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ABSTRACT 

A connection between boundary actions, ideal structure of reduced crossed products and C*-simple 

group is imminent.We investigate the stability properties for discrete group pioneered by powers and 

show that the non-abelian free group on two generators is C*-simple.Kalantar and Kennedy [32, 

Theorem 6.2] is now extended. Some examples are given using characterization of C*-simplicity 

obtained by Kalantar, Kennedy, Breuillard, and Ozawa [10, Theorem 3.1] 
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INTRODUCTION 

 

Let G be a discrete group. Let the group 

algebra l1(G) equipped with the following 

product and involution 
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(xy)(s)=∑x(g)y(g−1s),x¿(s)= ´ x(s−1),x,y∈l1(G),s∈G 

This product is known as the convolution of two functions x,y:G→C with respect to these operations 

and the usual 1- norm,l1(G) is a Banach *-algebra with identity δ1. The characteristic function 

δg∈l1(G)satisfyδgδg ¿=δg ¿ δg=δ1, the self adjoint subalgebra cc(G)  of finitely supported function on 

(G) constitute a dense subsect of l1(G). It is clear that any *-homomorphism from a Banach *-algebra 

to c¿algebra is contractive [46, Proposition 1.3.7]. We define a norm ‖∙‖uon l1(G) by setting 

‖x‖u=‖π(x)‖¿for x∈l1(G) where π runs through all non-degenerate representations of l1(G) on a Hilbert 

space. Completing l1(G) with respect to  ‖∙‖u, we obtain the unital c¿-algebra, as the full group c¿-

algebra denoted by c¿(G). It is well known that any non-degenerate representation of l1(G) on a Hilbert 

space H extends to a non-degenerate representation of c¿(G) on  H. Thus, this correspondence of 

representation is one-to-one.A unitary representation of G is a group homomorphism of G into the 

group U(H) of unitary operators on some on some Hilbert space   H. There is one-to-one 

correspondence between unitary representations of G and non-degenerate representations ofl1(G) , 

given by mapping nonlinear function to the operator respectively      

 

Whereπ∶g→πg  is a unitary representation of G on the Hilbert space H. Precisely, any unitary 

representation of  G can be used to construct a c¿-algebra. Indeed, if π∶c¿(G)→B(H) is the non-

degenerate representation induced by a unitary representation   π∶G→U(H), then thec¿-algebra 

associated to π is given by c¿(G)=π(c¿(G)). Next, we considerregular (left) regular representation λ  in 

the unitary group of l2(G) given by left translation: 

[λgξ](s)=ξ(g−1s),g,s∈G,ξ∈l2(G) 

With respect to the canonical orthogonal basis {δ1∣s∈G} ofl2(G),where𝜆satisfies λgδs=δgs,g,s∈G. The 

reduced group c¿-algebracr ¿(G) is the c¿-algebra cλ ¿(G) associated to  λ , and cr ¿(G)is therefore the 

norm-closure inB(l2(G)) of the set of operator of the form∑ g∈G ηgλg,ηg∈Ca non-zero for finitely 

manyg∈G. Moreover, cr ¿(G) is equipped with a faithful tracial stateτ, given by τ(x)=⟨xδ1,δ1⟩. We refer 

to τ as the canonical tracial state on  cr ¿(G). 

Definition 1.1 A discrete group G is said to bec¿-simple if cr ¿(G) is simple c¿-algebra with unique trace 

property andcr ¿(G) admits tracial state.  

The theory of simple c¿-algebra first introduced by Bédos[3] was later reconstructed by De La Harp 

[18, pp. 13]. Since then, many mathematical philosophers had made huge progress (see. [13, 16, 21, 33] 

etc.)  
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C*-Simplicity and Boundary Actions ([32]): Letl1(G,A) denote the space of functions x∶G→A 

satisfying∑ g∈G ‖x(g)‖<∞. From now on, we write the notation x=∑ g∈G xgδg for a functionx∈l1(G,A), 

where xg=x(g) for g∈G. We next equip l1(G,A) with a product and involution by defining 

(xy)(s)=∑ g∈G x(g)(gy(g−1s)),x¿(s)=sx(s−1) 

So that l1(G,A) becomes a Banach *-algebra in the 1-norm. We identify A with the image of A under the 

*-homomorphism a↦aδ1. Obviously, the subset cc(G,A) of finitely supported functorsG→A is a dense 

*-subalgebra of l1(G,A) and that an approximate identity (ei) in A yields an approximate identity 

(eiδ1)∈l1(G,A). It is well known that a covariant representation of the c*-dynamical system (A,G,α) is a 

triple (π,u,H), where H is a Hilbert space, π∶A→B(H) is a non-degenerate representation and 

u∶G→U(H) is a unitary representation such that π(ga)=ugaug ¿ for g∈G and a∈A. We often suppress 

the Hilbert space H from the notationif is clear from the context. The associated integral form of 

covariant representation (π,u) is the map π×u∶l1(G,A)→B(H) define by  

(π×u)(x)=∑ g∈G π(xg)ug,x∈l1(G,A) 

The full cross product of (A,G,α), denoted by A⋊αG=A⋊G is the completion of l1(G,A) or cc(G,A) with 

respect to the norm  

‖x‖u =‖(π×u)(x)‖ ,x∈l1(G,A) 

The supremum taken over all (cyclic) covariant representations (π,u,H) of (A,G,α). To define the 

reduced crossed product, we assume thatA⊆B(H) is faithfully represented and define and we define a 

faithful representationπ∶A→B(H⊗l2(G)) and a unitary representation λ∶G→B(H⊗l2(G)) by  

π(a)(ξ⊗δs)=(s−1a)ξ⊗δs,λg(ξ⊗δs)=ξ⊗δgs,a∈A,ξ∈H,gs∈G 

It is verifiable,(π,λ,H⊗l2(G))  is a covariant representation of (A,G,α) call a regular representation of 

the c*-dynamical system. Again, 𝜆 is actually an amplification of the left regular representation of G on 

l2(G). The associated form π×λ∶l1(G)→B(H⊗l2(G)) is faithful, and the reduced crossed product 

A⋊α,rG=A⋊rG is the completion of l1(G,A) or cc(G,A) in the reduced norm  

‖x‖r=‖(π×λ)(x)‖B(H⊗l2(G)),x∈l1(G,A) 

Equivalently, A⋊rG (cf. [25, Chapter 4.1]) can be taken to be the norm closure of the image ofπ×λ  or  

π×λ|cc(G,A). Clearly, A⋊rG does not depend on the choice of faithful representation A⊆B(H) (see, e.g., 

[11, Proposition 4.1.5]). We now define 

a G-action on A⋊rG by means of the inner automorphisms g↦Ad(λg), so that the inclusion A⊆A⋊rG is 

G-equivariant. Identifying A via its image under π, then the reduced crossed product also has the nifty 

property of admitting a faithful conditional expectation EA∶A⋊rG→A that is G-equivariant and 

uniquely satisfies EA(x)=x1 for all  

x=∑ g∈G xgλg∈l1(G,A)⊆A⋊rG 

https://doi.org/10.37547/tajiir/Volume03Issue01-01
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We referred to the above inclusion as the canonical conditional expectation and write E instead of EA 

if the dynamical system is clear from the context. The existence of a faithful conditional expectation 

of A⋊rG onto Aalso characterizes the reduced crossed product among c*-algebras generated by the 

image of the integrated form of covariant representation of (A,G,α) [48, Theorem 4.22]. In fact, it holds 

in more general, if H⊆G is a subgroup, then there exists an injective *-homomorphism A⋊r H→A⋊rG 

that extends the inclusioncc(H,A)→cc(G,A). Again, if we identify A⋊r H with its image under this *-

homomorphism, then there exists a faithful conditional expectation EH∶A⋊rG→A⋊r H that uniquely 

satisfy EH(λg)=0,forallg∉H. We shall proof in the more general case using reduced twisted crossed 

products in Theorem 3.2 inspired by [3, Theorem 2.2]. In particular, we obtain the generalization of [10, 

Theorem 7.1] with the aid ofCorollaries 3.3, 3.4, and 3.5 while Lemma 3.6 is the generalization of [10, 

Theorem 7.2]. Again, Theorem 3.7 is the generalization of [4, Proposition 3.13]. Furthermore, we not 

that if A,B are G−c¿-algebras and φ:A→B is a G−¿ equivariant c.c.p. map, then the map ~ 

φ:l1(G,A)→l1(G,B) given by  

φ(x)g=φ(xg),x∈l1(G,A),g∈G 

extends to a c.c.p. map ~ φ:A⋊rG→B⋊rG. Thus, ~ φ uniquely satisfies  

~ φ(aλg)=φ(a)λg,a∈A,g∈G 

It turns that a property of φ is inherited by ~ φ. It is easy to show that this include faithfulness, 

surjectivity and being a *-homomorphism.  

Definition 1.2 For an action of a discrete group G on a topological free space X, define 

Xg={x∈X∣gx=x},g∈G, we say that the action of G on X is topologically free if Xg has empty interior for 

all g∈G∖{1}.  

Definition 1.3 LetAandℬ be c*-algebras and let φ be a c.c.p mapφ:A→B. The multiplicative domain 

mult(φ) of φ is the subset of A given by mult 

(φ)={a∈A∣φ(a¿a)=φ(a)¿φ(a),φ(aa¿)=φ(a)φ(a)¿} 

From the result of Choi [12, Theorem 3.1],  

mult(φ)={a∈A∣φ(ax)=φ(a)φ(x),φ(xa)=φ(x)φ(a)},∀x∈A 

Moreover, if B⊆A is a c*-algebras and φ:A→B is a c.c.p map that restricts to the identity map on ℬ, 

then φ is in fact is conditional of A onto ℬ.  

Lemma 1.4(Archbold and Spielberge [1, Theorem 1]): LetX be a compact G-space on which the action 

of G is topologically free. If I⊆C(X)⋊rG is closed ideal such that  I∩C(X)={0}, then I={0}.  

Following the original article [1], one can easily verify that Lemma 1.4 holds true for topologically free 

action on c*-algebras that are possibly non-unital and noncommutative.If X is compact G-space 

andx∈X, then by composing the faithful conditional expectation, *-homomorphism,Gx0-equivariant *-

homomorphism δx:C(X)→C, we obtains a u.c.p map  

https://doi.org/10.37547/tajiir/Volume03Issue01-01
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EGx 0:C(X)⋊rG→C(X)⋊rGx 0, 

C(X)⋊rGx 0→Cr ¿(Gx 0) 

Ex:C(X)⋊rG→Cr x(Gx 0), 

Satisfying 

Ex(f λg)=f (x)EGx 0(λg),f ∈C(X),g∈G 

The following result is a reformulation of Kawabe [34] 

Theorem 1.5 ([34, Lemma 2.4]): Let X be a compact G-space for which {x∈X∣Gx 0isamenable} is dense 

in X. If the action of G on X is not topologically free, then there exists a non-zero closed ideal I⊆C(X)⋊rG 

for whichI∩C(X)={0}.  

For purpose of clarity, we omit the proof of Theorem 1.5.  

Theorem 1.6(Frolik [22, Theorem 3.1]): Let X be a Stonean space (see Appendix B). If f:X→X is 

homeomorphism, then the fixed point set of f is clopen. In particular, a group action on X is 

topologically free if and only if it is free. Boundary action are intimately connected with several 

commutative C*-algebras that are of interest in the study of c*-simple groups (i.e. groups with simple 

reduced group c*-algebras) can be found in the literatures [16, 18, 24, 26, 31, 32, 40, and 42]. The 

concept of boundary action was originally introduced by Furstenberg [24]. The main idea is to describe 

to what degree a fixed group of homeomorphism of space (i.e., a fixed non-trivial translation of R to 

any bounded subset) can map any or at least some points in the boundary of R∈R¿, namely (−∞,+∞) in 

space. It is clear that any non-trivial translation of R with positive derivative move any point in R∪{∞} 

closer to  +∞, and that{±∞} are the only fixed point. The study of boundary actions and ideal structure 

of reduced crossed products have recently be linked to the study of c*-simple group (see. [16]). 

Furthermore, a discrete group can only be c*-simple when the c*-algebra associated to its regular 

representation is simple. This property for discrete group pioneered by powers will be one of the 

focuses of this paper. In particular, Our motivations are the advances in [19, 20, and 21] which were 

later elaborated in [28].It is our purpose in this paper to extend the Theorem of Kalanter and Kennedy 

[32, Theorem 6.2] that characterizes c*-simplicity in terms of boundary actions to the equivalence of 

topological freeness due to Kalanter, Kennedy, Breuillard and Ozawa [10, Theorem 3.1] and then 

generalized some of their results.We remark that other characterization of c*-simplicity have been 

obtained since the result of Kennedy and Kalantar. A few of which we now review;  

I. Simplicity of reduced crossed products. Breuillard, Kalantar, Kennedy and Ozawa proved that c*-

simple discrete groups have the property that 

a reduced crossed product A⋊rG of a unital G-c*-algebra by G is simple if and only if A is G-simple, which 

means that A has no non-trivial Ginvariant closed ideals [10, Theorem 7.1]. This settled in affirmative a 

question of de la Harpe and Skandalis [21]. We will generalize this result in section 3. 

https://doi.org/10.37547/tajiir/Volume03Issue01-01
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II. An averaging property. Haagerup [29] and Kennedy [36] independently proved that a discrete 

group G is c*-simple if and only if for all t1,t2,…,tm∈G∖{1} and ϵ>0 there exists s1,…,sn∈G such that 

‖1/ n∑ k=1 n λskt jsk −1‖<ϵ 

Clearly, this is an important characterization, because many previously study classes of c*-simple 

groups were always shown to satisfy at most minor variant of the latter property. In fact, it is 

nonetheless part of the original proof of powers that F2 is c*-simple. We prove in section 3 that the 

reduced crossed products over c*-simple groups satisfy a similar property. We also record that the 

above property is a group c*-algebra variant of the Dixmier property. A unital c*-algebra A is said to 

satisfy the Dixmier property if the closed convex hull of {uau¿∣u∈U(A)} intersects the centre of A for 

all a∈A. Haagerup and Zsidó [30] proved that a unital, simple c*-algebraA always satisfies the Dixmier 

property, and that the intersection of the aforementioned closed convex hull and the centre always 

reduces to a point, if c*-algebra has a unique tracial state [30]. 

III. Recurrent subgroups. Independently, Kennedy [36] obtained an algebraic characterization of c*-

simplicity using the notion of recurrence for subgroups, hence a group-theoretical version of the 

topological dynamical notion of uniformly recurrent subgroup. A subgroup H of a group G is recurrent 

if there exists a final subset F⊆G∖{1} such that 

F∩gHg−1≠∅ for allg∈G. A discrete group is c* simple if and only if it has no amenable, recurrent 

subgroups.  

Theorem 1.7(Breuillard, Kalantar, Kennedy and Ozawa [10, Corollary 4.3]): Let G be a discrete group 

with amenable radicalR(G). Then g∈G satisfies τ(λg)=0 for all tracial states τ on Cr ¿(G) if and only if 

g∉R(G). In particular, G has the unique trace property if and only if R(G)={1}  

The proof of the implication of the infamous result (Theorem 1.7) requires generalization. We differ 

this until section 3 (Theorem 3.8). However, Theorem 1.7 partially settles the question of de la Harpe; 

whether there exist c*-simple groups without the unique trace property. Conversely, by composing 

the conditional expectation Cr ¿(G)→Cr ¿(R(G)) with trivial representation Cr ¿(R(G))→C (i.e., an 

existence result which follows from the amenability of R(G) [11, Theorem 2.6.8]), yields a state τ:Cr 

¿(G)→C such that τ(λg)=1 for all g∈R(G). Since R(G) is normal, then for any two g,h∈G we have gh∈R(G) 

if and only if hg∈R(G), implying τ(λgλh)=τ(λhλg). Hence τ is a tracial state on Cr ¿(R(G)). The rest of 

this paper is organized as follows: In section 2, we give some preliminary results which we shall need 

later. In section 3, we proof our main results. Precisely, we proof Theorem 3.1, 3.2, 3.7, and 3.8. In 

section 4, we study stability properties that our results and many others in the literatures satisfy. 

Specifically, we give some examples of what stability properties that classes of c*simple groups and 

groups with trivial amenable radical satisfy. Furthermore, we establish stability criteriato ensure that 

a lot of other stability properties are automatically satisfied for any class of groups. Finally, we give in 

section 5, some examples of c*-simple groups, mainly using the characterization of c*-simplicity arising 

from Theorem 3.1. 

https://doi.org/10.37547/tajiir/Volume03Issue01-01
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2. PRELIMINARIES We shall need the following Lemmas. We prove Lemma 2.11 for the sake of 

completeness. 

Lemma 2.1 ([27, see also 24, Lemma 4.1]):Let G be a Hausdorff topological group and let X be a minimal, 

proximal compact G-space. If X has an isolated point, then X is a one-point space. 

Lemma 2.2 ([28]):Let X be a minimal compact G-space. If the action of G on X is proximal, then the only 

G-equivariant continuous map is the identity map.  

Lemma 2.3 ([28]):Let G be a topological group, let (Xi)i∈I  be a family of compact G -spaces and let 

X=Пi∈I Xi be the product space equipped with the diagonal Gaction. Then the action of G on X is 

proximal (resp. strongly proximal) for all i∈I.  

Lemma 2.4 ([20]): Let G be a non-elementary hyperbolic group. Then the action of G on itself by left 

translation induces a boundary action of G on∂G.  

Lemma 2.5 ([37, proposition 3.1, see also 38, Proposition 4.26]):Let T be a countable, leafless tree and 

let G be a discrete group acting minimally on T by automorphisms without inversion. If the action G on 

∂T is non-elementary, then ´∂T is a G-boundary in the shadow topology.  

Lemma 2.6 ([24]):Let G be a Hausdorff topological group. X' is a compact minimal G-space and X is a 

G-boundary, then there is at most one G-equivariant u.c.p map C(X)→C(X) and it is an injective *-

homomorphism.  

Lemma 2.7 ([32, see also 10, Proposition 2.5]):  Let G be a Hausdorff topological map and let A be a 

unital G-invariant C*-subalgebra of a unitalG-C*-algebraB. Then any G-equivariant u.c.p map A→C(∂FG) 

extends to a G-equivariant u.c.p mapB→C(∂FG). 

 Lemma 2.8 ([15, 1(1957), pp. 509 – 544]):LetN be a closed, normal, amenable subgroup of a locally 

compact group G and let X be a G-bonudary.  Then N acts trivially on X.  

Lemma 2.9 ([23, Proposition 7]): Let G to be a locally compact group. Then R(G)=∩x∈∂FGGx. In 

particular, R(G)={1} if and only if G admits a faithful boundary action. Moreover, ∂FG is G-equivariantly 

homeomorphic to ∂F(G/R(G)).  

Lemma 2.10 ([27]): For any discrete group G and any x∈∂FG, the stabilizer Gx is an amenable subgroup 

of G.  

Lemma 2.11 (Special case of [1, Theorem 1]):Let (A,G,α,β) be a unital twisted c*dynamical system and 

let X be the maximal ideal space of the centre Z(A) of A. Assume that the action of G on X is free. If J is 

a closed ideal in A⋊α,r β G, then for JA=J∩A we have JA⋊α,r β G⊆JA ´ ⋊α,r β G.  

Proof: Let IA=I∩A and let π:A→A/IA be the quotient map. We assume that ρ:A/IA→B(H) is an 

irreducible representation of A/IA. Now, consider the representation A+I→(A+I)/I≅ A/IAρ → B(H). By 

Arveson’s extension theorem, this map extends to a u.c.p map φ:A⋊α,r β G→B(H) such that φ(I)=0 

and A⊆mult(φ), since φ∣A=ρ∘π. By irreducibility, the restriction of φ to Z(A)≅C(X) is a point mass on 

https://doi.org/10.37547/tajiir/Volume03Issue01-01
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X, i.e., φ∣Z(A)=δx for some x∈X. Let g∈G∖{1}, then there exists f∈C(X) such that f(g−1x)≠f (x). This 

implies φ(λβ(g)(f (x))1H)=φ(λβ(g)f)=φ(gf λβ(g))=f (g−1x)φ(λβ(g)) Therefore,φ(λβ(g))=0. Let 

EA:A⋊α,r β G→A be the canonical conditional expectation, it follows thatφ=φ∘EA.  

Hence,  

ρ(π(EA(I)))=φ(EA(I))=φ(I)={0} 

Since ρ was arbitrary, π(EA(I))={0}, so that EA(I)⊆I. For any positive elementx∈I, let ℓ be the image of 

x under~ π:A⋊α,r β G→(A/IA)⋊α,r β G, let EA/I:(A/IA)⋊˙ α,r ˙ β G→A/IA be the canonical faithful 

conditional expectation. SinceEA/I∘~ π=π∘EA, it follows that EA/I(l)=0 since EA(x)∈I∩A. Since EA/I is 

faithful, ℓ=0 andx∈IA ´ ⋊α,r β G.  □ Moreover, fore any (A,G,α,β), twisted c*-dynamical system and any 

G-invariant, closed ideal I∈A ´ ⋊α,r β G, the commutative diagram 0 I⋊α,r β G A⋊α,r β G A/I⋊˙ α,r ˙ β G~ 

π 0 

(2.1) 

0 I A~ π A/I 0 

arise when π induces a surjective *-homomorphism ~ π:A⋊α,r β G→A/I⋊˙ α,r ˙ β G at the level of 

crossed products yields the identity (I ´ ⋊α,r β G)∩A=I                                        (2.2) Thus,EI,EAandEA/I 

denote the canonical conditional expectation respectively. Furthermore, for any G-boundary X.If A is 

unital, then for the natural extension (A⊗C(X),G,μ,γ), we found that if K⊆(A⊗C(X))⋊μ,r γ G is a closed 

ideal and KA=K∩(A⊗C(X)),then there is a commutative diagram of *-homomorphisms  

A⋊α,r β G    (A⊗C(X))⋊μ,r γ G 

A/(K∩A)⋊˙ α,r ˙ β G     (A⊗C(X))/KA⋊μ,r γ G 

where the horizontal arrows are injective. It follows that  

(K A ´ ⋊μ,r γ G)∩(A⋊α,r β G)=(K∩A) ´ ⋊α,r β G      (2.3) 

3. MAIN RESULTS 

We now prove the following  

Theorem 3.1 (Main Theorem):Let G be a discrete group. Then the followingare equivalent,simple (I – 

IV), and topologically free (V – VI).  

I. G  

II. C(X)⋊rG , for some G-boundary X  

III. C(X)⋊rG, for all G-boundary X  

IV. C(∂FG)⋊rG  

V. The action of G on some X  

VI. The action of G on ∂FG 
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Proof: Clearly, III implies II, III imply IV and IV implies V are trivial. Now, by Theorem 1.6, the action of G 

on ∂FG is topologically free if and only if it is free, since ∂FG is Stonean (see, [14, Theorem 3.1]). Again 

V imply II, VI imply IV follow from Lemma 1.4. If C(∂FG)⋊rG is simple, then all stabilizer subgroups for 

the Gaction on ∂FG are amenable by Lemma 2.10. The action of G on ∂FG is topologically free by 

Theorem 1.5, thus proving IV implies VI. Next, we need to prove I imply III. Let X be a G-boundary, using 

Lemma 2.6, we may assume that there is a G-equivariant unital c*-algebra inclusion C(X)⊆C(∂FG) . 

Letπ:C(∂FG)⋊rG→B be a unital *-homeomorphism. The action of G on ℬ may be defined by means of 

inner automorphisms Ad(π(λg)) of ℬ, so that π becomes Gequivariant. Using the inclusion C⊆C(X), we 

realizeCr ¿(G)as a unitalG-invariant c*subalgebra of C¿(X)⋊rG. If Cr ¿(G) is simple, then π∣Cr ¿(G) is 

injective, so that canonical tracial state of τ:Cr ¿(G)→C⊆C(∂FG) extend to G-equivariant u.c.p map 

τ:B→C(∂FG) such that ~ τ∘π∣Cr ¿(G)=τ by Lemma 2.7. Using Lemma 2.6 once again, we find that the 

map ~ τ∘π∣C(X):C(X)→C(∂FG) is the inclusionmapC(X)→C(∂FG). Precisely, C(X)⊆mult(~ τ∘π). If 

E:C(X)⋊rG→C(X) is the canonical faithful conditional expectation, the ~ τ(π(f λg))=fτ(λg)=E(f λg) in 

C(∂FG) for all f∈C(X) and g∈G. Hence, ~ τ∘π=E, meaning that π is faithful and therefore injective. 

Henceforth, C(X)⋊rG is simple.Next, we need to prove II implies I. If C(X)⋊rG is simple for some G-

boundary X, let I⊆Cr ¿(G) by a proper closed ideal. If φ:Cr ¿(G)→C is a state such that φ(I)={0} extend 

φ to a state on C(X)⋊rG and let (gi) be a net in G such that giμ→δx for some x∈X where μ=φ∣C(X). By 

weak*- compactness we may assume that (φ∘Ad(λg)) converges to some state ψ on C(X)⋊rG, so that 

ψ∣C(X)=δx and ψ∣I=0. Thus, C(X)⊆mult(ψ).Furthermore, for any b∈I,f1f2∈C(∂FG) andf1f2∈G, 

ψ(f1λg1)b(f2λg2)=f1(x)ψ(λg1bλg2)f2(g2x)=0,λg1bλg2∈I 

It is not difficult to see that the ideal generated by I is proper. Therefore we have I={0} because 

C(∂FG)⋊rG was assumed to be simple.  

Remark 3.2: It follows from Theorem 3.1 that any c*-simple discrete group G has trivial amenable 

radical. Indeed, if the action of G on ∂FG is free, then 

R(G)=∩x∈∂FGGx={1} by Lemma 2.9. Since the result of Kalantar and Kennedy [90], other 

characterizations of c*-simplicity have been obtained (see, [4, 10, 29, 30, and 36]). Moreover, some of 

these results in the later literatures required generalization. Precisely, [10, Theorem 7.1, 7.2, Corollary 

4.3], [36, Definition 5.2] and [4, Proposition 3.13].  

Assume that (A,G,α) is separable. If G is amenable, then every primitive ideal of A⋊rG is an induced 

primitive ideal. Moreover, if G acts freely on prim(A), then the induce process establishes a bijection 

between prim(A⋊rG) and the quasiorbits in prim(A). In particular, if G acts freely and every orbit is 

dense, then A⋊rG is simple. It is instructive to note that the twisted action and the equivalence of a 

group being c*-simple admits a free boundary action allows us to generalize many of these results. 

This we do in the following theorems.  

Theorem 3.2:Let (A,G,α,β) be a unital twisted c*-dynamical system where G is c*simple. For a maximal 

ideal I of A⋊α,r β G,I∩A is a maximal G-invariant ideal of A. Conversely, for a maximal G-invariant ideal 

γ of A, the ideal γ ´ ⋊α,r β G of A⋊α,r β G is maximal. Moreover, the correspondence is bijective.  

https://doi.org/10.37547/tajiir/Volume03Issue01-01


The USA Journals Volume 03 Issue 01-2021 10 

 

 

  

The American Journal of Interdisciplinary Innovations and Research  
(ISSN–2642-7478) 
Published: January 16, 2021 | Pages: 1-15 
Doi: https://doi.org/10.37547/tajiir/Volume03Issue01-01 
 
 
 

 
 

 

IMPACT FACTOR 

2020: 5. 498 

 

 

           OCLC - 1091588944 

Proof: Let γ be a maximal G-invariant ideal in A. We claim that the ideal γ ´ ⋊α,r β G in A ´ ⋊α,r β G is 

maximal; assume thatJ is a proper ideal in A ´ ⋊α,r β G  such that γ ´ ⋊α,r β G⊆J . Now, let 

(A⊗C(∂FG),G,ν,ι) of (A,G,α,β) be the natural extension.  

Let K denote the ideal in ((A⊗C(∂FG)))⋊ν,r ι G generated by J. By Lemma 2.11,K⊆KA ´ ⋊ν,r ι G, where 

KA=K∩((A⊗C(∂FG))). By (2.3) J⊆K∩(A⋊α,r β G)⊆(KA ´ ⋊ν,r ι G)∩(A⋊α,r β G)=(J∩A) ´ ⋊α,r β G On 

applying (2.2) toγ andK∩Agivesγ⊆J∩A⊆K∩A. Clearly, J is proper.  

Theorem 3.6 implies that K is proper, so the maximality of γ implies that γ=K∩A since K∩A is a G-

invariant. It follows that J⊆γ ´ ⋊α,r β G, and γ ´ ⋊α,r β G is maximal.We required an analysis to show 

that the ideal I∩A is maximal among proper Ginvariant ideals inA. Now let I be a maximal ideal inA ´ 

⋊α,r β G. LetJ denote the ideals in 

((A⊗C(∂FG)))⋊ν,r ι G generated byI. By Lemma 2.11J⊂JA ´ ⋊ν,r ι G whereJA=J∩(A⊗C(∂FG)). Hence by 

(2.3) I⊂J∩(A⋊α,r β G)⊂(JA ´ ⋊ν,r ι G)∩(A⋊α,r β G)=(J∩A) ´ ⋊α,r β G Since I is proper, Theorem 3.6 

implies that J∩A is proper inA, whence maximality of I implies that I=(J∩A) ´ ⋊α,r β G. Now  I∩A=J∩A 

follows from (2.2). It follows from our analysis I=(I∩A) ´ ⋊α,r β G(3.1) Now, let F be a proper G-invariant 

ideal in A such that  I∩A⊂F. Then  F ´ ⋊α,r β G is a proper ideal in  A ´ ⋊α,r β G and   I=(I∩A) ´ ⋊α,r β G⊂F 

´ ⋊α,r β G.  

Therefore the maximality of I implies that   I=F ´ ⋊α,r β G. HenceI∩A=(F ´ ⋊α,r β G)∩A=F. Thus, I∩A is 

maximal. Finally, it now clear the correspondence is bijective follows from the identities (2.2) and (3.1)   

Corollary 3.3:Let (A,G,α,β)  be a unital twisted C*-dynamical system where G is C*-simple. Then  A⋊α,r 

β G is simple if and only if A is G-simple.  

Corollary 3.4: If  G is C*-simple, then the reduced twisted group C*-algebra Cr ¿(G,β) is simple for every 

multiplier  β:G×G→ℾ.  

Corollary 3.5:Let  (A,G,α,β) be as in Corollary 3.3. Let N be a normal subgroup of G. Write (α,β)  for the 

restriction of (α,β) to N. If G/N is C*-simple, then A⋊α,r β G  is simple whenever A⋊α,r β Nis simple.  

Proof: A⋊α,r β G≌(A⋊α,r β N)⋊ν,r ι (G/N) follow from the existence of a twisted action (ι,ν)  of   

G/NonA⋊α,r β N. The desire conclusion now follows from Corollary 3.3.      

Remark 3.6: Corollary 3.3 and Corollary 3.4 gives the generalization of [10, Theorem 7.1]. It should be 

noted that the conclusion of Theorem 3.2 is not true if we allow the underlying c*-algebra to be non-

unital. Thurs, c0(X) is always Gsimple, even though c0(X)⋊rG may contain many ideals. Furthermore, 

assume that G is a C*-simple group and  A, a unital G-C*-algebra. If Z(I(A)) is G-simple, and A is prime, 

then the action of G on A has the intersection property 

 (i.e., Z(I(A))⋊rG is simple, see., [34, Theorem 3.4]), and A⋊rG is prime respectively. Indeed, there is an 

injective map of the set of prime and G-invariant ideals to the set of prime ideals in  A⋊rG, given by I↦I 

´ ⋊rG. In fact, if I⊆A is a prime, and G-ivariant ideal, then A/I is prime C*-algebra and I(A)⋊rG is a prime 
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C*-algebra by our analysis above. Thus, I ´ ⋊rG is a prime ideal of A⋊rG, therefore the map I↦I ´ ⋊rG is 

well defined, and it is injective since (I ´ ⋊rG)∩A=I for each Ginvariant ideal I⊆A.   

Theorem 3.7:Let (A,G,α,β)  be a unital twisted C*-dynamical system. Let X be a G -boundary and let 

(A⊗C(X),G,ν,ι) denote the associated natural extension. Let I be a proper ideal in  

A⋊α,r β G and let J denote the ideal in (A⊗C(X))⋊ν,r ι G  generated by  I. Then J is proper.  

Proof: Let φ be a state on A⋊α,r β G  such that  φ(I)=0. By [41, 48 ] there is a state 𝜓on  (A⊗C(X))⋊ν,r 

ι G, a net (gi)∈G and x∈X such that  ψ│A⋊α,r β G=lim¿jψ∘Ad(λβ(gj))¿ and ψ│C(X)=δx. It should be 

noted that  ψ│A⋊α,r β G(I)=0, and C(X)∈ψ. Hence for b∈I,a1,a2∈A,d1,d2∈C(X)  and  ς1,ς2∈G we have  

ψ((a1⊗d1)λι(ς1)b(a2⊗d2)λι(ς2)) 

¿d1(x)ψ(a1λβ(ς1)ba1λβ(ς2))d2(d2x) 

¿0 

It follows that  ψ(J)=0. Hence J is proper.     

Remark 3.8: Theorem 3.7 above generalizes [10, Lemma 7.2].  

4. STABILITY PROPERTIES   

Here we establish stability criteria to ensure that many stability properties are automatically satisfied 

for any class of groups.  

Theorem 4.1:Let Г be a property for discrete groups such that  

T 1. The trivial group {1} has property Г  

T 2. If G has property  Г, then G is ice  

T 3. If N is normal subgroup of G, then G has property Г if and only if CC(N)  have  property Г  

Then the following hold:  

L 1. G1×G2 has property Г if and only if G1 and G2  has property Г  

L 2. G has property Г if and only if Aut(G) has property Г 

L 3. If N is normal subgroup of G such that N and G/N  have  property  Г, then  G has property  Г  

L 4. If H is a finite index subgroup of G, then  G has property Г if and only if G is ice and H has property 

Г. Proof:  

L1 is clear from T3. For L2 , one can identify copy of G with the normal subgroup of Aut(G) of linear 

automorphisms, since G is ice by T2 and T3. As CAut(G)(G)={1}, L2 follows immediately. For L3, we need 

to show that  CG(N) has property P. Since  NCG(N) and  NCG(N)/N are normal in G and G/N respectively, 

hence CG(N) has property P. Because N is centerless and ice due to T2,  NCG(N)/N is isomorphic to  
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CG(N)/N∩CG(N)=CG(N). For L4, one can assume G is ice by T2, and let  N=⋂g∈GgHg−1. Then N is the 

kernel of the canonical action of  G on the final coset space  G/H sometimes called the normal core of 

H∈G, so it is a normal finite-index subgroup of G. It follows from our analysis that any element x∈CG(N) 

has finite conjugacy class in  G, and CG(N)={1}. Since N,H,G has property P, then CH(N)⊆CG(N)={1}.  □  

Remark 4.2: It is instructive to note that G could be isomorphic to the direct product of H and a finite 

cyclic group. Thus, G⊂H is not necessary ice. As immediate consequence of theorem 4.1, we have the 

following proposition;  

Proposition 4.3: Let G be a discrete group with a normal subgroup  N. Then G has trivial amenable 

radical if and only if N and CG(N) has trivial amenable radical.  

 It is clear, the amenable radical is characteristic, i.e., α(H)=H for any automorphisms α∈Aut(H). If H⊂G 

is a normal subgroup, the conjugation by g∈G is an automorphisms of H, implying  gR(H)g−1=R(H). 

Therefore, R(H) is normal in G and amenable, so that R(H)⊆R(G)∩H. Thus, R(G)∩H is amenable and 

normal in H,R(H)=R(G)∩H. We now prove the claim. Since N and CG(N) are normal, R(G)={1} implies   

R(N)=R(CG(N))={1} by our analysis. Conversely, assume that R(N)=R(CG(N))={1}. Then 

R(G)∩N=R(N)={1}, so normality of R(G) and N implies g(ng−1n−1)=(gng−1)n−1∈R(G)∩N={1} for all  

g∈R(G) and n∈N. Therefore, R(G) and N commute, meaning that  

R(G)=R(G)∩CG(N)=R(CG(N))={1}.  

5. SOME EXAMPLES OF C*-DISCRETE GROUPS  

We shall need the following Lemma.  

Lemma 5.1: Let G be a Hausdorff topological group and let X be a minimal proximal compact G-space. 

If X has an isolated point, then X is a one point space. In all of the following examples, we have assume 

X to be boundaries that are not one-point spaces, such that X has no isolated points by Lemma 5.1. 

Precisely, finite subsets of X have empty interior.  

Example I (Powers [42]):Non-abelian free groups of finite rank. For  n≥2, the action of non-abelian free 

group Fn  on its boundary  ∂Fn of one-sided reduced infinite words is topological free. This implies that 

Fn is C*-simple. Indeed, if A is a free generating set for  Fn, let  Π=g1...gn∈Fn/{1} be a word in a reduced 

form, where  g1...gn∈A∪A−1. We claim that  XΠ is finite, so that it has empty interior. Taking the 

conjugation if necessary, assuming that  g1gn≠1 since  Π≠1, then  

gXΠ=XgΠg−1,g∈Fn 

so that  XΠ has an empty interior if and only if  XgΠg−1 has empty interior. If  Πx=x for some   x∈∂Fn, 

assume that the concatenation is reduced. Then the first  n letter of  x are the n letters of 𝛱. Since   

g1gn≠1,  Π2x is also reduced. Therefore, 

then next  n letters of x are those of  Π. On iterating this process, we see that x=ΠΠΠ . . . , if  Πx is not 

reduced, then let  1≤k≤n  be the largest such that the first  k letters of  x,  are  gn −1...gn−k+1 −1 . Since 

the first letter of  x is  gn −1 and the first letter of  Πx  is  g1,  assuming that  k<n, we have  k=n. Thus, 
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the first  n  letters of Π−1. From our analysis so far, we conclude that x=Π−1Π−1Π−1. . ., finally,  XΠ 

consists of two points. Hence  Fn is C*-simple. 

 Example II ([6]):Projective Special linear Groups. For n≥2, the action of PSL(n,R) on real projective n−1-

space  Ω=Pn−1(R) is topologically free.We need to realize this. Let Π:(Rn)o→Ω be the quotient map 

and  g∈SL(n,R) fixes a non-empty open subset U⊆Pn−1(R) pointwise. Let  V⊆Π−1(U) be non-empty 

open ball in  Rn. For  ν,ϰ∈V such that  Π(ν)≠Π(ϰ) and  γ,γ'∈R  such that  gν=γν and  gϰ=γ'ϰ, then by 

convexity there exists  γ''∈R such that  

γ''(ν+ϰ)=g(ν+ϰ)=γν+γ'ϰ 

Since  ν∉Rϰ, if follows, γ=γ'=γ''. Therefore  g=γ1 on  V∪{0}. Assuming   a∈V, then for all  b∈Rn there 

exists c≠0 such that  cb+a∈V. By linearity,  gb=γb. Since g factors to the identity element in  G, it holds 

for any discrete subgroup Φ⊆G for which Ω is a Φ-boundary is C*-simple. Precisely, PSL(n,Z) is C*-

simple. Many other examples can be found in [17, 43], [10, Section 6.2], [32, Theorem 6.5], [25, 

Proposition 12], [3, P. 536], [39, Proposition 7.2] and [19, Theorem 2.6] etc.  
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