

retained together 

 Requires careful tuning of the regularization parameter (typically 

via cross-validation), complicating model design 

 

Alternatively, one can employ L²‐regularization; its advantages and disadvantages are summarized in Table 2. 
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Table 2. Advantages and disadvantages of L²-regularization [4,5] 

Advantages Disadvantages 

Smooth (non-sparse) solutions: All coefficients are 

smoothly shrunk but none are driven exactly to zero, 

which is useful when many factors must be retained. 

No feature selection: L² does not induce sparsity, so 

it does not perform variable selection and typically 

requires additional methods (e.g., Lasso or Elastic 

Net). 

Shrinkage link to covariance/mean estimates: 

Analogous to Ledoit–Wolf shrinkage on a covariance 

matrix, L² increases robustness to noise and 

multicollinearity. 

Bias in estimates: Systematic downward bias of all 

weights can understate truly important factors and 

degrade predictive accuracy if λ is too small. 

Improved conditioning: Adding λI to XᵀX reduces its 

condition number, making matrix inversion more 

stable. 

Scale sensitivity: Requires careful standardization of 

features, otherwise regularization acts unevenly 

across variables. 

Analytical solution: w=(XᵀX+λI)⁻¹Xᵀy provides a closed‐

form update, allowing fast evaluation of different λ 

values. 

Hyperparameter tuning needed: Choosing λ 

(typically via cross‐validation or information criteria 

like AIC/BIC) adds computational overhead. 

Bayesian interpretation: Equivalent to a MAP estimate 

under a Gaussian prior on weights, offering a clear 

statistical rationale. 

Isotropic penalty: Applies uniform shrinkage in all 

directions and cannot exploit group or structural 

dependencies among variables. 

Enhanced generalization: Effectively reduces 

variance, combating overfitting when noise is high 

and sample size is limited. 

Risk of underfitting: If λ is too large, the model can 

become overly smooth and fail to capture the true 

relationships in the data. 

Continuous solution path: Coefficients change 

smoothly as λ varies, simplifying sensitivity analysis. 

Not robust to outliers: The L² penalty heavily 

penalizes large errors and offers little robustness to 

anomalous observations, unlike, for example, a 

Huber loss. 

Wide applicability: Used across regression, kernel 

methods (ridge regression), neural nets (weight 

decay), etc., with strong theoretical support. 

Fixed penalty form: More complex priors or 

heterogeneous features may call for non-isotropic 

(e.g. weighted or Tikhonov) regularization schemes. 

Regularizing the portfolio weights is equivalent, under 

certain conditions, to shrinkage of the underlying factor 

exposures and covariance matrix [2, 3]. This equivalence 

permits the adoption of well‐established mean–variance 

optimization techniques to construct robust hedging 

portfolios. 

Thus, regularization approaches yield stable, leverage‐

controlled solutions for multiparameter immunization, 

marrying the theoretical strengths of factor‐based 

hedging with modern machine‐learning methodologies. 
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The replicating liability is defined as a “retirement 

bond”—a notional instrument that pays monthly 

benefits over 20 years after retirement, with annual 

indexation and a 5-year accumulation phase prior to the 

first payment. The entire cash-flow spans 25 years (5 + 

20) on a notional principal of $1 [1]. 

Market data were sourced from Bloomberg. We 

collected daily observations on all issued U.S. Treasury 

bonds (the “T” series) from July 3, 1995, to June 30, 2020 

(a total of 1 183 issuances, with 112–312 issues available 

on any given date), including coupon rates, payment 

frequency, issue dates, and maturities [1]. 

To construct the yield curve, we calibrated a Nelson–

Siegel model with a fixed decay parameter chosen to 

minimize the weighted sum of absolute deviations 

between market and model prices—weights being 

inversely proportional to each bond’s duration [1, 6]. 

At each month-end, the investable universe comprises 

bonds with remaining maturity > 1 month; we eliminate 

duplicates by rounding durations to two decimal places 

and discarding repeats [1, 7]. The portfolio is rebalanced 

monthly. 

Below in Figure 1 are the metrics used to assess hedging 

quality: 

 

Figure 1. Metrics used to assess the quality of hedging [1]. 

● Traditional Duration-barbell and Duration–

Convexity strategies exhibit high FR.MEAD and 

FR.MAAD due to their failure to hedge slope and 

curvature. 

● The “unconstrained” NS k+1 strategy results in 

astronomic leverage and turnover, rendering it 

impractical. 

● Lasso regularization with a leverage cap d=3 

substantially reduces both FR.MEAD and FR.MAAD [1]. 

● The best generalized immunization is achieved 

by the NS Lasso approach: it attains the lowest mean 

funding-ratio deviation with moderate turnover and a 

controlled maximum leverage. 

Overall, regularized strategies—particularly those based 

on the L^{1} norm—deliver more stable and 

economically efficient interest-rate hedging for pension-

type liabilities compared to both traditional 

immunization and uncontrolled multiparameter 

methods. 

Conclusion 

Traditional immunization strategies based on Duration 

and Convexity—and the “NS k+1” point solution when 

hedging level, slope, and curvature simultaneously—

tend to produce extreme portfolio weights and 

excessive leverage, degrading out-of-sample hedging 

performance. 

Incorporating L¹ regularization (Lasso) into the MSE 

minimization of factor exposures, under a strict total-

leverage constraint, yields stable, sparse portfolios with 
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moderate leverage, reducing both the median and 

maximum deviations of the funding ratio. 

Ridge strategies deliver smoother weight distributions 

but, under strong penalization, collapse toward an 

equally weighted portfolio—an outcome that may be 

undesirable when precise exposure tuning is required. 

Pension funds and insurance companies should consider 

Lasso regularization with a carefully chosen leverage cap 

to build multifactor hedge portfolios that balance 

accurate factor matching with prudent risk control. 

For trading in securities of varying liquidity and 

availability, the QP-based framework guarantees 

adherence to both budget and leverage constraints. 

Future avenues include hybrid regularization techniques 

(Elastic Net, Group Lasso), nonlinear models (kernel 

methods, tree-based algorithms), and dynamic 

adaptation of penalty parameters in response to factor 

volatility, all of which hold promise for further 

enhancing interest-rate risk immunization. 
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