

Investigating the Hydrochemical Characteristics of Geothermal Waters in The Cuona-Woka Rift Zone, Southern Tibet

OPEN ACCESS

SUBMITTED 20 April 2025

ACCEPTED 21 May 2025

PUBLISHED 01 June 2025

VOLUME Vol.07 Issue06 2025

CITATION

Dr. Tenzin L. Dorjee, & Prof. Mei-Xuan Zhang. (2025). Investigating the Hydrochemical Characteristics of Geothermal Waters in The Cuona-Woka Rift Zone, Southern Tibet. *The American Journal of Interdisciplinary Innovations and Research*, 7(06), 01-09. Retrieved from <https://theamericanjournals.com/index.php/tajir/article/view/6217>

COPYRIGHT

© 2025 Original content from this work may be used under the terms of the creative commons attributes 4.0 License.

Dr. Tenzin L. Dorjee

Department of Geosciences, Himalayan Plateau Research Institute, Lhasa, Tibet Autonomous Region, China

Prof. Mei-Xuan Zhang

Institute of Hydrothermal Systems and Geochemistry, Qinghai-Tibet Earth Science Center, Chengdu, China

Abstract: The hydrochemical evolution and genesis of geothermal waters in the Cuona-Woka Rift Zone of Southern Tibet were investigated to understand the geothermal system's nature and its relationship with geological, geochemical, and hydrological factors. Water samples from geothermal wells, springs, and surface waters in the region were analyzed for their chemical compositions, stable isotopes, and thermodynamic parameters. The results reveal that the geothermal waters in the Cuona-Woka Rift Zone are characterized by high concentrations of Na^+ , K^+ , SO_4^{2-} , and Cl^- , with moderate to high temperatures ranging from 60°C to 95°C. Geochemical modeling indicates that the geothermal waters are predominantly influenced by water-rock interaction processes, with the dissolution of silicate and carbonate minerals playing a major role. Isotopic analysis suggests a mixed origin of the geothermal waters, with contributions from both deep circulation and shallow recharge sources. This study provides a detailed understanding of the hydrochemical evolution of geothermal systems in the region and contributes to the broader understanding of geothermal energy resources in Tibet.

Keywords: Geothermal waters, hydrochemistry, Cuona-Woka Rift Zone, Southern Tibet, geothermal systems, water-rock interaction, isotopic analysis, geochemical modeling, thermal springs, tectonic activity, fluid evolution, geothermal exploration, hydrothermal alteration, chemical composition, environmental geochemistry.

INTRODUCTION

The Cuona-Woka Rift Zone in Southern Tibet, Southwestern China, is located along the southeastern edge of the Tibetan Plateau, where tectonic activity and volcanic phenomena contribute to the formation of geothermal systems. This region is characterized by the occurrence of several geothermal springs and wells, making it an ideal area for the study of geothermal water characteristics and their underlying genesis.

Geothermal waters are valuable resources for energy production and can also provide insight into the geological and hydrological processes that govern geothermal systems. The understanding of the hydrochemical evolution of geothermal waters is essential for the sustainable management of geothermal energy. Previous studies in Tibet have focused on the hydrogeological aspects of geothermal resources, but detailed investigations on the chemical evolution and genesis of these waters in the Cuona-Woka Rift Zone are limited.

This study aims to fill this gap by investigating the hydrochemical characteristics, genesis, and evolution of geothermal waters in the Cuona-Woka Rift Zone through water sampling, chemical analysis, and geochemical modeling. We hypothesize that the geothermal waters in this region are influenced by water-rock interactions, deep circulation, and regional tectonic activity, leading to a complex mixture of geothermal water types.

The Cuona-Woka Rift Zone, located in Southern Tibet, Southwestern China, is a region of intense tectonic and geothermal activity within the larger context of the Tibetan Plateau, one of the most geologically dynamic areas on Earth. The Tibetan Plateau, often referred to as the “roof of the world,” is home to several active fault lines, volcanic systems, and geothermal reservoirs.

These geothermal features are closely tied to the ongoing tectonic processes that have shaped the region for millions of years. The Cuona-Woka Rift Zone, positioned on the southeastern edge of the Tibetan Plateau, is particularly notable for its geothermal waters, which have attracted scientific interest due to their potential as energy sources and their unique chemical and isotopic signatures.

Geothermal energy, derived from the Earth's internal heat, is a promising renewable resource. Geothermal waters, which are naturally heated by volcanic activity, magma bodies, or deep circulation of groundwater, can provide not only a source of energy but also valuable information about the geological processes occurring beneath the Earth's surface. Understanding the chemical and isotopic composition of these waters is crucial for assessing their origins, evolution, and potential applications.

Southern Tibet, and particularly the Cuona-Woka Rift Zone, has been identified as an area with significant geothermal potential due to its proximity to fault lines and volcanic activity. Previous research has highlighted the presence of several geothermal springs and wells within the region, many of which show elevated temperatures and mineral concentrations. However, despite the growing interest in this area's geothermal potential, the detailed chemical and isotopic characteristics of the geothermal waters, and the processes driving their evolution, remain poorly understood. There is a significant gap in knowledge regarding the interaction between water and rock, the role of tectonic activity in controlling geothermal features, and the impact of deep groundwater mixing with meteoric water in shaping the hydrochemical properties of geothermal systems.

This study aims to fill this knowledge gap by investigating the hydrochemical evolution and genesis of geothermal waters in the Cuona-Woka Rift Zone. The study focuses on the chemical composition, stable isotopic signatures, and thermodynamic parameters of geothermal waters sampled from various springs, wells, and surface waters within the region. These analyses will provide insights into the underlying geochemical processes, such as water-rock interaction, mineral dissolution, and fluid mixing, that contribute to the

formation and evolution of geothermal systems.

The objectives of this research are threefold:

1. Characterize the hydrochemical properties of geothermal waters in the Cuona-Woka Rift Zone, focusing on major ions, trace elements, and dissolved gases.

2. Examine the stable isotopic composition ($\delta^{18}\text{O}$ and $\delta^2\text{H}$) of the geothermal waters to understand their origins and the processes that govern their mixing and circulation.

3. Model the geochemical evolution of geothermal waters using thermodynamic and geochemical simulations to assess water-rock interactions and fluid mixing processes in the geothermal system.

By investigating these aspects, the study will contribute to a more comprehensive understanding of the geothermal processes in this tectonically active region and provide crucial information for the future development of geothermal energy resources in Southern Tibet.

Geological and Tectonic Context

The Cuona-Woka Rift Zone is part of the broader Himalayan-Tibetan orogenic belt, where the Indian and Eurasian plates converge. This convergence has resulted in intense tectonic activity, including faulting, volcanism, and crustal thickening. The rift zone is characterized by a complex interplay of fault lines, fractures, and volcanic structures, all of which provide pathways for geothermal fluids to ascend from deep within the Earth's crust.

Geothermal systems in such tectonically active areas are often controlled by the movement of fluids along these fault zones and fractures, which serve as conduits for deep, hot fluids. The heat generated from these processes, combined with the interaction between water and rock, leads to the formation of geothermal reservoirs. In the Cuona-Woka Rift Zone, geothermal waters are primarily found in areas near fault lines and volcanic outcrops, which suggests a strong correlation between the region's tectonic activity and its

geothermal potential.

Hydrochemical Characteristics and Geothermal Waters

Geothermal waters are typically characterized by their high temperature, mineral content, and unique chemical composition, which result from the interaction between circulating groundwater and subsurface rock formations. The chemical composition of geothermal waters varies depending on factors such as the mineralogy of the surrounding rocks, the temperature at which the fluids are heated, and the depth of fluid circulation. Common chemical constituents in geothermal waters include sodium (Na^+), potassium (K^+), calcium (Ca^{2+}), chloride (Cl^-), sulfate (SO_4^{2-}), and bicarbonate (HCO_3^-), among others. The concentrations of these ions can provide valuable information about the geological processes at play.

In the Cuona-Woka Rift Zone, initial studies have indicated the presence of geothermal springs with varying concentrations of major cations and anions, as well as elevated temperatures (ranging from 60°C to 95°C). However, the precise sources of these geothermal waters, their chemical evolution over time, and the role of water-rock interactions remain poorly understood. A detailed analysis of the hydrochemical properties of these geothermal waters is therefore essential for identifying the processes that shape these geothermal systems and for evaluating their potential for energy production.

Stable Isotopes as Tracers of Geothermal Waters

Stable isotopes, particularly those of oxygen ($\delta^{18}\text{O}$) and hydrogen ($\delta^2\text{H}$), are widely used to trace the origin and movement of water in geothermal systems. The isotopic composition of water can provide insights into its source, its interactions with rocks, and its mixing with other water bodies. In geothermal systems, the stable isotope signatures of geothermal waters can reveal whether the waters are derived from meteoric precipitation, deep circulation of groundwater, or a combination of both.

In the Cuona-Woka Rift Zone, the analysis of $\delta^{18}\text{O}$ and $\delta^2\text{H}$ values in geothermal waters is expected to reveal important information about the mixing processes

between shallow and deep water sources. Specifically, the study aims to determine whether the geothermal waters are primarily composed of meteoric water that has been heated by geothermal processes or if deeper, older geothermal fluids contribute significantly to the overall composition. Understanding these mixing processes will provide insights into the genesis of the geothermal system and help inform future geothermal energy development.

Importance of the Study

This research is significant not only for its potential to enhance the understanding of geothermal systems in the Cuona-Woka Rift Zone but also for its broader implications in the context of geothermal energy development in Tibet and other tectonically active regions. With the increasing demand for renewable energy sources, geothermal power has emerged as a promising option for sustainable energy generation. Geothermal systems located in regions with active tectonics, such as Tibet, have significant potential for large-scale energy production. However, the successful development of geothermal energy requires a thorough understanding of the underlying geothermal processes, including water-rock interactions, fluid sources, and the long-term sustainability of the geothermal reservoirs.

By examining the hydrochemical evolution and genesis of geothermal waters in the Cuona-Woka Rift Zone, this study will contribute to the development of geothermal energy resources in the region and provide a better understanding of the complex interplay between geological, hydrological, and geochemical factors in geothermal systems. Furthermore, the findings of this study can be applied to other regions with similar geothermal characteristics, thereby enhancing the global understanding of geothermal energy systems and their sustainable use.

METHODS

Study Area

The Cuona-Woka Rift Zone is located in Southern Tibet, within the southeastern section of the Tibetan Plateau. The region is tectonically active, marked by fault lines, volcanic activity, and seismic events. The rift zone is

primarily composed of sedimentary rocks, volcanic formations, and granite bodies. Geothermal activity is commonly found along fault lines and fractures, with several geothermal springs and wells dotting the landscape.

Sampling and Field Data Collection

A total of 20 geothermal water samples were collected from geothermal springs, wells, and surface waters located in the Cuona-Woka Rift Zone. The samples were collected over two field campaigns, during both the wet and dry seasons, to account for seasonal variations in hydrochemical composition.

Sampling points were selected based on proximity to known geothermal features, such as fault zones and volcanic outcrops. Geographic coordinates, elevation, and temperature were recorded at each sampling site.

Chemical Analysis

Water samples were analyzed for a range of chemical parameters, including major ions (Na^+ , K^+ , Ca^{2+} , Mg^{2+} , SO_4^{2-} , Cl^- , HCO_3^- , and NO_3^-), trace metals (Fe, Mn, As, and Cu), and dissolved gases (CO_2 , H_2S , CH_4). The analyses were conducted using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) for major ions and trace metals, respectively.

Stable Isotope Analysis

Stable isotopes of oxygen ($\delta^{18}\text{O}$) and hydrogen ($\delta^2\text{H}$) were measured to assess the origin and mixing of geothermal waters. Isotopic compositions were determined using a Delta V Plus mass spectrometer.

Geochemical Modeling

Geochemical models were developed using PHREEQC software to simulate the water-rock interactions occurring in the geothermal system. The models considered the dissolution of silicate and carbonate minerals, the evaporation processes, and the mixing of different water types from deep and shallow sources.

RESULTS

Hydrochemical Characteristics

The geothermal waters in the Cuona-Woka Rift Zone display a wide range of chemical compositions, with sodium (Na⁺) and potassium (K⁺) as the dominant cations and sulfate (SO₄²⁻) and chloride (Cl⁻) as the major anions. The water temperatures vary between 60°C and 95°C, with most geothermal springs showing temperatures in the range of 70°C to 85°C. The pH values of the geothermal waters range from 6.5 to 8.0, indicating slightly acidic to neutral conditions.

The highest concentrations of dissolved solids were found in samples from the deeper geothermal wells, with total dissolved solids (TDS) concentrations exceeding 1,500 mg/L. Geothermal spring waters, in contrast, exhibited lower TDS levels, ranging from 500 mg/L to 1,000 mg/L.

Stable Isotope Signatures

Stable isotope analysis revealed that the geothermal waters in the region exhibit $\delta^{18}\text{O}$ values between -6.0‰ and -8.5‰, and $\delta^{2}\text{H}$ values between -30‰ and -40‰. The $\delta^{18}\text{O}$ - $\delta^{2}\text{H}$ plot shows that the geothermal waters fall along the local meteoric water line, indicating a significant contribution of meteoric water in the genesis of these geothermal systems. However, some geothermal samples from deeper wells exhibit isotopic signatures that suggest a contribution from deep, old waters.

Geochemical Modeling Results

Geochemical modeling results indicate that the geothermal waters in the Cuona-Woka Rift Zone are primarily influenced by the dissolution of silicate minerals, such as albite and anorthite, and carbonate minerals, such as calcite and dolomite. The models suggest that the waters are in equilibrium with respect to these minerals, which contribute to the high concentrations of Na⁺, K⁺, and Ca²⁺ in the geothermal waters. Additionally, mixing between deep geothermal fluids and shallow recharge water was identified as a significant factor in the overall composition of the geothermal waters.

DISCUSSION

The hydrochemical evolution of geothermal waters in the Cuona-Woka Rift Zone is primarily controlled by

water-rock interactions, which involve the dissolution of both silicate and carbonate minerals. The high concentrations of Na⁺, K⁺, and Cl⁻ suggest that halite dissolution and silicate weathering processes play key roles in shaping the water chemistry. The presence of sulfate (SO₄²⁻) indicates the potential involvement of sulfide oxidation, possibly due to volcanic activity in the region.

The stable isotope data support the hypothesis that the geothermal waters have a mixed origin, with significant contributions from both meteoric water and deeper, older geothermal fluids. The presence of deep fluids is supported by the isotopic signatures of some geothermal samples, which show more negative $\delta^{18}\text{O}$ and $\delta^{2}\text{H}$ values compared to shallow groundwater sources.

Geochemical modeling further confirms the role of water-rock interactions, particularly the dissolution of minerals, in the evolution of the geothermal waters. The results indicate that the geothermal waters are in equilibrium with a variety of minerals, and that water mixing between shallow and deep sources is a significant factor in their hydrochemical composition.

In addition, the spatial distribution of geothermal features along fault lines and volcanic outcrops suggests that tectonic activity plays a significant role in controlling the location and intensity of geothermal activity in the region. The high-temperature geothermal systems are primarily associated with fault zones, where deep circulation of water is facilitated by fractures and fissures in the bedrock.

The findings of this study provide valuable insights into the hydrochemical evolution and genesis of geothermal waters in the Cuona-Woka Rift Zone, located in Southern Tibet. The geochemical and isotopic data suggest that the geothermal waters in this region are primarily influenced by water-rock interactions, with contributions from both meteoric water and deeper, older geothermal fluids. This section discusses the implications of these findings in terms of the geothermal system's formation, evolution, and potential applications.

Water-Rock Interaction and Geochemical Evolution

The chemical composition of geothermal waters in the Cuona-Woka Rift Zone is indicative of significant water-rock interactions. High concentrations of major cations such as Na^+ , K^+ , and Ca^{2+} suggest that these ions are mainly derived from the dissolution of silicate minerals (e.g., albite, anorthite) and carbonate minerals (e.g., calcite, dolomite). These minerals are common in the region's sedimentary and volcanic bedrock, and their dissolution in geothermal systems leads to the high salinity observed in the geothermal waters.

The presence of sulfate (SO_4^{2-}) in significant concentrations further points to the dissolution of sulfide minerals, which may be oxidized by geothermal processes or volcanic gases. The high concentrations of chloride (Cl^-) in the geothermal waters are consistent with halite dissolution, which is a known contributor to water salinity in geothermal systems, especially those influenced by tectonic activity. This finding suggests that water-rock interactions in this rift zone are primarily responsible for the chemical evolution of the geothermal waters.

Geochemical modeling using PHREEQC confirmed that the geothermal waters in the Cuona-Woka Rift Zone are in equilibrium with several minerals, including silicates and carbonates, as expected in geothermal systems influenced by water-rock interactions. The model also suggested that the geothermal waters are undergoing a process of mixing between deep geothermal fluids and shallow recharge water. This mixing process leads to variations in the hydrochemical signatures observed in different geothermal sources, particularly those with differing depths and temperatures.

Stable Isotopes and Water Mixing

The stable isotope analysis of the geothermal waters in the region revealed distinct signatures of $\delta^{18}\text{O}$ and $\delta^{2\text{H}}$, which allowed for the identification of the geothermal waters' origins. The $\delta^{18}\text{O}$ and $\delta^{2\text{H}}$ values of the geothermal samples fall along the local meteoric water line (LMWL), suggesting that these waters have a significant meteoric (precipitation) origin. This implies that precipitation infiltrates the surface and circulates through the subsurface before being heated and

mineralized, a common feature of many geothermal systems worldwide.

However, some of the deeper geothermal wells exhibited isotopic signatures that suggest the involvement of older, deeper fluids. These fluids likely represent a mixture of meteoric water that has been deeply circulated and geothermally heated, contributing to the geochemical diversity observed across the geothermal springs and wells. This dual-source contribution, as indicated by the stable isotope data, is an important finding, as it highlights the complex nature of geothermal systems in the region, where deep geothermal fluids mix with shallower, meteoric waters, resulting in a variety of geothermal water types.

The isotopic signatures observed in the deeper geothermal waters further suggest that the geothermal system is not homogenous, and that water from different depths may interact in a complex manner. This dynamic mixing process is likely influenced by regional tectonic activity, which facilitates fluid movement through faults and fractures in the subsurface, allowing for the mixing of deep geothermal fluids with surface-derived waters.

Tectonic Influence on Geothermal Activity

The Cuona-Woka Rift Zone is tectonically active, with fault lines and volcanic outcrops being key features of the landscape. These tectonic structures are crucial in controlling the location and intensity of geothermal activity. The high temperature of the geothermal waters (ranging from 60°C to 95°C) is likely a result of geothermal heat flow from the Earth's interior, facilitated by the movement of fluids through fault systems and fractures.

Tectonic processes in the region also influence the water-rock interactions that govern the chemical evolution of the geothermal waters. Fault zones provide pathways for deep, geothermal fluids to rise to the surface, where they mix with shallow groundwater, enriching the geothermal waters with various dissolved ions. The spatial distribution of geothermal springs and wells along these fault zones further suggests that tectonic activity is a key driver in the formation and

geochemical evolution of the geothermal system.

The presence of high-temperature geothermal wells associated with active fault lines supports the idea that tectonic forces play a significant role in both the spatial distribution of geothermal features and the thermodynamic conditions that influence the hydrochemistry of geothermal waters. As the tectonic forces continue to evolve, it is likely that new geothermal features will emerge, and existing ones may undergo changes in their hydrochemical composition.

Implications for Geothermal Energy and Sustainable Development

Understanding the hydrochemical evolution and genesis of geothermal waters in the Cuona-Woka Rift Zone is crucial for the sustainable management of geothermal energy resources in the region. The diverse hydrochemical signatures of the geothermal waters indicate that the geothermal system is dynamic, with varying chemical compositions and temperatures depending on the depth and source of the geothermal fluids. These variations are important considerations for the development of geothermal energy, as they can influence the efficiency and sustainability of geothermal energy extraction.

In particular, the high salinity and mineral content of the geothermal waters in the region suggest that mineral scaling could be a potential challenge in the operation of geothermal power plants. Proper treatment and management strategies will be required to mitigate these issues and optimize energy production. Additionally, the mixing of shallow and deep fluids may also affect the long-term sustainability of the geothermal system, making it essential to monitor changes in the water chemistry over time.

Furthermore, the study highlights the importance of conducting regional studies to understand the hydrochemical dynamics of geothermal systems in Tibet and other tectonically active areas. Such studies will help in the identification of optimal locations for geothermal energy extraction, as well as inform the design of sustainable geothermal systems that can minimize environmental impacts.

Concluding Remarks

In conclusion, the hydrochemical evolution and genesis of geothermal waters in the Cuona-Woka Rift Zone are shaped by a combination of water-rock interactions, isotopic mixing of deep and shallow waters, and regional tectonic processes. The study underscores the complexity of geothermal systems in this region, with significant implications for their sustainable utilization. The findings contribute to a deeper understanding of the mechanisms driving geothermal activity in the Cuona-Woka Rift Zone and provide a foundation for future research and geothermal energy development in Tibet.

CONCLUSION

This study provides a detailed analysis of the hydrochemical evolution and genesis of geothermal waters in the Cuona-Woka Rift Zone of Southern Tibet. The results indicate that the geothermal waters are shaped by water-rock interactions, mineral dissolution, and mixing between deep geothermal fluids and shallow recharge water. Stable isotope and geochemical modeling results suggest a complex geothermal system influenced by both meteoric and deep groundwater sources, with tectonic activity playing a significant role in controlling geothermal features.

These findings contribute to a better understanding of the hydrogeochemical processes in the region and can inform the sustainable development and management of geothermal energy resources in Tibet. Future studies should focus on expanding the spatial and temporal coverage of the samples and explore the impact of climate variability on geothermal systems in the region.

REFERENCES

- Allis, R. G., & Hunt, T. M. (2004). Geothermal systems in the context of plate tectonics. Geothermal Energy Association. Retrieved from www.geo-energy.org.
- Arnórsson, S., & Stefánsson, A. (2003). Geothermal systems: Chemical and isotopic methods. *Earth Science Reviews*, 53(1-3), 1-37. [https://doi.org/10.1016/S0012-8252\(02\)00013-5](https://doi.org/10.1016/S0012-8252(02)00013-5)

Berner, R. A. (1981). Kinetics of water-rock interaction in geothermal systems. *Geochimica et Cosmochimica Acta*, 45(4), 811-829. [https://doi.org/10.1016/0016-7037\(81\)90250-9](https://doi.org/10.1016/0016-7037(81)90250-9)

Chen, X., & Xu, T. (2012). Hydrogeochemical processes in geothermal systems of the Tibetan Plateau: A review. *Geothermal Science and Technology*, 7(2), 143-165. <https://doi.org/10.1016/j.geothermics.2012.02.004>

Giggenbach, W. F. (1991). Chemical techniques in geothermal exploration. In L. J. M. Van Der Hoeven & S. E. H. J. P. (Eds.), *Geothermal Energy and the Environment* (pp. 241-290). Academic Press.

Gong, J., Liu, Z., & Wei, D. (2019). Chemical and isotopic study of geothermal waters in the eastern part of the Tibetan Plateau: Implications for the origin and evolution of geothermal systems. *Geothermal Research Journal*, 8(1), 63-79. <https://doi.org/10.1088/1755-1315/8/1/012032>

Harris, R. N., & White, W. M. (2005). The origin of geothermal fluids in the Yellowstone National Park, USA. *Journal of Volcanology and Geothermal Research*, 149(1-2), 89-106. <https://doi.org/10.1016/j.jvolgeores.2005.06.004>

Kharaka, Y. K., & Mariner, R. H. (1989). Chemical geothermometers and their application to formation waters from Middle Eastern oil fields. *Geothermics*, 18(3), 39-53. [https://doi.org/10.1016/0375-6505\(89\)90018-X](https://doi.org/10.1016/0375-6505(89)90018-X)

Li, Q., & Zhang, Y. (2014). Geothermal potential in the southern Tibetan Plateau: A study of the Cuona-Woka Rift Zone. *Tibetan Plateau Geoscience Journal*, 33(6), 674-685.

Liang, Y., & Ren, S. (2017). Geochemical investigation of geothermal fluids from the Tibetan Plateau: Implications for heat flow and geothermal system dynamics. *Chinese Journal of Geophysics*, 60(8), 3364-3377. <https://doi.org/10.1002/cjg2.1035>

Mielke, T. W., & O'Connor, W. M. (2002). The geochemical evolution of geothermal fluids in active rift zones. *Geological Society of America Special Paper* 369, 59-74. <https://doi.org/10.1130/0-8137-2369-5.59>

Niu, H., & Jiang, W. (2015). Hydrochemical characteristics and genesis of geothermal waters in Southern Tibet. *Journal of Geothermal Research*, 39(2), 155-167. <https://doi.org/10.1007/s00015-015-0195-2>

Schoell, M. (1983). Genetic characterization of natural gases. *Geochimica et Cosmochimica Acta*, 47(2), 167-183. [https://doi.org/10.1016/0016-7037\(83\)90059-5](https://doi.org/10.1016/0016-7037(83)90059-5)

Stefánsson, A., & Arnórsson, S. (2003). Geothermal fluids from Iceland: Water-rock interactions and mineralization. *Geothermics*, 32(1), 97-115. [https://doi.org/10.1016/S0375-6505\(02\)00071-1](https://doi.org/10.1016/S0375-6505(02)00071-1)

Taylor, R. H., & Swaine, D. J. (2016). *Geothermal resource management in tectonically active regions*. Springer. ISBN: 978-3-319-27659-6.

Wang, J., & Li, S. (2018). Isotopic study of geothermal waters in the southeastern Tibetan Plateau: Implications for water origin and geothermal resource evaluation. *Journal of Hydrology*, 557, 1044-1056. <https://doi.org/10.1016/j.jhydrol.2017.12.040>

Wei, D., & Wang, Z. (2021). A study of the geochemical evolution of geothermal waters in southwestern China. *Geothermal Science and Technology Journal*, 10(3), 121-133. <https://doi.org/10.1016/j.geothermics.2021.05.003>

Wu, Y., & Yang, M. (2020). Geothermal resources of the Tibet Plateau: Distribution, characteristics, and development. *Tibetan Studies Journal*, 15(3), 225-240.

Zhang, L., & Xu, T. (2012). Water-rock interaction and geochemical modeling of geothermal systems in the Tibetan Plateau. *Geochemistry*, 72(4), 285-298. <https://doi.org/10.1016/j.chemer.2012.02.003>

Zhao, J., & Du, M. (2014). Tectonic settings of geothermal systems in the southeastern Tibetan Plateau and their role in geothermal development. *Geological Bulletin of China*, 33(10), 1440-1454. <https://doi.org/10.1130/B30565.1>

Zhou, Y., & Liu, X. (2011). Hydrochemical and isotopic characteristics of geothermal waters in Tibet: Implications for geothermal system formation. *Geochemical Transactions*, 12, 30.

The American Journal of Interdisciplinary Innovations and Research

<https://doi.org/10.1186/1467-4866-12-30>

Zhu, H., & Li, B. (2019). The role of tectonic faults in geothermal fluid flow and the development of geothermal energy resources in Tibet. *Tibetan Journal of Geophysics*, 40(6), 1123-1135.

Zhu, Y., & Zhang, J. (2017). Geochemical and isotopic studies of geothermal waters in the Central Tibetan Plateau: Implications for the formation and development of geothermal systems. *Hydrogeology Journal*, 25(5), 1503-1518.

<https://doi.org/10.1007/s10040-017-1623-6>

Zhang, Q., & Liu, X. (2010). Hydrothermal alteration and geothermal resources in the Himalayan-Tibetan region. *Acta Geologica Sinica*, 84(3), 713-727.