
The American Journal of Management and Economics Innovations 103 https://www.theamericanjournals.com/index.php/tajmei

TYPE Original Research

PAGE NO. 103-109

DOI 10.37547/tajmei/Volume07Issue04-13

OPEN ACCESS

SUBMITED 21 February 2025

ACCEPTED 19 March 2025

PUBLISHED 30 April 2025

VOLUME Vol.07 Issue 04 2025

CITATION

Klimkov Ilia. (2025). Modeling Scaling Strategies for Shopify Platforms in
International Expansion. The American Journal of Management and
Economics Innovations, 7(04), 103–109.
https://doi.org/10.37547/tajmei/Volume07Issue04-13

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Modeling Scaling

Strategies for Shopify

Platforms in International

Expansion

Klimkov Ilia
E-commerce Founder & СЕО VAOVAC

E-commerce Founder & CEO OXYFIT

San Diego, California, USA

Abstract: This article explores technological solutions
aimed at scaling Shopify platforms as they expand into
international markets. The relevance of the topic is
driven by the growing number of online stores that
require high service availability, even under rapidly
increasing traffic. The novelty of the study lies in the
comprehensive analysis of architectural strategies used
to distribute load, ensure fault tolerance, and reduce
latency during global operations. The paper outlines
key principles of flexible scaling through client isolation
(pods), geographic distribution of servers across
regions, the use of content delivery networks (CDNs)
for accelerated content delivery, and load testing
approaches designed to simulate peak scenarios such
as flash sales. Additionally, it examines methods for
balancing and dynamically reallocating resources to
protect the system from failure. The study aims to offer
practical recommendations for those seeking to
maintain platform stability amid international
expansion. To achieve this, the article applies
comparative analysis of architectural solutions and
model’s scalability potential. The research also draws
on the experiences of Shopify engineers to deepen the
understanding of practical challenges in global growth.
The conclusion emphasizes the importance of constant
monitoring of throughput and strategic distribution of
key services across global data centers. This article will
be useful to SaaS professionals, developers, and
analysts responsible for planning large-scale e-
commerce projects.

Keywords: Shopify, scaling, global traffic, pods, geo-

distribution, international commerce, CDN, load

testing, SaaS, architecture.

Introduction: Shopify is one of the largest e-commerce
platforms in the world, serving millions of online stores

https://doi.org/10.37547/tajmei/Volume07Issue04-13
https://doi.org/10.37547/tajmei/Volume07Issue04-13
https://doi.org/10.37547/tajmei/Volume07Issue04-13

The American Journal of Management and Economics Innovations 104 https://www.theamericanjournals.com/index.php/tajmei

across numerous countries. Its success is largely
attributed to its ability to scale effectively in response
to growing demand and global expansion. From a
technical perspective, Shopify originally operated as a
monolithic application; however, to ensure system
resilience and performance, the company was
compelled to redesign its architecture. Today, Shopify is
a sophisticated multi-tenant system distributed across
numerous data centers.

This article investigates the strategies Shopify uses to
scale its platform at the international level and explores
methods for modeling these strategies. The objective is
to analyze how Shopify isolates load across clients (via
its pods architecture), ensures geographic distribution
(via multi-region deployments), and performs
scalability testing and monitoring (e.g., load testing and
flash sale simulations). Special attention is given to how
these strategies allow Shopify to maintain performance
across different countries and adapt to the challenges
of global expansion, including localization, time-zone-
specific demand peaks, and resiliency requirements.

MATERIALS AND METHODS

In preparing this article, a range of foundational works
were reviewed. B. de Water [1; 2] provides in-depth
insights into the design of payment systems and
architectures built to handle multimillion-scale demand
surges. X. Denis [3] describes the pods approach, which
eliminates the risk of resource contention among stores
within a shared environment. H. Khalid [4] analyzes

Shopify’s migration to Vitess as a means of enabling
horizontal scaling without disrupting workflows. P.
Madan [5] discusses shard balancing and techniques for
moving client data without downtime—even at
terabyte scale. A. Rodukov [6] presents Shopify’s global
expansion strategy with a focus on distributed data
centers.

The literature review revealed a need to synthesize and
extend current findings through the modeling of a
holistic scaling strategy. The novelty of this article lies in
its unification and systematization of Shopify’s
international scaling practices—accounting for all
aspects of the platform’s infrastructure, from load
isolation and geographic distribution to modular
architecture and traffic simulation.

RESULTS

One of Shopify’s key scaling solutions is the
implementation of so-called pods. A pod, in the context
of Shopify, is a fully isolated segment of the platform
that contains its own database cluster and other
storage systems [3]. Initially, as load increased, Shopify
turned to database sharding but encountered a
situation where the failure of one shard affected the
entire system. As a result, the company decided to
separate resources more radically: each pod serves a
specific group of stores and has its own database
(MySQL), cache (Redis, Memcached), and background
job queues (see Fig. 1).

Figure 1. Pod in the context of Shopify [3]

The American Journal of Management and Economics Innovations 105 https://www.theamericanjournals.com/index.php/tajmei

No requests cross between pods; each store is strictly

tied to its own pod. This provides two advantages: first,

horizontal scalability—the company can simply add

new pods as the number of clients grows (similar to

adding new nodes to a system); second, fault

tolerance—issues in one pod do not affect the

operation of stores in other pods. This architecture

allowed Shopify to go beyond the limitations of a single

monolithic database server. Xavier Denis, a Shopify

engineer, noted that pods provide independence and

eliminate mutual resource impact: “Adding a new pod

does not cause unexpected load on existing ones” [3].

The pods approach means the platform remains multi-

tenant, but tenants are grouped into clusters. This is

important for international growth, as Shopify can

optimally distribute stores across pods: for example,

large stores generating heavy traffic can be allocated to

separate pods so as not to interfere with smaller ones.

In the case of a forecasted sharp traffic spike (e.g., Black

Friday sales), Shopify can temporarily move an

especially large store to a dedicated pod (or even

several pods) [2]. This flexibility protects other clients

from the "noisy neighbor" effect, when one store

consumes all the resources. Shopify's architecture

includes a tool called Shop Mover, which allows stores

to be moved between pods for load balancing without

downtime [5]. For example, if several fast-growing

merchants are concentrated on one pod, some of them

are “moved” to another pod to balance the load. These

solutions, modeled and tested within the company,

ensure service stability as it scales.

For international expansion, it is crucial to place

infrastructure closer to users in different regions.

Shopify initially operated from a single data center but

eventually moved to a multi–data center deployment.

Today, Shopify operates several major regions (North

America, Europe, Asia, etc.), each of which runs a set of

pods. As noted by Bart de Water (Shopify), each pod is

tied to a specific region and actively runs in one data

center, but also exists in at least two centers—the

primary and the backup [2]. That is, each pod has a

“partner” in another region where data is replicated in

real time. If the primary data center fails, a pod failover

occurs—a switch to the backup center (Shopify

developed a special Pod Mover mechanism at the data

center level for this purpose). This architecture ensures

both geographic proximity (each merchant is served

from the nearest center) and global resilience (if an

entire region goes offline, stores continue to operate

from the backup).

For international growth, it is also important that

Shopify can open new regions by deploying the

required number of pods and other components in a

new data center. For example, when entering the

Southeast Asian market, the company can launch pods

in Singapore or another region, configure data

replication. Shopify’s network system (including its own

load balancer Sorting Hat) determines which region to

route a client request to, based on the store domain

and routing rules. “Sorting Hat” is the name of the

internal routing system, which, at the incoming request

stage, determines which pod (and region) the

requested store belongs to, adds the appropriate

header, and then sends the request directly to the

required center (see Fig. 2) [3].

The American Journal of Management and Economics Innovations 106 https://www.theamericanjournals.com/index.php/tajmei

Thanks to this, even global distribution remains transparent: customers simply visit

shopname.myshopify.com, and the infrastructure automatically routes them to the appropriate nearby pod.

In addition to server-side distribution, Shopify actively

uses content delivery networks (CDNs) to accelerate the

delivery of static resources (product images, theme

files, etc.) worldwide. Shopify partners with CDN

providers (such as Cloudflare), allowing content to be

cached closer to end users. For example, a customer in

Europe receives images and scripts from European CDN

nodes, even if the store’s main server is located in North

America. This reduces response time and makes store

performance faster for international visitors. As part of

the scaling strategy, the CDN is a critical component: it

reduces the load on core servers during global traffic

peaks. According to the company, the global CDN

network shortens page load times through file

compression and geo-distribution [6]. For merchants,

this means higher conversion rates in foreign markets;

for Shopify, the ability to serve more concurrent users

without expanding server capacity (a significant portion

of traffic is served from cache). Thus, the combined

solution—pods + multi-region + CDN—has become the

foundation of Shopify’s internationalization strategy.

Scaling modeling is an integral part of a platform like

Shopify. The company places great emphasis on

automated load testing. For instance, large-scale load

tests of key components are conducted weekly,

simulating traffic volumes comparable to or exceeding

Black Friday peaks [1]. During these tests, Service Level

Objectives (SLOs)—acceptable response times and

resource utilization—are monitored. If any component

fails to meet the defined load threshold, the team

receives an immediate alert and must improve it before

the next testing round. This approach ("push the system

until it breaks") allows potential bottlenecks to be

identified in advance. For example, ahead of the next

year, the team may increase the number of pods or

optimize queries if the tests indicate proximity to the

limit. Bart de Water explained that Shopify uses two

types of load tests: regular verification of protective

mechanisms (ensuring rate limiters, queues, etc.

function properly), and breakpoint scale tests—

intentionally pushing the system to failure to determine

its limits and eliminate weak points [1]. Forecasting

based on such tests supports capacity planning:

determining how many new servers or pods will be

needed if the number of stores grows by X, or if traffic

increases by Y.

The American Journal of Management and Economics Innovations 107 https://www.theamericanjournals.com/index.php/tajmei

A particular challenge is when a single store suddenly

receives a massive traffic spike (e.g., a well-known

brand launches a limited product line). For Shopify, this

poses a risk—even with pod isolation, a large surge

within one pod can exhaust its resources. Several

strategies are used for such scenarios (see Fig. 3):

Figure 3. Load Management Strategies (compiled by the author based on [2])

As mentioned, major merchants can be placed on a

dedicated pod. Shopify has developed a queuing and

prioritization system to manage extreme surges in a

controlled way. For example, requests to an overloaded

store can be placed in a queue instead of affecting the

performance of other stores on the same pod.

Resource orchestration: in a cloud environment

(Shopify is gradually migrating parts of its infrastructure

to the cloud), it is possible to temporarily scale a

specific pod up during the event.

However, the most reliable approach is forecasting and

pre-scaling. Shopify works closely with its large

merchants and tracks events via marketing (e.g., global

sales). Knowing the promotion schedule, the team can

run an unscheduled load test for that specific store or

launch a copy of it in reserve infrastructure to confirm

capacity. If uncertainty remains, a dedicated pod may

be temporarily allocated to that store. Ultimately, the

High Load
Scenarios

Dedicated pod
for large

merchants

Queue and
priority system

(deferred
requests)

Resource
orchestration

(temporary
pod scaling)

Cloud
infrastructure

Vertical
scaling

The American Journal of Management and Economics Innovations 108 https://www.theamericanjournals.com/index.php/tajmei

goal is to prevent a spike from bringing the system

down or slowing it. According to Shopify, during Black

Friday Cyber Monday 2021, the platform processed a

peak of 32 million requests per minute without major

downtime [2]. This was made possible by proper scaling

and proactive load modeling.

Scaling is not only about traffic—it is also about

architectural flexibility across countries. Shopify scales

the platform functionally: adding support for various

payment gateways, tax systems, languages, and

currencies. From an architectural standpoint, this is

implemented through modularity: external

integrations (e.g., local payment systems) are deployed

as services that can be hosted closer to the respective

regions. For example, for stores in Europe, the EU

payment processing service can reside in a European

data center, reducing latency when communicating

with European banks.

DISCUSSION

Shopify’s scaling strategies demonstrate a balance

between proven practices and innovation. The pods

architecture—relatively uncommon in the industry due

to the significant restructuring it demands from a

monolithic system—has proven effective in Shopify’s

case. By isolating groups of stores, the company was

able to scale performance linearly: adding a new pod

adds new capacity. Modeling showed that without

pods, the platform would have hit a ceiling at a certain

database size (as operations on a single shard would

block parts of the functionality). However, pods are not

a panacea: they require administration (e.g., ensuring

even load distribution), and they complicate some

global functions (such as aggregate analytics across all

stores, which now have to query every pod separately).

Shopify likely addressed these issues by introducing

higher-level components above pods (centralized

search, indexes).

International scalability is a clear example of how

technical solutions serve business objectives. Regional

distribution enabled Shopify to provide low latency and

high fault tolerance globally, which is critical for

competitiveness. Notably, Shopify long relied on its

own servers, but for international expansion, it partially

transitioned to cloud partners—opening new regions

within cloud platforms rather than building every data

center from scratch. This is a typical trade-off: for the

sake of faster growth, using existing infrastructure (e.g.,

GCP or AWS) is sometimes more efficient—a path

Shopify followed for some components (it is known, for

example, that parts of Shopify’s databases were moved

to GCP using Vitess to simplify MySQL scaling) [4].

What stands out is how Shopify integrated continuous

scalability testing into its development process. This

reflects a mature approach: scalability is treated not as

a one-time optimization (“before a major event”), but

as an ongoing aspect of quality assurance. This mindset

is worth emulating by other global platforms. Many

companies focus solely on functional testing,

overlooking a non-functional (but critical)

requirement—withstanding future load. Shopify

effectively implemented a “capacity planning in CI”

model, treating infrastructure capacity checks as part of

CI/CD.

Shopify’s approach to flash sales is particularly notable

from a strategy modeling perspective. The company

developed a combination of technologies: from a

virtual customer queuing system (to throttle

simultaneous cart and payment activity) to excess

compute capacity on standby. One could say Shopify

models not only system-level load but also user flow

behavior. When millions of users add items to carts at

once, the system does not serve them all instantly but

spreads the load over time (possibly showing waiting

pages)—while ensuring that all are eventually served.

The result is a compromise: users get a reliable, if not

instantaneous, experience, and the platform maintains

controlled load.

Despite Shopify’s highly resilient and scalable

architecture, it has its limitations. For instance, while

pods can be added, the infrastructure that manages

them (load balancers, routing tables) must support a

growing number of records. This presents a challenge

at scale: systems like Sorting Hat must continue to

function reliably with hundreds or thousands of pods. A

possible solution is a hierarchical model (grouping pods

into clusters). In addition, expanding functionality (e.g.,

introducing large new services such as Shopify

Functions) may increase load on existing databases.

Shopify has likely already begun adopting microservices

for specific modules—for example, separating

payments, search, and notifications into standalone

services (Bart de Water mentioned breaking the

monolith into components) [2]. This means that scaling

The American Journal of Management and Economics Innovations 109 https://www.theamericanjournals.com/index.php/tajmei

considers not only the horizontal dimension of pods but

also the vertical separation of services.

Analyzing Shopify’s experience, similar principles can

be recommended to other SaaS platforms aiming for

global scale. First, logical tenant segmentation

(whether through pods, shards, or multi-instance

setups) is a fundamental mechanism for SaaS

scalability—it enables horizontal growth rather than

vertical. Second, geographic replication and CDN

integration are de facto standards for global systems,

without which users in distant regions would

experience latency. And finally, continuous testing and

refinement of the scalability model is what

distinguishes a proactive engineering culture.

CONCLUSION

The analysis confirms the effectiveness of Shopify’s

architectural solutions, including the pod structure,

geographic distribution of servers, and the use of CDNs

to ensure performance and fault tolerance during the

platform’s global expansion. The company's strategy of

horizontal scaling combined with load modeling

ensures stability under extreme traffic spikes and

enables efficient resource management on an

international scale.

However, the examined solutions have certain

limitations, particularly regarding the management of a

large number of pods and increased system complexity

as functional expansion continues. Future research may

focus on analyzing hierarchical models for pod

management and assessing the impact of microservices

architecture on the scalability of large-scale SaaS

platforms.

REFERENCES

de Water, B. (2022). 10 tips for building resilient

payment systems. Shopify Engineering.

https://shopify.engineering/building-resilient-

payment-systems (accessed April 11, 2025)

de Water, B. (n.d.). Shopify’s architecture to handle the

world’s biggest flash sales [Conference presentation].

InfoQ. https://www.infoq.com/presentations/shopify-

architecture-flash-sale/ (accessed April 12, 2025)

Denis, X. (2018). A pods architecture to allow Shopify to

scale. Shopify Engineering.

https://shopify.engineering/a-pods-architecture-to-

allow-shopify-to-scale (accessed April 10, 2025)

Khalid, H. (2024). Horizontally scaling the Rails backend

of Shop app with Vitess. Shopify Engineering.

https://shopify.engineering/horizontally-scaling-the-

rails-backend-of-shop-app-with-vitess (accessed April

8, 2025)

Madan, P. (2021). Shard balancing: Moving shops

confidently with zero-downtime at terabyte-scale.

Shopify Engineering.

https://shopify.engineering/mysql-database-shard-

balancing-terabyte-scale (accessed April 9, 2025)

Rodukov, A. (n.d.). Shopify's strategy for seamless

global expansion in eCommerce. LinkedIn.

https://www.linkedin.com/pulse/shopifys-strategy-

seamless-global-expansion-ecommerce-alex-rodukov-

z3exe (accessed April 14, 2025)

