OCLC - 1091588944

The Continuation Task For Abstract Bicaloric Equation

O.M.Egamberdiev

Assistant Of Professor, Namangan Engineering – Construction Institute, Uzbekistan

Copyright: Original content from this work may be used under the terms of the creative commons attributes 4.0 licence.

ABSTRACT

An ill-posed problem for an abstract bichaloric equation is studied and Tikhonov stability estimate is given.

KEYWORDS

Caloric, abstract, positive, self-adjoint, unbounded, everywhere dense, operator, bicaloric.

INTRODUCTION

Task. You need to find a solution to an abstract bicaloric equation

$$K_{+}^{2}u(t) \equiv \left(\frac{d}{dt} + A\right)^{2}u(t) = 0, \ 0 < t < T,$$
 (1)

satisfying the following conditions:

(ISSN-2642-7478) **Published:** January 31, 2021 | **Pages:** 131-136 **Doi:** https://doi.org/10.37547/tajiir/Volume03Issue01-20

IMPACT FACTOR 2021: 5. 676

OCLC - 1091588944

$$u\Big|_{t=l_{1}} = u(l_{1})$$

$$u\Big|_{t=l_{2}} = u(l_{2})$$
(2)

where u(t) - abstract function with values in a hilbert space H .

 ${\cal A}$ - constant, positive definite, self-adjoint, linear, unbounded with an everywhere dense domain of definition

$$D\!\left(A^2\right)\left(DCH\right)$$
 the operator, acting from H in H , with $u\!\left(l_1\right),u\!\left(l_2\right)\!\in\!H$.

MATERIALS AND METHODS

The validity of the representation is proved.

$$u = u_1 + (t - l_1)u_2.$$

The theorem. If u_1 and u_2 if there are solutions to the caloric equation, then the function $u=u_1+\big(t-l_1\big)u_2$ there is a solution to equation (1) and vice versa, for each given abstract bicaloric function there are such functions u_1 and u_2 what

$$u = u_1 + (t - l_1)u_2$$

Proof. 1) If u_1 and u_2 are solutions to the caloric equation, then there is a solution to the bicaloric equation

$$K_{+}u = K_{+} \left[u_{1} + (t - I_{1})u_{2} \right] = K_{+}u_{1} + u_{2} + (t - I_{1})\frac{du_{2}}{dt} + A(t - I_{1})u_{2} =$$

$$= u_{2} + (t - I_{1})\left(\frac{du_{2}}{dt} + Au_{2}\right) = u_{2} + (t - I_{1}) \cdot K_{+}u_{2} = u_{2}.$$

So, as

$$\frac{du_2}{dt} + Au_2 = 0$$
, to $K_+(u_1 + (t - I_1)u_2) = u_2$ in $K_+u = u_2$.

Applying the operator again $K_{\scriptscriptstyle +}$, given, what $K_{\scriptscriptstyle +}u_2=K_{\scriptscriptstyle +}K_{\scriptscriptstyle +}u=0$;

Doi: https://doi.org/10.37547/tajiir/Volumeo3Issue01-20

2) If u solving the bicaloric equation, then there will be such caloric functions u_1 , u_2 what $u=u_1+\big(t-l_1\big)u_2$.

To prove this statement, it is enough to establish the possibility of choosing u_2 .

Put

$$u_2 = K_+ u,$$

$$u_1 = u - (t - l_1)u_2.$$

It remains to show that

$$K_{+} \left[u - \left(t - l_{1} \right) u_{2} \right] = 0.$$

In fact:

$$K_{+}u_{1} = K_{+} \left[u - (t - l_{1})u_{2} \right] = K_{+}u - K_{+} (t - l_{1})u_{2} =$$

$$= K_{+}u - u_{2} - (t - l_{1}) \cdot \frac{du_{2}}{dt} - A \cdot (t - l_{1})u_{2} =$$

$$= K_{+}u - u_{2} - (t - l_{1}) \cdot \left(\frac{du_{2}}{dt} - Au_{2} \right) = K_{+}u - u_{2} = 0,$$

from here

$$K_1u_1 = 0, K_1u_2 = 0.$$

The theorem is fully proved.

Using the view

$$u = u_1 + (t - l_1)u_2$$
 (3)

The solution of the problem (1) - (2) can be reduced to the solution of the following problems:

$$\begin{cases} K_{+}u_{1} = 0, & (4) \\ u_{1}|_{t=l_{1}} = u(l_{1}) & (5) \end{cases}$$

and

Doi: https://doi.org/10.37547/tajiir/Volumeo3Issue01-20

OCLC - 1091588944

$$\begin{cases} K_{+}u_{2} = 0, & (6) \\ u_{2}|_{t=l_{2}} = u_{2}(l_{2}) & (7) \end{cases}$$

where
$$u_2(l_2) = \frac{u(l_1)}{l_2 - l_1} - \frac{u_1(l_2)}{l_2 - l_1}, \qquad u_1(l_2) = \|u(0)\|^{\frac{l_1 - l_2}{l_1}} \|u(l_1)\|^{\frac{l_2}{l_1}}$$

task (4) – (5) $0 < t < l_1$ incorrect in the classical sense, $a \ l_1 < t < T$ correct. Task (4) – (5) we will investigate for conditional correctness by Tikhonov 1

The theorem. For any solution of problem (4) - (5), the inequality is valid.

$$||u_{I}(t)|| \leq ||u(0)|| \frac{l_{I}-t}{l_{I}} \cdot ||u(l_{I})||^{\frac{t}{l_{I}}}.$$

Proof. Consider the function [1]

$$\varphi(t) = ||u_1(t)||^2 = (u_1, u_2).$$

Differentiating it, we get

$$\varphi'(t) = 2(u_1', u_1) = 2(Au_1, u_1)$$

$$\varphi''(t) = 2(u_1', u_1) + 2(u_1, u_1'') = 2(Au_1, Au_1) + 2(u_1, A^2u_1).$$

Since the operator is self-adjoint $(m.e. A = A^*)$, to $(u_1, A^2u_1) = (Au_1, Au_1)$ and, so, $\varphi''(t) = 4(Au_1, Au_1)$.

Now consider the function

$$\psi(t) = \ln \varphi(t)$$

Differentiating it, we have

$$\psi''(t) = \frac{1}{\varphi^{2}(t)} \Big[\varphi''(t) \cdot \varphi'^{2}(t) \Big] = \frac{4}{\varphi^{2}(t)} \Big[(Au_{I}, Au_{I})(u_{I}, u_{I}) - (Au_{I}, u_{I})^{2} \Big] \ge 0$$
(8)

Doi: https://doi.org/10.37547/tajiir/Volumeo3Issue01-20

MPACT FACTOR

2021: 5.676

By virtue of the well-known Bunyakovsky inequality, inequality (8) means that the function $\psi(t)$ it is inverted by concavity upwards, from which it follows that the function $\psi(t)$ on the segment $[0, l_i]$ does not exceed a linear function that takes the same values at the ends of the segment as $\psi(t)$. From (8) follows

$$\psi(t) \le \frac{l_I - t}{l_I} \psi(0) + \frac{t}{l_I} \psi(l_I) \tag{9}$$

By potentiating the inequality (9), we obtain

$$\varphi(t) \leq \left[\varphi(0)\right] \frac{l_1 - t}{l_1} \cdot \left[\varphi(l_1)\right]^{\frac{t}{l_1}},$$

Where from $||u_{I}(t)|| \le ||u(0)||^{\frac{l_{I}-t}{l_{I}}} \cdot ||u(l_{I})||^{\frac{t}{l_{I}}}$

RESULT AND DISCUSSION

Task (6) – (7) $0 < t < l_2$ incorrect, $a l_2 < t < T$ in the classical sense, it is correct, in the same way as the problem (4) - (5), it can be investigated for conditional correctness by Tikhonov [1]

We prove a theorem that characterizes the stability estimation of the solution of the problem (1) - (2)

The theorem. For any solution of the problem (1) - (2), the inequality is valid

$$\|u(t)\|_{H} \leq \|u(0)\|^{\frac{l_{1}-t}{l_{1}}} \|u(l_{1})\|^{\frac{t}{l_{1}}} +$$

$$+ (t-l_{1}) \begin{cases} \frac{1}{l_{2}-l_{1}} \left(\|u(l_{2})\| + \|u(0)\|^{\frac{l_{1}-l_{2}}{l_{1}}} \|u(l_{1})\|^{\frac{l_{2}}{l_{1}}} \right)^{\frac{t}{l_{2}}} \cdot \|u(l_{1})\|^{\frac{t-l_{1}}{l_{1}}}, \quad l_{1} < t < l_{2} \\ \frac{1}{T-l_{1}} \left(\|u(T)\| + \|u(0)\|^{\frac{l_{1}-T}{l_{1}}} \|u(l_{1})\|^{\frac{T}{l_{1}}} \right)^{\frac{T-t}{T}} \cdot \|u(l_{2})\|^{\frac{t}{l_{2}}}, \quad l_{2} \leq t \leq T \end{cases}$$

$$(10)$$

Note that the inequality (10) implies the uniqueness of the solution of the problem (1) - (2) and the conditional correctness of this problem in the class

Published: January 31, 2021 | Pages: 131-136

Doi: https://doi.org/10.37547/tajiir/Volume03lssue01-20

IMPACT FACTOR 2021: 5. 676

OCLC - 1091588944

$$\left\{u: \left\|u(0)\right\| \leq M\right\}$$

This theorem is proved by the logarithmic convexity method [1]

REFERENCES

- **1.** Лаврентьев М.М. Некорректные задачи для дифференциальных уравнений. Новосибирск: Изд-ва НГУ, 1981, 71 с.
- 2. Кабанихин. С.И. Обратные и некорректные задачи. Новосибирск. 2009 г.
- **3.** Эгамбердиев О.М. Задача Коши для абстрактного поликалорического уравнения. ДАН РУз. № 6. 2011, с. 18-20.
- **4.** Атахаджаев М.А, Эгамбердиев О.М. Задача Коши для абстрактного bichaloric уравнения. Сибирский математический журнал. Т.31, № 4, 1990.
- **5.** Farxodjonova N.F. Problemi primeneniya innovatsionnix texnologiy v obrazovatel'nom protsesse na mejdunarodnom urovne //Mejdunarodnaya konferentsiya. Innovatsionnie tendentsii, sotsial'no-ekonomicheskie i pravovie problemi vzaimodeystviya v mejdunarodnom prostranstve.-2016.-S. C. 58-61.
- **6.** Numonjonov S. D. Innovative methods of professional training //ISJ Theoretical & Applied Science, 01 (81). 2020. C. 747-750.
- 7. Farxodjonqizi F. N., Dilshodjonugli N. S. Innovative processes and trends in the educational process in Uzbekistan //ACADEMICIA: An International Multidisciplinary Research Journal. 2020. T. 10. №. 4. C. 621-626.