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ABSTRACT 

Based on the analysis of the Debye function, which relates the Debye temperature D  and the 

measured temperature of the object T, it is shown that the Debye temperature of crystals decreases 
with temperature decreasing from room temperature to absolute zero. 
It is shown that the Debye temperature at temperature T = 0 K does not depend on the Debye 
function, but depends only on the mass of the atom and the amplitude of the zero-point oscillations. 
Based on the analysis of the thermal crystal lattice oscillations Debye theory basic assumptions and 
experimental data accumulated for recent years, a formula is proposed that relates the Debye 

temperature at moderate temperatures D and at absolute zero temperature (T = 0 K) 0. It is shown 

that the calculated Debye temperature 0 at the absolute zero temperature according to the 

proposed formula in the range from  2 to  13 % coincides with the experimental data taken from 
literature for a number of substances of different classes. 
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Thermal crystal lattice oscillations, Debye temperature, Debye theory, moderate temperatures, 

absolute zero temperature. 

 

 

INTRODUCTION 

 

The Debye temperature D is one of the 
important characteristics of a crystal 
characterizing its thermo-physical and 

strength properties. To successfully use these 
characteristics in practice and manage them 
based on the scientifically justified methods, it 
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is important to know the nature and thermal 
vibrations mechanisms of atoms. In the theory 
of thermal vibrations of atoms in crystals, the 

Debye temperature D is assumed to be 

almost constant (in the limit  10 % for a given 

substance) at temperatures 300-0 К (Т <D) 
[1,2,3]. Apparently, at that period of time this 
was probably due to lacking relevant 
experimental data on low-temperature 
dependence of the Debye temperature. 
Recent experimental data show that the 
Debye temperature decreases from 22% to 40% 
for various compounds, such as TiC [4] ZrzNb1-

zCxNy [5] and gallium monochalcogenides [6] 
in the temperature range 300-0 K. In some 
recent publications, θ0 is given a value greater 
than θD [7]. Thus, the question if Debye 
temperature either decreases or increases or 
remains constant with decrease in the 
temperature of the matter to absolute zero is 
still open. Is it possible to find an 
unambiguous answer to this question? Is it 
possible to find an expression connecting the 
Debye temperatures at high θD and at 
cryogenic temperature θ0? The purpose of this 
paper is to analyze the nature of the change in 
the Debye temperature in the temperature 
range 300-0 K and find an expression relating 
the Debye temperature at room temperature 

D (Т=300 К) and at absolute zero 

temperature (Т =0 К ) 0.  

 

THEORETICAL ANALYSIS 

According to Debye's theory of atoms thermal 

oscillations in a crystal lattice, the thermal 

oscillations of atoms in crystals are considered 

to be similar to the thermal excitation of 

quasiparticles – phonons, like to thermal 

excitation of photons. In this model, vibration 

energy of the crystal lattice, that is, the 

phonon energy should be considered a 

quantized quantity. In experiment, energy 

quantization of elastic waves in lattice is 

indeed manifested when these waves interact 

with X-rays and neutrons. At these interaction, 

the energy and impulse of X-rays and neutrons 

change so that these changes correspond 

exactly to the occurrence or absorption of one 

or more phonons [8, 9]. 

According to the X-ray and neutron scattering 

theory, the relationship between the 

amplitude of thermal oscillations of atoms in a 

crystal and the Debye temperature is 

determined by the following transcendental 

equation [8, 9]: 
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where   is the Debye temperature,   is the 

mean square amplitude of the thermal 

oscillations of atoms in the element (or atomic 

complex in alloys) conditioned by thermal 

oscillations of atoms, h is the Planck constant, 

k is the Boltzmann constant, m is the average 

atomic mass in the element (or atomic 

complex in the alloys), х =  /Т is the ratio of the 

Debye temperature to the measured 

temperature T (in K), and Ф(х) is the tabulated 

Debye function, which is known from the 

specific heat theory and is defined as follows: 



The USA Journals Volume 02 Issue 08-2020 90 

 
 

 

  
 

The American Journal of Interdisciplinary Innovations and Research  
(ISSN–2642-7478) 
Published: August 27, 2020 | Pages: 88-96  
Doi: https://doi.org/10.37547/tajiir/Volume02Issue08-12 
 

 

IMPACT FACTOR 

2020: 5. 498 

 

 

Ф(х) =  

х
d

х
0

1

1





,   (2) 

where  =
kT

h
, ω-cyclic frequency of thermal 

oscillations. Let us analyze formula (1) in the 
absence of phase transformations at 
cryogenic temperatures. (In the case of phase 
transformations, the thermo physical 
characteristics of the matter may undergo an 
abnormal transformation). Equation (1) 
includes two variables that depend on the 
temperature: the Debye function and the 
mean square amplitude of the thermal 

vibrations of atoms 

___
2u . According to the 

properties of the Debye function Ф(х) [9], the 
ratio Ф(х)/х in the expression (1) decreases 
with decreasing temperature T (with 

increasing x= D /T), and as T approaches 

absolute zero (T  0 K), the ratio Ф(х)/х 
highly rapidly (exponentially) approaches zero 
(Fig.1). This should lead to a decrease in the 

Debye temperature D  at Т 0 К. Although, 

as the temperature decreases 
___

2u  also 

decreases, which, according to (1), should lead 

to an increase in D . However, 
___

2u  decreases 

much slower than the Debye function. If the 
amplitude of thermal oscillations of atoms is 
usually 5-7% of the mean atomic distance at 
room temperature, then at T = 0 K, the 
amplitude of zero-point oscillations is 2-3% of 
the average atomic distance. 

 

 

Fig. 1. Dependence of  /x function on x (according to the data from [9]). 

Therefore, one can see that decrease of  in the 

temperature interval 300 - 0 К is not as big as 

the decrease in the expression for Ф(х)/x, 

which decreases several times sharply with 

decreasing temperature in the interval 300 - 0 

K. Thus, analysis of formula (1), which relates 

the Debye temperatures and the mean square 

amplitude of the thermal oscillations of atoms 

through the Debye function, makes it possible 

to state that at cryogenic temperature with 



The USA Journals Volume 02 Issue 08-2020 91 

 
 

 

  
 

The American Journal of Interdisciplinary Innovations and Research  
(ISSN–2642-7478) 
Published: August 27, 2020 | Pages: 88-96  
Doi: https://doi.org/10.37547/tajiir/Volume02Issue08-12 
 

 

IMPACT FACTOR 

2020: 5. 498 

 

 

the Debye temperature changing from   to  , a 

strong decrease in the Debye function plays 

determining role leading to decrease in the 

temperature  . 

On the other hand, this conclusion can be also 

drawn by analyzing formulas (1) and (2). Let’s 

calculate Ф(x) function at the temperature T = 

0 K. At T = 0 K, the integral in expression (2) 

has the following form: 

Ф(х) = 



0

1

1






d

х
,   (3) 

 

By taking into account that the integral (3) is [10] 
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Then from (3) and from the condition T = 0 K one can obtain the following expression: 
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According to the condition (4) and expression (1), at T = 0 K for the Debye temperature one can 

obtain the following expression: 

 














0

___
2

0

2

2

0
4

1)(

4

9

Тх

хФ

umk

h



 


4

1

4

9
___

2

0

2

2

umk

h


 


___

2

0

2

2

16

9

umk

h


  (5) 

 

 

 

 

It is seen from expression (5) that at the 

temperature T = 0 K, the Debye temperature 

will be determined by the mean square 

displacement of the atom   and the mass of 

the atom. This means that at the temperature 

T = 0 K, the Debye temperat

depend on the Debye function, that is, on the 
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phonon spectrum, but depends only on the 

mass of the atom and the mean square 

amplitude of zero-point oscillations of atoms 

(on the energy of zero-point oscillations). 

Thus, theoretical analysis shows that the 

Debye temperature decreases with decreasing 

temperature below room temperature, and at 

temperature T = 0 K does not depend on the 

Debye function (thermal vibration spectrum), 

but depends only on the mass of the atom and 

the amplitude of zero-point oscillations (zero-

point energy). Of course, this assertion is 

correct if there are no phase transitions in the 

crystal with decreasing temperature. Let’s 

now proceed to find the connection between 

the Debye temperatures at room temperature 

and at absolute zero. 

RESULTS AND DISCUSSION 

According to the theory of crystal lattice 

oscillations, the energy of a normal lattice 

oscillation is equal to the energy of a quantum 

oscillator with a mass equal to the mass of 

vibrating atoms, and its frequency is equal to 

the frequency of the normal oscillations [1]. If 

the crystal consists of N atoms making bound 

oscillations, the total energy of the crystal will 

be equal to the sum of the energy of 3N 

independent normal linear harmonic 

oscillators. The lattice thermal oscillations 

energy quantum or a quantum oscillator is 

called phonon. 

It is known that the energy of one quantum 

oscillator or a phonon is quantized and 

described by the following formula [1]: 

n = (n+1/2)h0,  (6) 

where 

oscillator, n – is quantum number that takes 

integer values (n = 0, 1, 2, ...) and characterizes 

degree of thermal excitation of oscillator. The 

energy corresponding to the value n = 0 is 

called the zero-  

which is not thermal energy. It is appropriate 

to note here that according to some 

educational literature (for example, in [11]), 

the zero-vibration energy of one phonon is 

determined by the expression 

0 = max
8

9



 = max

8

9
v

h
,  

where ωmax is the maximum frequency (Debye 
frequency) of thermal oscillations excited at a 
temperature called the Debye temperature T = 
θ. However, this expression is incorrect. The 
incorrectness of this expression is that the 
energy of zero-point oscillations cannot be 
determined by the maximum frequency  ωD = 
ωmax. It should be determined by the 
frequency of zero-point oscillations ω0, which 
lies between the frequencies 0 and ωmax. Zero 
oscillation does not carry and does not 
transmit energy. It is not an elastic vibration, 
and is determined by the quantum nature of 
the atoms. The energy of zero-point 
oscillations of a crystal is constant and must 
be additively added to the thermal energy of 
the lattice. The fallacy of expression (2) 
follows from the fact that, first, when 
determining the total crystal energy as an 
integral sum of the thermal oscillations of 
individual oscillators, the expression of zero-
point oscillations ћω0 / 2 also contribute to the 
integral [1-3, 11] as a variable. This cannot be 
done, since it does not depend on 
temperature on temperature and is a constant 
value for a given crystal. Secondly, for the 
lower boundary of integration, which 
determines the total energy of thermal 
oscillations of oscillators, they take not the 
frequency of zero oscillations ω0, but the 
frequency 0, which is also not correct. 

Zero-point energy corresponds to zero-point 
oscillations, which do not depend on the 
temperature of the crystal and do not decay 
even at T = 0 K. These oscillations do not 
carry and do not transmit thermal energy. 
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The existence of zero-point vibrations is 
related to the uncertainty relation of 
quantum mechanics, according to which, 

xpxħ/2. From this relation it follows that 
an exact definition of coordinate of an 

oscillating atom in the space (х0) causes a 
large uncertainty in its momentum, and, 
accordingly, in its kinetic energy. On the 
other hand, an increase in the particle 

coordinate 
2

x 2k
 determination region 

would lead to an increase in the potential 
energy, which is also not energetically 
favorable. Consequently, the zero-point 
oscillations energy is the minimum value of 
energy that an atom can have. Thus, atoms 
in a crystal at a temperature T = 0 K oscillate 
with zero frequency corresponding to zero 
energy. 

According to the existing thermal 
lattice vibrations theory, at certain 

temperature Т = D, called the Debye 

temperature, all possible oscillations in a 

crystal with frequencies from 0 to max are 
excited [1, 2]. This temperature is called the 
Debye temperature. The energy quantum of 
one quantum oscillator corresponding to a 

given temperature and frequency max can be 

defined as max= hmax. max is the frequency 
that corresponds to the imaginary 
wavelength λmin = 2a (а – is lattice period) and 
creates standing waves in the lattice. At 

frequencies <max, it is difficult for standing 
waves to appear. They are weakly excited 
and rapidly damped. Waves with wavelength 
λ > λmin = 2а become stable after excitation at 

the frequency max [2]. Consequently, at the 

temperature Т = D, at the first energy level 
(n = 1), the energy of one phonon with 

frequency  = max will be determined 
according to the expression (6), as follows 
[12]: 

 

 

max = hmax = (1+1/2)h0 = 
2

3
 h0.    (7) 

The frequency max can be determined through the Debye temperature from the 

following condition [1]: 

 

 

kD = ħmax = hmax.     (8) 

 

  

It follows that 

max = 
h

k
D.       (9) 
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Similarly to expression (9), for zero-point oscillations frequency one can write that 

0 =
h

k
0.      (10) 

where 0 is the Debye temperature corresponding to the zero-point oscillations frequency 
of the atoms. From the expressions (7), (9) and (10) it follows that 

 

0 = 
3

2 D.      (11) 

 

Indeed, such relation can be supported by 
experimental data described in recent 

publications. 
 

Table 1 presents published data on 
determination of the Debye temperature at 
room and cryogenic temperatures Т1 and Т2 
(Т1=0 К and Т2= 78 К), respectively. Because of 
the proximity of T1 and T2, it is observed that 

0(Т1) ≈ 0(Т2)) for compounds of different 
classes (for semiconductors, refractory binary 
and multicomponent interstitial alloys) and tin 
and data obtained by formula (11). 
 

СONCLUSION 

Formula that relates the Debye temperature 
and the mean-square amplitude of thermal 
oscillations of atoms through the Debye 
function is analyzed. It is shown that when the 
temperature drops below room temperature, 
despite the decrease in the amplitude of 
thermal oscillations of atoms in a lattice, 
which is inversely proportional to the Debye 
temperature, a strong decrease in the Debye 
function plays determining role, which in turn 
leads to a decrease in temperature .  

Based on the analysis the main principles of 
the Debye theory of thermal lattice 
oscillations and of the theory of X-ray and 
thermal neutron scattering by real crystals and 
the recently accumulated experimental data, 
the formula is proposed that relates Debye 
temperatures at moderate temperatur

reasoning is valid only when there are no 
phase transitions at cryogenic temperatures. 

via the proposed formula (11) in the range 
cide with the 

experimental data for a number of substances 
of different classes. 

It is shown that the Debye temperature of a 
crystal at the absolute zero temperature does 
not depend on the Debye function (the 
frequency spectrum of thermal oscillations) 
but depends only on an atomic mass and root-
mean-square amplitude of zero oscillations of 
atoms in a lattice. 

 

Table 1. Debye temperature D at room and cryogenic temperatures 0 ((0(exp)) and 

0(calc) – experimental and calculated data, respectively, temperature in K). 

 

 

 



The USA Journals Volume 02 Issue 08-2020 95 

 
 

 

  
 

The American Journal of Interdisciplinary Innovations and Research  
(ISSN–2642-7478) 
Published: August 27, 2020 | Pages: 88-96  
Doi: https://doi.org/10.37547/tajiir/Volume02Issue08-12 
 

 

IMPACT FACTOR 

2020: 5. 498 

 

 

 

№ 

 

Substance 

D, 

Т= 300 

К 

0 (exp.)  

0(cal

c.) 

 



0 

0/0ca

lc., 

% 

Т = 0 К Т = 78 

К 

1 GaS 454 [6] 263 [6]  302 3

9 

12.9 

2 GaTe 267 [6] 165 [6]  177 1

2 

6.7 

3 TiC0.97   860 [4] 

 

 520 [4] 

 

573 5

3 

9.2 

4 TiC0.88   700 [4] 

 

 480 [4] 

 

467 1

3 

2.8 

5 TiC0.70   590 [4] 

 

 440 [4] 

 

393 4

7 

11.9 

6 ZrzNb1-zCxNy 710 [5]* 462 

[5]* 

 473 1

1 

2.3 

7 -Sn (gray)   230 

[13]*** 

148 

[13]*** 

 153 5 3.3 

 

Note. 0 (exp.) is experimentally; 0 (calc.)  is calculated by expression (6); 0 =/0(exp.) - 0 

(calc.) /. The Debye temperatures are determined by: - calculations from the heat capacity data, - 

neutron diffraction, - calculations of the Mossbauer spectrum thermal factor, given in [13]. 
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