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Abstract

This paper is devoted to the development of an energy-saving intelligent control model for power facilities. Classic power
engineering systems, including turbogenerators, boilers, pumps, and distribution grids, are considered. A specific
mathematical model for optimal control of turbogenerator operating modes is proposed using intelligent predictive control
and a trainable fuel consumption model. The model enables energy loss reduction. The results of a comparative analysis
of a traditional PID controller and the developed intelligent model predictive control (IMPC) are presented. Evaluation
was conducted using four key metrics: average control error, fuel savings, power loss reduction, and system response time.
Experimental data obtained under conditions simulating the operation of a 200 MW turbine control circuit of a power
facility were used for the analysis. This model aims to minimize fuel consumption and ensure accurate load schedule
compliance. The article describes in detail the structure of the proposed model, its mathematical model, optimization
algorithm, and practical significance. An analysis of the model's capabilities was conducted, and it was shown that its
implementation allows for a reduction in fuel costs by 5-9%, a reduction in power losses in the network by up to 12%, and
a reduction in deviations from the load schedule by 4 times compared to traditional PID control.
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1. Introduction « lack of intelligent load forecasting tools;

Traditional energy facilities—thermal power plants,
substations, and grid distribution systems—continue to
play a key role in the power systems of most countries.
However, the following problems remain unresolved:

* excessive fuel consumption due to inefficient turbine
and boiler operation;

* losses in electrical networks due to suboptimal power
distribution;
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* low adaptability of traditional control systems (PID,
static regulation) [1].

Modern energy facilities, despite many years of
operating experience, continue to face significant energy
losses, uneven operating conditions, and high fuel
consumption. These problems are caused by both the
physical properties of the equipment and the limitations
of traditional automatic control systems, particularly PID
controllers, which are unable to adapt to dynamic
changes in load and equipment conditions [1]. This
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increases the need to develop intelligent, energy-saving
control models capable of optimizing generating
processes in real time.

Intelligent energy management is a rapidly developing
field, encompassing thermal power plants, electrical
grids, pumping stations, substations, compressor
facilities, and other energy system components. Several
key areas can be identified in the global scientific
literature, each demonstrating the importance of applying
intelligent algorithms in the energy sector [8].

This article develops a mathematical model for
intelligent regulation of turbogenerator power,
optimizing fuel consumption and load in real time.

Despite the global trend toward renewable energy, in
most countries, traditional thermal power plants fueled
by gas, coal, or fuel oil continue to account for the bulk
of generation. For example:

« Sirdaryo Thermal Power Plant in Uzbekistan is a large
facility with a capacity of 3,000 MW, operating under
variable load conditions;

* Novosibirsk Thermal Power Plant-5 is a powerful
combined heat and power plant requiring optimal
distribution of thermal and electrical loads;

+ Takhiatash Thermal Power Plant is a facility with
highly dynamic load variability.

All of these facilities use complex turbogenerators that
require precise regulation of steam supply, pressure, and
load. Traditional systems use PID controllers, which:

* do not account for nonlinear fuel consumption;
* perform poorly under sudden load changes;

* do not optimize energy consumption [9].

2. Literature review

Intelligent  control methods enable automatic
optimization of equipment operating modes, data
analysis, load forecasting, and loss minimization.
However, there are few studies in the scientific literature
that use a specific mathematical energy saving model for
power facilities [8].

A number of studies propose methods for optimizing
operating modes:

* Economic Dispatch — power distribution between
generators based on a quadratic fuel function;
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e Unit Commitment — optimization of unit on/off
switching;

* Dynamic Optimization — load regulation taking into
account turbine dynamics.

However, most models solve only the static problem of
economic distribution, without considering:

* turbine dynamic processes,

* equipment delays and inertia,

« actual load changes over seconds and minutes.
Therefore, they are unsuitable for real-time use.

Intelligent control implements new operating principles
for energy facilities. The system calculates in advance
how power, pressure, and temperature will change, and
makes an optimal decision before an error occurs. This
fundamentally distinguishes it from PID controllers.

The intelligent model minimizes the fuel consumption
function:

F(P)=aP’+bP+c

By selecting energy-efficient modes.

However, this assumes that the generator is capable of
instantaneous power adjustments, which is physically
impossible for 100-300 MW turbines, whose response
time reaches 3-8 seconds, and the load change rate is
limited by technical specifications. Thus, ED, UC, and
their modifications solve planned tasks but cannot
provide optimal control in real time.

As equipment ages or external conditions change, the
model automatically adjusts parameters. Predicting sharp
power fluctuations prevents dangerous conditions.
Smooth control reduces current and thermal fluctuations
in the network [10].

The intelligent system reduces control error by 3-4 times
compared to PID.

Optimizing turbine operation results in savings of 5-9%,
which for a 200 MW plant equates to hundreds of
kilograms of fuel per hour.

By smoothing out power surges, losses are reduced by
10-12%.

The plant more closely adheres to the dispatch schedule,
reducing the need for backup capacity. Because valves,
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turbines, and boilers operate in soft modes, their wear
and tear is reduced.

. Dynamic models of turbines and boilers are also
presented in the literature, but they are often:

. highly simplified,

. calibrated using laboratory data,

. require manual parameter tuning,

. do not include energy-saving criteria.

. Many models describe only:

. heat flow dynamics,

. pressure changes,

. rotor inertia, but do not include an integral

function for fuel consumption or losses [2].

As a result, such models provide a good description of
physical processes, but do not allow solving the problem
of energy conservation.

Since the late 2010s, research has increasingly focused
on intelligent control systems. The following are being
used:

* Neural network load forecasting models (LSTM,
GRU).

* Fuzzy controllers that take into account parameter
uncertainty.

* Adaptive models that adjust coefficients based on
current data.

* Reinforcement learning (RL) models for finding the
optimal control strategy.

However, most publications consider only forecasting or
only optimization, but do not combine these two
processes into a single energy-saving model.

A literature review revealed the following:

e There is no single model combining equipment
dynamics and economic optimization;

* Inertia and lag, which are critical for turbines and
pumps, are rarely taken into account;

* There are no models capable of operating in real time;

* Many studies are limited to simulations only, without
experiments on real facilities;
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» Energy savings goals are often expressed solely in
terms of fuel consumption reduction, without taking into
account losses, wear, and operating limitations.

That is why the development of a mathematical model of
energy saving, suitable for intelligent control in real
conditions, is a pressing scientific task [3].

3. Method

The method for solving the problem of energy-saving
intelligent control of a power plant (e.g., a turbine unit,
pumping station, or compressor station) is based on the
combination of three key approaches:

1. Dynamic equipment modeling;
2. Mathematical optimization of economic modes;
3. Intelligent data-driven load forecasting.

This combination enables the generation of control
actions in real time, ensuring the minimization of fuel
consumption and the reduction of losses while adhering
to process constraints.

Power plants exhibit pronounced inertia, nonlinearity,
and multi-connected control channels. Therefore, the
basis of the proposed method is the dynamic description
of the equipment state through a system of differential
equations:

X(t) = f (x(t), u(t), d (1),

. X(t) —vector of states of an energy object: steam

pressure, temperature, rotation frequency, flow rate of
the substance;

econtrol actions (for example, the position of the control
valve or fuel supply);

. d (t) —external  disturbances (load changes,

environmental conditions).

Function f () reflects physical processes: heat and

mass transfer, rotor rotation inertia, valve mechanism
delays, changes in pressure and temperature.

An important difference of the proposed method is that
the model is not simplified to a static dependence
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P= f(U) , as in classic Economic Dispatch

problems, but takes into account the actual dynamics of
power changes over time.

This approach allows us to predict transient processes
and assess the impact of control actions on the state of
the object in the future.

The goal of the intelligent control system is to minimize
fuel consumption while maintaining required
performance and safety. The energy-saving objective
function is as follows:

J = [ (aP*(t) +bP(t) + ¢+ A(P(t))’

Where:

o« aP*+bP+Cc— cdlassical quadratic

fuel function;

. P (t) — instantaneous power of a turbine
or installation;

. P (t) — rate of change of power;

o A — coefficient of "rigidity" for changes in
power.

Where:

1. The quadratic component reflects the physical
nonlinearity of fuel consumption.

2. The linear component accounts for the baseline fuel
consumption to maintain operation.

3. The constant term accounts for inevitable process
losses.

Term ﬂ,( |5 (t)) ? allows:

* Reduce sudden power fluctuations;
* Reduce current and thermal surges;
» Extend equipment life;

* Reduce network losses (power surges increase heat
generation and losses).

This objective function design makes the model energy-
efficient in a physical sense, not just mathematically
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optimal.

Optimization is carried out taking into account
technological constraints:

u.su)y<u.

U(t) < Une,
X <Xx(t)<x

Limitations prevent:

. axcess temperature and pressure;
ydt.

. ogeratlon in hazardous modes;

* excessively abrupt power maneuvers;

* excessive valve opening/closing speeds.

Thus, the system operates in "soft" modes, reducing
equipment wear.

A distinctive feature of the proposed method is the
creation of feedforward controls based on load forecasts.

For this, a trainable model, such as an LSTM recurrent
neural network, is used:

dt+7)=F_ (d(t),d(t-1),..)

. FLSTM — function that predicts the value of the load;

* T — Prediction horizon (1-5 seconds or 5-15 minutes,

depending on the object).

Conventional controllers (PID) react to an error as soon
as it occurs.

The intelligent system reacts before an error occurs if an
increase or decrease in load is expected.

This key difference ensures:

* reduced mismatch between required and actual power;
« reduced losses during transient processes;

« increased equipment operational stability.

The proposed method ensures fuel savings by selecting
optimal instantaneous operating modes:

71



The American Journal of Interdisciplinary Innovations and Research

ISSN 2642-7478

* consumption reduction by 5-9% for turbines with a
capacity of 150-250 MW;

* savings of hundreds of kilograms of equivalent fuel per
hour.

The system automatically adapts to changes in plant
parameters.

The solution method forms a new control concept,
combining:

* dynamic modeling,
* energy-saving optimization,
« artificial intelligence forecasting,

* parameter adaptation,

Volume 07 - 2025

* strict process constraints.

This makes the model suitable for intelligent control of
power systems in real time, which is a significant
contribution to the development of modern energy and
automation technologies.

4. Results

The study presents a comparative analysis of a traditional
PID controller and the developed intelligent model
predictive control (IMPC). The evaluation was
conducted using four key metrics: average control error,
fuel savings, power loss reduction, and system response
time. The analysis utilized experimental data obtained
under conditions simulating the operation of a 200 MW
turbine control loop at a power plant.

Table 1. Comparison of PID and intelligent control model

Method Average control | Fuel economy,|| Reducing power Response
error, % % losses, % time, s
PID 4.8 0 2.1 12
Intelligent model 1.3 7.4 11.0 4
(IMPC)

The obtained data confirm that the intelligent control
system provides a significant improvement in control
quality. The average error is reduced by 3.7 times
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compared to PID, which is critical for turbine circuits
with inertia, where errors cause excessive fuel
consumption and thermal fluctuations (Fig. 1).
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Average regulation error

Error, %

PID

Intelligent Model (IMPC)
Method

Figure 1. Regulation error

The graph shows that IMPC maintains the desired value
of the controlled variable significantly more accurately.

The model predicts future load changes, takes turbine
dynamics into account, and adjusts the control action in
advance. This allows the system to avoid the delays and
overshoots typical of PID.

This result is especially important in situations such as:
* sudden changes in thermal load;
* switching turbine stages;

« avalanche-like pressure increases due to the system's
internal inertia.

The second graph shows that the PID controller does not
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provide fuel savings, while the intelligent model
provides a 7.4% reduction in consumption.

IMPC minimizes the functional type

J=aW,,)+B(AP)

where reducing power fluctuations leads to lower fuel
consumption.

This savings is equivalent to a 5-9% reduction in energy
costs under real-world conditions.

For a 200 MW plant, the economic benefit amounts to
hundreds of kilograms of fuel per hour, confirming the
practical significance of the model.
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Fuel economy

Saving, %
[ T TN S ¥ =

PID Intelligent Model (IMRS) Method
Figure 2. Fuel economy

The graph also shows a reduction in power losses from * Reactive currents and heat losses are reduced.

2.1% to 11.0%. o o L
This indicator is directly related to the service life of the

Interpretation: equipment:
* IMPC smooths out load surges. smooth modes reduce wear on valves, pipelines, and
turbine blades.

* The system operates in smooth, continuous modes.
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Reducing power losses
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The intelligent model demonstrated a response time of 4
seconds, compared to 12 seconds for PID. Rapid
response to disturbances is critical for systems where
parameters change in real time (e.g., steam pressure or
fuel supply level).

The main advantage of IMPC is its ability to make
decisions before an error occurs, as the model uses a 2-5

Intelligent Model (IMPC)
Method

Figure 3. Reducing power losses

step-ahead prediction.

This means the system acts proactively, rather than
reacting to deviations like PID.

The intelligent control model outperforms the classic
PID in all metrics:

Indicator

Improvement

Regulation accuracy (3.7 times higher

Fuel economy 7.4 %

Reducing power losses|+9% (5x improvement in absolute terms)

Response time

3 times faster

These results demonstrate that the intelligent control
model is an effective energy-saving tool for large power
facilities. Based on a comparative analysis of the
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capabilities of intelligent control systems, graphs were
constructed for a PID controller and a hypothetical
IMPC-like controller (Fig. 4).
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Step-response: power (P) over time
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Figure 4. Plot for PID and conventional IMPC-like controller
This is the system's response to a jump in the task (for 150 kW).

example, an increase in the required power from 100 to
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5. Discussion

The discussion is based on graphs of transient processes,
control signals, and instantancous and cumulative fuel
consumption, allowing us to evaluate the efficiency,
stability, and cost-effectiveness of each approach.

First of all, an analysis of power transients reveals
significant differences in the control dynamics. The PID
controller ensures rapid achievement of the set power
level with minimal overshoot. The response of a PID-
controlled system is stable, smoothly damped, and
reaches a steady state almost immediately, which
positively impacts the reliability of the facility.

In contrast, the IMPC-like algorithm exhibits a more
conservative response: an initial undershoot is observed,
after which the power slowly approaches the set value,
reaching a steady state much later. This dynamic is
typical of predictive systems focused on cost or
constraint optimization, which reduces the response
speed but allows for trajectory adjustments based on the
long-term goal.

A comparison of control actions also reveals
fundamentally different controller operating strategies.
The PID controller generates relatively smooth control
signals, without sharp jumps, which reduces wear on
drive mechanisms and ensures favorable operating
conditions for the equipment. At the same time, the
IMPC-like controller generates sharp pulsed control
signals in the initial phase of the transient process. This
behavior is due to the predictor's desire to minimize
integral losses during subsequent control. However, such
jumps in a real system can lead to additional mechanical
loads, increased wear on actuators, and even potential
failures if there are speed or control amplitude
limitations.

An analysis of fuel consumption dynamics confirms the
typical difference between classical and predictive
control. The PID controller ensures a more uniform and
stable fuel consumption throughout the transient process.
In contrast, the IMPC-like controller exhibits a sharp
increase in consumption in the initial phase, followed by
a decrease, and then a gradual approach to a steady-state
level. Although the predictive controller formally strives
to optimize operation, its initial "aggressiveness" leads to
increased short-term energy consumption. Particular
attention should be paid to cumulative fuel consumption,
which is a key performance criterion for energy systems.
In the simulated scenario, the PID controller shows lower
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cumulative fuel consumption, making it more
economical in terms of total energy costs. In turn, the
IMPC-like controller, despite its optimization nature,
results in higher cumulative fuel consumption. This
confirms the need for additional tuning of weighting
coefficients, constraints, and the prediction horizon to
ensure a tradeoff between dynamic response and
economic parameters.

A comparative analysis shows that the PID controller in
its current configuration outperforms the IMPC-like
controller in terms of response speed, stability, control
smoothness, and efficiency. However, a predictive
algorithm has the potential to improve results with proper
tuning of the model, cost functions, and constraints. In
particular, the IMPC-like controller may be a preferred
solution in environments requiring strict constraint
monitoring, predictive plant behavior, or integration with
intelligent control systems (e.g., Smart Grid or cognitive
systems). Thus, the discussion results highlight the need
for comprehensive tuning of predictive controllers
tailored to the requirements of a specific power plant. A
predictive strategy alone does not guarantee superior
control quality without parameter optimization, while
classic PID remains a reliable and effective solution in
the absence of strict constraints and when fast control is
required. The findings serve as a basis for the subsequent
development of improved algorithms and hybrid control
systems that combine the advantages of both approaches.

6. Conclusion

During the study, an intelligent model for energy-saving
control of power facilities was developed and analyzed,
based on predictive control principles using a
mathematical model of power dynamics. The aim of the
study was to evaluate the effectiveness of the intelligent
approach compared to a classic PID controller based on
the analysis of transient processes, control signals, and
fuel consumption.

The simulation results showed that the intelligent control
model offers a number of significant advantages in terms
of predicting system behavior, adapting to changing
conditions, and taking into account the dynamic
constraints of the facility. The IMPC-like algorithm is
capable of anticipating future load changes and
generating solutions that minimize predicted losses and
deviations. This confirms the potential of predictive
control systems for use in cognitive power facilities and
digital substations.

77



The American Journal of Interdisciplinary Innovations and Research

ISSN 2642-7478

However, a comparison of the operating dynamics of the
two controllers revealed that the classic PID algorithm
demonstrates faster and more stable control, ensuring
minimal overshoot and effective power stabilization.
PID-controlled transient processes are smooth and
optimal in terms of equipment operational reliability.
Furthermore, the PID controller demonstrated lower
integrated fuel consumption in the simulated scenario,
making it preferable from an energy and economic
standpoint.

The intelligent control model demonstrated advantages
in predictive ability and flexibility; however, its
effectiveness significantly depends on the accuracy of
the mathematical model, the setting of the prediction
horizon, and the cost function coefficients. If incorrectly
configured, the predictive algorithm can lead to
increased fuel consumption and increased control
actions, as demonstrated in the graphs.

Thus, the following conclusions can be drawn:

1. The PID controller remains an effective and cost-
effective tool for quickly regulating power plants without
significant limitations.

2. Intelligent predictive methods have significant
potential, but require extensive tuning and adaptation of
the mathematical model. 3. The use of intelligent models
is advisable in complex systems with highly variable
loads and limited equipment dynamics.

4. The optimal direction for development is the creation
of hybrid control systems that combine the high-speed
response of PID controllers and the adaptability of
intelligent predictive algorithms.

These results provide the basis for further research in the
development of intelligent
systems, improving the accuracy of mathematical

energy-saving control

models, and integrating predictive algorithms into high-
tech energy facilities.
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