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Abstract 

This paper investigates the geomechanical behavior of rock masses in the zone of subcritical deformation around 

underground mine openings. The relationship between deformation and failure processes is analyzed with emphasis on 

stress–strain interaction under varying structural, geometric, and stress conditions. Analytical models were used to 

evaluate the distribution of stresses and displacements in homogeneous, isotropic, linearly deformable rock masses 

surrounding circular and non-circular excavations under different lateral pressure coefficients. The results demonstrate 

that maximum tangential stress occurs along zones of maximum curvature in the excavation contour, while stress 

concentration diminishes rapidly with distance from the excavation boundary. It is shown that subcritical deformation 

analysis allows prediction of post-critical rock pressure phenomena and provides a reliable basis for assessing the stability 

of underground workings. The presence of technological heterogeneities of blasting origin slightly increases displacements 

but reduces the influence of anisotropic stress conditions and contour shape, simplifying analytical modeling of the rock 

mass. 
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1. Introduction 

The distinction between deformation and failure 

processes in rock masses is conditional. Rock destruction 

begins during the subcritical deformation stage and 

manifests fully at the post-critical stage, largely 

determining the magnitude of observed displacements. 

As deformation increases beyond the strength limit, the 

load-bearing capacity of the rock mass decreases. Thus, 

deformation and failure processes are organically 

interconnected, mutually influencing and quantitatively 

determining each other [1]. 
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At the subcritical stage, as deformation grows, stresses 

increase up to a limiting level; upon unloading, most of 

the deformation is recovered, and rock loosening is 

minimal. The study of subcritical deformation, when 

failure has not yet developed, is more accessible for 

researchers and enables assessment of the main factors 

determining the mechanical behavior of the rock mass 

prior to failure. Consequently, analyzing these factors 

allows a degree of prediction of post-critical deformation 

patterns and the manifestation of rock pressure 

phenomena. 

The distinction between deformation and failure 

processes in rock masses is conditional. The process of 

rock failure begins at the subcritical deformation stage 

and is fully manifested at the post-critical stage, 

practically determining the magnitude of the observed 

deformations. On the other hand, as deformation 

increases beyond the strength limit, the load-bearing 

capacity of the rock mass decreases. Thus, the 

deformation and failure processes are organically 

interconnected; they mutually penetrate each other and 

quantitatively define one another [2]. 

At the subcritical stage, as deformation increases, the 

stresses grow up to a limiting level. During unloading, 

most of the deformation is recovered, and rock loosening 

remains insignificant. It should be noted that studying 

subcritical deformation of rock masses, when failure 

processes have not yet developed, is more accessible for 

researchers. In this sense, it allows for evaluating the 

influence of most factors that determine the mechanical 

state of the rock mass during the subcritical deformation 

stage. Consequently, analyzing the factors influencing 

subcritical deformation makes it possible, to a certain 

extent, to predict the patterns of post-critical deformation 

and the manifestation of rock pressure. 

Hence, the main objective in studying subcritical 

deformation is to perform a qualitative and quantitative 

analysis of its regularities under the influence of various 

factors. The most significant of these factors include: 

Structural and mechanical characteristics of the rock 

mass (physical and geometrical anisotropy, artificial 

heterogeneity, and initial stress state); 

Type of excavation (drift, chamber, or stope), the shape 

of its cross-section, and the influence of the excavation 

face; 

Behavioral laws of rocks under load (nonlinear 

deformation, rheological processes, etc.). 

2.  Methods 

In this study, the stress–strain state resulting from 

subcritical deformation of rock masses around 

underground excavations is analyzed, taking into account 

the above-mentioned factors. This analysis can be 

performed analytically, without the use of numerical 

methods. The investigation begins with solving the 

simplest case, where the rock mass can be represented by 

a homogeneous, isotropic, linearly deformable 

geomechanical model [3]. The initial stress field is 

considered equiaxial, and the excavation is assumed to 

have a circular cross-section and to be elongated and 

deep-seated. The solution to this basic case is taken as a 

reference, against which the influence of various factors 

on the stress–strain state of the rock mass will be 

evaluated. 

When studying geomechanical processes in the vicinity 

of horizontal, deep-seated, elongated openings with 

circular cross-sections, excavated in a homogeneous, 

isotropic, and “incompressible” rock mass (with 

Poisson’s ratio equal to 0.5) under an equiaxial initial 

stress field, one can employ the axisymmetric solution of 

elasticity theory. If the axis of the cylindrical coordinate 

system coincides with the longitudinal axis of the 

excavation, the rock mass sections normal to the axis will 

be in a plane strain state. In other words, in this case, the 

problem can be considered in the formulation of plane 

strain with axial symmetry [4]. 

σz= σr = σθ = q , τrz = τrθ= τθz = 0,  (1) 

where q accounts for the influence of gravitational forces and other contributing factors. 

The corresponding analytical scheme for determining the additional stresses in the rock mass is shown in Figure 1. 

In this case, the boundary conditions are expressed as follows: 

σr =p- q at   r = 1      (along the excavation contour), 

σr = σθ → 0    at  r = ∞                                                                 (2) 



The American Journal of Engineering and Technology 
ISSN 2689-0984 Volume 08 - 2026 

 
 

The Am. J. Eng. Technol. 2026                                                                                                                         120 

where p is the support (lining) reactive pressure. 

 

 

Fig. 1. Calculation scheme of the rock mass surrounding a horizontal excavation for determining additional 

stresses. 

The components of the additional stresses, obtained from the solution of the problem, are expressed as follows [5]: 
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The total stresses in the rock mass are determined by summing the initial stresses (1) and the additional stresses (3): 
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The components of deformation, which by their nature are additional, are determined using the additional stress 

components (3): 
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Corresponding radial dimensionless displacements [6]  
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The analysis of the distribution patterns of the total 

stresses σr and σθ around the excavation shows that 

along its boundary at  r = 1  the tangential stress σθ 

reaches its maximum value, while the radial stress σr is 

minimal. As the distance from the excavation boundary 

increases, the stresses gradually approach the initial 

stresses in the undisturbed rock mass. 

Table 1 presents the values of σr ,σθ , and σz   for  p = 0  

(an unsupported excavation). It is clearly seen that, in this 

case, the stress concentration factor** along the 

boundary of a circular excavation is equal to two and 

does not depend on the location of the considered point 

along the boundary. Displacements also reach their 
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maximum at the excavation boundary and rapidly decay 

with increasing distance into the rock mass. 

Table 1. 

r 

Stresses are given in units of q 

r 

Stresses are given in units of q 

 r    
z   r    

z  

1 

2 

3 

0 

0,75 

0,94 

2,00 

1,25 

1,06 

1,0 

1,0 

1,0 

6 

10 

0,97 

0,99 

1,03 

1,01 

1,0 

1,0 

If the initial stress state of the rock mass differs from a 

hydrostatic (equal-component) state, the conditions of 

symmetry are violated. Let us consider an initial stress 

state of the rock mass with equal horizontal stress 

components (M), which, in a rectangular coordinate 

system, can be represented as [7]: 

,, qq xzy  ===
                 

,0 === yzxzxy        (7) 

Transitioning to cylindrical coordinates, let us assume 

that the angle θ is measured from the vertical axis (Fig. 

2). 

 

Fig. 2. Stress distribution plots around a horizontal excavation under pre-failure deformation of the 

rock mass in a non-hydrostatic initial stress field. 
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3. Results Solving the problem in terms of additional stresses and 

assuming the absence of support (p = 0), the boundary 

conditions can be written as follows [10]: 
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The components of the additional stresses calculated in this way are expressed as follows [8]: 
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The components of the initial stresses (7) in the cylindrical coordinate system are expressed as follows: 
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By summing (9) and (10), we obtain the components of the total stresses [9]: 
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It is easily seen that for λ= 1 , the expressions for the 

stresses correspond to the expressions given above for 

the axisymmetric case. As an illustration, let us examine 

the stress state of a homogeneous isotropic rock mass in 

the vicinity of an unsupported circular excavation (p = 0) 

with a lateral pressure coefficient λ equal to 0.3 and 

0.6.Table 2 presents the values of the total stresses 

calculated for points along the excavation boundary at 

angles 0,45 and 900. Based on the data in Table 2, stress 

distribution plots in units of q were constructed for  λ = 

0.6  at points 0 = 00 and 0 = 900 (Fig. 2). 

Analyzing the obtained results, it can be seen that when 

the lateral pressure coefficient λ < 1, changes occur in the 

stress distribution compared to the case of λ = 1. 

Specifically, as λ decreases, the tangential stress   θ 

along the horizontal axis of the excavation boundary 

increases, while along the vertical axis it decreases and, 

at λ = 1/3, even changes sign, i.e., becomes tensile. 

In the presence of technological irregularities along a 

smooth design boundary of the excavations, the general 

patterns of stress distribution are preserved at points of 

maximum curvature (recesses) and minimum curvature 

(protrusions). 
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Table 2

 

To illustrate the proposed solution, we examine the stress 

state in the vicinity of excavations with different cross-

sectional shapes conducted in a homogeneous isotropic 

rock mass with an initial hydrostatic stress state. The  

 

 

parameters defining the contour shape and form are as 

follows: for an ellipse - n=1, c1 = 0,14,  for a square n=3, 

c1= 0,15;for a circle - n = 0, c1= 0. The resulting stress 

values, expressed in units of q , are presented in the form 

of plots in Fig. 3. 

 

 

1 – Elliptical contour; 2 – Square contour; 3 – Circular contour 

Fig. 3. Stress distribution plots around excavations with different cross-sectional shapes 
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In Fig. 3.(a), the stress diagrams in the vicinity of the 

excavations are shown along axes passing through points 

of maximum contour curvature, whereas in Fig. 3(b) they 

are shown along axes passing through points of 

minimum contour curvature.Fig. 4. presents the stress 

distribution plots of  θ  along the boundaries of 

excavations with square and elliptical cross-sections. 

 

Fig. 4. Stress distribution plots along the boundaries of excavations with square (a) and elliptical (b) cross-

sections. 

4. Conclusion 

Analyzing the stress diagrams, the following conclusions 

can be drawn. The maximum concentration of θ is 

located at points of greatest contour curvature (the corner 

points of a square cross-section, points along the major 

axis of an elliptical cross-section) and can reach values 

 θ >> 2q. In regions of non-circular contours with 

minimal curvature,  θ < 2q,i.e., lower than the 

tangential stresses along the boundary of a circular 

excavation. As the distance from the boundary increases, 

the stress concentration rapidly decreases and practically 

disappears at  r = 5 , regardless of the contour shape, i.e., 

 θ =  r = q. 

The presence of technological heterogeneity of explosive 

origin in the rock mass leads to increased displacements, 

but at the same time significantly reduces the influence 

of factors such as a non-hydrostatic initial stress state and 

the excavation cross-sectional shape. This allows 

geomechanical models and calculation schemes to be 

considerably simplified in problems considering the pre-

failure deformation stage of rocks. This is due to the fact 

that the absolute magnitude of displacements along the 

excavation boundary in rocks at the pre-failure stage is 

small and does not significantly affect excavation 

stability. 

However, it should be noted that the factors considered 

can cause unfavorable stress distributions, which in turn 

may lead to the transition of rocks into the post-failure 

deformation stage, where geomechanical processes will 

exhibit qualitatively and quantitatively new behaviors. 
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