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Abstract 

Healthcare education faces critical challenges including expanding medical knowledge, evolving clinical guidelines, and 

limited supervised clinical experience. While artificial intelligence (AI) and immersive technologies offer promising 

solutions, current systems operate in isolation rather than synergistically. This paper presents a systematic review of 165 

AI-enabled clinical training systems (2022-2025), examining five technological dimensions: LLM-based virtual patients, 

VR/AR platforms, graph-augmented AI, adaptive learning, and performance evaluation. Analysis reveals significant 

fragmentation—67% of systems employ single approaches, only 7% integrate three or more technologies. Critical gaps 

include: factual hallucinations in LLMs (12-15% error rates), limited adaptability in VR/AR scenarios, single-dimension 

personalization, and domain-specific assessments. We propose an integrated architectural framework combining graph-

augmented LLMs with immersive interfaces, multi-dimensional adaptive learning, and comprehensive performance 

evaluation. Graph augmentation demonstrates 73% reduction in factual errors; VR/AR systems show 25-40% skill 

retention improvements. The modular framework addresses identified gaps through bidirectional data flows and evidence-

based component integration, providing a research-informed blueprint for next-generation clinical training systems.   

Keywords: clinical training, large language models, knowledge graphs, virtual reality, augmented reality, adaptive 

learning, medical education, systematic review. 
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1. Introduction 

1.1 Motivation 

 

Medical education confronts escalating complexity: 

exponential knowledge growth, dynamic treatment 

paradigms, and restricted hands-on clinical exposure. 

Traditional apprenticeship models, while effective, lack 

scalability and demonstrate high variability across 

institutions [22]. Technology-enabled solutions—

conversational AI for patient simulation, immersive 

VR/AR for procedural training, and adaptive algorithms for 

personalized learning—have emerged independently but 

remain largely disconnected. 

Current systems exhibit critical limitations: LLM-based 

virtual patients generate medically inaccurate information 

without knowledge grounding [15]; VR/AR platforms 

deliver realistic environments but lack intelligent scenario 

adaptation [1]; adaptive learning systems adjust single 

parameters rather than comprehensive educational 

experiences [13]. This fragmentation prevents realization 

of synergistic benefits that integrated architectures could 

provide. 

https://doi.org/10.37547/tajet/v8i2-321
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1.2 Contributions 

 

This work makes three principal contributions: (1) 

systematic review and classification of 165 recent AI-

enabled clinical training systems across five technological 

dimensions; (2) comprehensive gap analysis identifying 

integration, validation, and scalability deficiencies; (3) 

evidence-informed architectural framework integrating 

graph-augmented LLMs, immersive simulation, multi-

dimensional adaptation, and holistic assessment. The 

proposed framework synthesizes empirical findings rather 

than presenting speculative design, establishing a research 

foundation for next-generation clinical training system 

development. 

2. Methods 

 

2.1 Literature Search Strategy 

 

A structured search captured AI-enabled clinical training 

systems across three complementary databases: SciSpace 

(peer-reviewed journals), Google Scholar (conference 

proceedings, early-access articles), and arXiv (AI/CS 

preprints). Search terms combined five thematic areas: AI 

Technologies (Artificial Intelligence, Machine Learning, 

LLM, GPT, Knowledge Graphs); Immersive Technologies 

(VR, AR, Mixed Reality, Haptics); Clinical Training 

(Medical Education, Simulation, Virtual Patient); Adaptive 

Systems (Personalized Learning, Intelligent Tutoring); 

Evaluation (Performance Assessment, Competency). 

Boolean operators constructed compound queries targeting 

technological intersections. Timeframe: 2022-2026 

publications, searched late 2024-early 2025. 

 

2.2 Study Selection 

 

Initial retrieval yielded 646 publications. Following 

duplicate removal (n=127), title/abstract screening 

eliminated 354 irrelevant studies. Full-text review of 

remaining articles yielded 165 relevant studies based on 

inclusion criteria: (1) focus on AI/ML systems for clinical 

training; (2) detailed system architectures or 

methodologies; (3) coverage of LLMs, knowledge graphs, 

VR/AR, adaptive learning, or assessment; (4) 

implementation details or empirical findings; (5) published 

post–January 2022; and (6) sufficient technical detail. 

Exclusion criteria included clinical decision support 

without an educational component, purely theoretical 

work, pre–2022 publications, insufficient technical detail, 

and duplicates. Interrater agreement was high (Cohen’s κ = 

0.87). The 165 studies were ranked by relevance across five 

technological dimensions; the top 30 underwent in-depth 

architectural analysis. 

2.3 Data Extraction and Quality Assessment 

 

Structured extraction covered: (1) Technical Architecture: 

AI/ML models, system components, knowledge integration 

methods, immersive technologies, adaptation mechanisms, 

evaluation methods; (2) Clinical Application: target users, 

trained skills, domains, outcomes, study design; (3) 

Contributions/Limitations: technical novelty, identified 

gaps, future directions. Quality assessment adapted 

MERSQI criteria [13], evaluating study design, sample 

characteristics, data type, validity evidence, and analytical 

rigor. Studies classified as High (n=9), Medium (n=16), or 

Low (n=5) quality; lower quality studies weighted less in 

synthesis. 

 

2.4 Synthesis Approach 

 

Narrative synthesis addressed heterogeneous study designs 

and measurement tools. Analysis categorized findings into 

five technology types, examining: architectural patterns, 

quantitative effectiveness data, capability gaps, and 

integration opportunities. This approach directly informed 

the proposed framework, grounding design in empirical 

evidence rather than assumptions. 

3. Results and Gap Analysis 

 

3.1 Overview of Current Landscape 

 

The systematic review revealed a fragmented ecosystem 

with promising individual technologies but minimal 

crosspollination. Of 30 in-depth analyzed studies: 0 

integrated all five technological approaches, 2 (7%) 

combined three approaches, 8 (27%) used two approaches, 

and 20 (67%) focused on single approaches. Table I 

synthesizes key findings across five categories. 

 

3.2 LLM-Based Virtual Patient Systems 

 

Six studies (n=247) demonstrated LLMs’ capacity for 

realistic patient dialogue [15]–[17]. Advanced 

implementations achieved 85% contextually appropriate 

responses and 4.2/5.0 usability ratings [20]. The MEDCO 

framework introduced multi-agent architecture separating 

patient, knowledge, evaluation, and feedback agents [17]. 

However, all systems exhibited factual hallucinations (12-
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15% error rates) and lacked integration with procedural 

training or medical knowledge bases. 

 

3.3 Immersive VR/AR Training Platforms 

 

Eleven studies (n=438) established VR/AR effectiveness 

for procedural skills [1], [7], [8]. Quantitative outcomes 

included 34% better retention at 3-month follow-up, 28% 

faster procedure completion, and 42% fewer critical errors 

compared to mannequin training. Cost-effective 

implementations using consumer-grade hardware ($1000 

total) matched $50,000 systems in skill acquisition [7]. 

CLiVR demonstrated hybrid approaches integrating AI-

powered virtual patients into VR environments [6]. AR 

applications showed 31% anatomical knowledge 

improvement [11]. Primary limitation: 9/11 systems used 

pre-scripted, non-adaptive scenarios lacking intelligent 

patient responses. 

 

3.4 Graph-Augmented AI Systems 

 

Only two studies addressed LLM hallucination through 

structured medical knowledge integration [2], [21]. 

MedCT’s clinical terminology graph (400,000+ terms, 

2M+ relationships) constrained LLM generation, reducing 

factual errors by 73% [2]. AIPatient utilized de-identified 

EHR data to construct patient knowledge graphs driving 

coherent virtual patient simulations; residents rated graph-

augmented patients as significantly more realistic than 

script-based alternatives (n=34) [21]. Despite dramatic 

accuracy improvements, neither study explored integration 

with immersive technologies or comprehensive adaptive 

learning. 

 

3.5 Adaptive Learning Mechanisms 

 

Five studies (n=285) demonstrated personalization benefits 

[12]–[14]. Socratic AI’s reinforcement learning-based 

tutoring achieved 18% greater clinical reasoning 

improvement versus static materials, with largest gains 

among low-performers (n=67) [13]. Predictive models 

identified at-risk students with 82% accuracy, enabling 

interventions that reduced failures by 73% (n=94) [14]. 

Temporal skill tracking provided real-time feedback, 

accelerating acquisition by 29% [12]. Limitations: most 

systems adapted single dimensions (difficulty or feedback 

timing); only one integrated VR/AR [10]. 

 

3.6 Performance Evaluation Methods 

 

Four studies (n=178) explored AI-based competency 

assessment [3], [12], [14], [15]. Temporal AI models 

enabled continuous micro-assessments tracking skill 

acquisition, plateaus, and decay [12]. NLP-based 

communication evaluation achieved 78% agreement with 

expert raters [15]. Root cause analysis training assessed 

complex cognitive skills beyond correctness [3]. Machine 

learning identified specific weaknesses (e.g., rushed 

information gathering) invisible to traditional assessments 

[14]. Gaps: domain-specificity, moderate expert agreement 

(65-80%), lack of standardization, minimal real-time 

adaptation integration. 

 

3.7 Critical Gaps Identified 

 

Integration Gap: Technological fragmentation prevents 

synergistic benefits. No studies combined all five 

approaches; 67% employed single technologies despite 

clear complementarity. 

Validation Gap: Limited empirical rigor: 37% included 

comparison groups, 17% reported follow-up assessments, 

10% correlated simulation with clinical outcomes. Median 

sample size: 42 participants. 

Scalability Gap: 63% were single-institution pilots; 13% 

multi-institutional. Insufficient attention to deployment 

costs,  

       

 

 



The American Journal of Engineering and Technology 
ISSN 2689-0984 Volume 08 - 2026 

 
 

The Am. J. Eng. Technol. 2026                                                                                                                         90 

 

diverse populations, or institutional constraints. 

 

Clinical Grounding Gap: LLM systems lack medical 

knowledge integration, generating factually incorrect 

information that graph augmentation dramatically reduces 

(73%). 

Adaptability Gap: Most systems offer narrow 

personalization (single parameter adjustment) rather than 

comprehensive multi-dimensional adaptation across 

scenario selection, difficulty, feedback, and environment. 

 

4. Proposed Architectural Framework 

 

4.1 Design Philosophy and Overview 

 

Based on systematic evidence synthesis, we propose an 

Integrated Architectural Framework for Next-Generation 

AIDriven Clinical Training (Fig. 1). Design principles 

include: (1) Evidence-based integration: components 

reflect demonstrated capabilities; (2) Modularity: 

incremental implementation; (3) Clinical safety: 

knowledge-grounded to prevent misinformation; (4) 

Learner-centered: educationally- driven adaptation; (5) 

Scalability: practical deployment considerations. 

The framework integrates four components: Graph 

Augmented LLM Engine (clinically-grounded patient 

simulation), Immersive Interface Layer (experiential 

multimodal environments), Adaptive Learning Module 

(multi-dimensional personalization), and Performance 

Evaluation System (comprehensive competency 

Table I Summary Of Ai-Enabled Clinical Training Technologies 

Category Studies n Key Strengths Critical Limitations 

LLM Virtual Patients [15]–[18], [20] 6 247 Realistic dialogue 

(85% contextual 

accuracy), infinite 

patience, scalability, 

communication 

feedback 

Factual hallucinations 

(12–15%), no clinical 

grounding, limited 

skills integration, 

text/voice only 

VR/AR Platforms [1], [6]–[8], [10], [11] 11 438 Skill retention +25–

40%, learning speed

 +20– 35%,

 error

 reduction 15–

45%, hands-on 

practice 

Pre-scripted scenarios, 

hardware costs, motion 

sickness (8–12%), 

limited clinical 

complexity 

Graph-Augmented AI [2], [21] 2 89 Factual error 

reduction 73%, 

explainable reasoning, 

clinical consistency, 

updatable knowledge 

Emerging area, 

development 

complexity, limited 

integration, 

validation challenges 

Adaptive Learning [9], [10], [12]–[14] 5 285 Time-to-competency 

–20–30%, benefits 

struggling learners, 

detailed performance 

insights 

Single-dimension 

adaptation, rare VR/AR 

integration, black-box 

algorithms, large data 

requirements 

Performance Evaluation [3], [12], [14], 

[15] 

4 178 Multi-dimensional 

assessment,

 granular 

feedback,

 continuous 

tracking, reduced 

evaluator burden 

Domain-specific focus, 

65–80% expert 

agreement, no 

standardization, limited 

real-time adaptation 
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assessment). This addresses the integration gap where 67% 

of reviewed systems employed single approaches. 

 

4.2 Component 1: Graph-Augmented LLM Engine 

 

Purpose: Generate clinically accurate, context-consistent 

patient simulations grounded in validated medical 

knowledge.  

 

Evidence Basis: MedCT and AIPatient demonstrated 73% 

factual error reduction through knowledge graph 

integration [2], [21], directly addressing the 12-15% 

hallucination rate in standalone LLM systems. 

 

Architecture: Combines three elements: (1) 

Medical Knowledge Graphs from standardized 

terminologies (SNOMED CT, UMLS, ICD-10, domain 

ontologies); (2) Retrieval-Augmented Generation (RAG) 

dynamically retrieving relevant subgraphs to constrain 

LLM output to valid medical relationships; (3) Multi-Agent 

Architecture separating responsibilities: Patient Agent 

(responses/behaviors), Clinical Knowledge Agent 

(evidence-based content), Scenario Agent (temporal 

progression), Evaluation Agent (performance signals to 

assessment module). 

 

Implementation: Requires curated, regularly-updated 

knowledge graphs; Graph Neural Networks for efficient 

semantic retrieval; higher computational cost offset by 

cloud infrastructure feasibility. 

 

4.3 Component 2: Immersive Interface Layer 

 

Purpose: Enable experiential learning through realistic 

VR/AR environments with multimodal interaction. 

 

Evidence Basis: Eleven VR/AR studies consistently 

demonstrated 25-40% skill retention improvements and 15-

45% error reductions [1], [7]. However, 9/11 used pre-

scripted scenarios; tight coupling with LLM reasoning 

addresses this limitation [6]. 

 

Architecture: Dual-mode interaction (VR for full 

immersion/procedures/emergencies; AR for anatomical 

overlays/hybrid practice [11]); Multimodal I/O (natural 

language dialogue, haptic feedback, gesture/gaze tracking, 

high-fidelity rendering); Seamless AI integration 

converting learner actions to LLM queries (verbal→Patient 

Agent, exams→Scenario Agent, orders→Knowledge 

Agent) with AI responses rendered appropriately (speech 

synthesis, visual displays, haptic cues); Real-time 

performance capture logging decisions, timing, 

communication, technique, gaze, errors. 

 

Implementation: Consumer-grade VR acceptable ($1000) 

[7]; network latency management critical for cloud 

rendering; alternative non-VR modes for motion sickness 

susceptibility (8–12%). 

 

4.4 Component 3: Adaptive Learning Module 

 

Purpose: Multi-dimensional personalization based on 

individual performance trajectories. 

 

Evidence Basis: Adaptive systems reduced time-

tocompetency 20-30%, with greatest benefits for struggling 

learners [13], [14]. However, most adapted single 

dimensions; comprehensive personalization remains 

underexplored. 

 

Architecture: Comprehensive learner modeling tracking 

knowledge state, skill proficiency, learning patterns, 

performance trajectories, metacognitive factors [12]; 

Multidimensional adaptation across scenario selection 

(guided progression, spaced repetition [13]), difficulty 

adjustment (dynamic challenge [10]), feedback 

personalization (type, timing, depth [15]), environmental 

parameters (stressors, pacing, distractions [9]); Learning 

science integration (spaced repetition, deliberate practice, 

interleaving, retrieval practice); ML optimization using 

reinforcement learning for teaching strategies and 

predictive modeling for early intervention [14]. 

 

Implementation: Requires substantial interaction data; 

balance between personalization and standardized 

competency; transparency essential for learner trust. 

 

4.5 Component 4: Performance Evaluation System 

 

Purpose: Comprehensive clinical competency assessment 

across multiple domains. 

 

Evidence Basis: AI-based evaluation demonstrated 78% 

expert agreement for communication skills [15]; temporal 

models accurately tracked skill acquisition patterns [12]. 

Gap: domain-specificity limits holistic assessment. 

 

Architecture: Multi-domain competency assessment 

(clinical knowledge, procedural skills, clinical reasoning, 

communication, professionalism); continuous micro-
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assessment using temporal models tracking acquisition, 

plateaus, decay throughout training [12] versus endpoint-

only testing; multimodal data integration (language 

analytics, procedural motion, decision timing/sequencing, 

longitudinal trajectories); feedback generation 

(quantitative scores, qualitative insights, remediation 

recommendations); validation/calibration through expert 

comparison, competency standard alignment, real-world 

outcome correlation. 

 

4.6 Component Integration and Data Flows 

 

Bidirectional integration enables continuous improvement: 

(1) Adaptive Module selects scenarios; (2) Graph-

Augmented LLM generates clinically-grounded 

experiences; (3) Immersive Interface delivers experience, 

captures interactions; (4) Evaluation System assesses 

multi-domain performance; (5) learner models update, 

informing subsequent adaptations. This closed-loop 

architecture addresses fragmented designs in current 

systems. 

 

4.7 Deployment and Scalability 

 

Infrastructure Options: Cloud-based (elastic scaling, 

centralized maintenance), hybrid cloud-edge (reduced VR 

latency), on-premise (data sovereignty compliance). 

 

Modular Implementation: Incremental stages enable 

practical adoption: Stage 1 (graph-augmented dialogue 

without immersion), Stage 2 (+VR/AR interfaces), Stage 3 

(+adaptive personalization), Stage 4 (+comprehensive 

evaluation). Each stage provides independent educational 

value.  

 

Resource Requirements: Consumer-grade immersive 

technology and cloud infrastructure enable cost-

effectiveness [7]. Ongoing investments required for clinical 

content curation and knowledge base maintenance. 

5. Discussion 

 

5.1 Evidence Synthesis 

 

The 165-study review establishes technical maturity of 

individual components alongside critical system-level 

fragmentation. Validated findings include: VR/AR 

procedural training effectiveness (11 studies, n=438: 25-

40% retention improvement, 20-35% faster learning, 15-

45% error reduction); LLM virtual patient engagement (6 

studies, n=247: 85% contextual accuracy, 4.2/5.0 

usability); graph augmentation factual accuracy (2 studies, 

n=89: 73% error reduction [2],  
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[21]); adaptive learning efficiency (5 studies, n=285: 20-

30% competency time reduction); AI evaluation feasibility 

(4 studies, n=178: 78% expert agreement [15]). 

Inadequately validated areas: integrated system synergies 

(0 studies combining all components), long-term retention 

(5/30 studies with follow-up), simulation-to-practice 

transfer (3/30 correlating with clinical outcomes), 

scalability economics (limited cost analysis), 

comprehensive competency development (AI supplements 

but cannot replace supervised practice). 

 

5.2 Framework Advantages 

 

The proposed framework addresses five critical gaps: 

 

Gap 1—LLM Clinical Accuracy: Graph-augmented 

engine with knowledge-constrained generation reduces 

factual errors by 73% [2], [21] versus 12-15% hallucination 

rates in unconstrained systems. 

 

Gap 2—VR/AR Adaptability: Tight LLM-immersive 

coupling enables contextually-aware, intelligent scenarios 

versus pre-scripted approaches (9/11 systems). 

 

Gap 3—Personalization Breadth: Multi-dimensional 

adaptation across scenario selection, difficulty, feedback, 

and environment versus single-parameter adjustment in 

existing systems. 

 

 

Fig. 1. Integrated architectural framework for graph-augmented AI clinical training system. The modular design comprises four 

synergistic components with bidirectional data flows: (1) Immersive Interface Layer providing VR/AR environments and 

multimodal interaction, (2) Graph-Augmented LLM Engine ensuring clinically accurate patient simulation through RAG and 

multi-agent architecture, (3) Adaptive Learning Module enabling comprehensive personalization across scenario selection, 

difficulty, and feedback, and (4) Performance Evaluation System conducting continuous multi-dimensional assessment. Dashed 

arrows  indicate data flows; solid bidirectional arrows show component integration. 
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Gap 4—Evaluation Comprehensiveness: Integrated 

multidomain assessment (knowledge, skills, reasoning, 

communication, professionalism) versus domain-specific 

evaluations. 

 

Gap 5—Technological Integration: Modular architecture 

with explicit integration mechanisms and bidirectional data 

flows versus siloed development (67% single-approach 

systems). 

 

Compared to standalone LLM virtual patients [15], [17], 

the framework adds clinical safety, immersive realism, 

multidomain assessment, and personalized adaptation. 

Versus VR/AR simulators [1], [7], it provides intelligent 

scenario adaptation, natural language interaction, 

continuous assessment, and longitudinal integration. 

Versus separate adaptive systems [13], [14], it enables 

simultaneous multi-dimensional adaptation with hands-on 

immersive practice. 

 

5.3 Limitations and Requirements 

 

Framework Limitations: Conceptual design lacks 

empirical validation; integration benefits remain 

hypothetical. System complexity may challenge 

institutions with limited technical capacity. High 

computational demands (graph-augmented LLMs, 

immersive rendering, continuous adaptation) create 

financial barriers. Content development and faculty 

training represent significant investments. 

 

Review Limitations: Publication bias excludes 

proprietary/failed systems. Rapid AI evolution (2022-

2026) creates temporal sensitivity. Study heterogeneity 

prevented quantitative meta-analysis. Variable quality: 

many small samples, limited validation. 

 

Validation Requirements: Responsible deployment 

requires proof-of-concept demonstration, pilot testing with 

controls, long-term follow-up, multi-site cross-validation, 

safety verification, cost-benefit analysis. 

 

Ethical Considerations: AI-generated misinformation 

risks patient safety; training data bias may perpetuate 

inequities; learner performance privacy requires 

protection; assessment/adaptation logic demands 

transparency for fairness; framework supplements rather 

than replaces educators and clinical experience; cost-

related access inequities require attention. 

5.4 Research Directions 

 

Short-term (1-2 years): Proof-of-concept implementation, 

graph-augmented LLM accuracy validation, pilot efficacy 

studies, user experience research. 

 

Mid-term (2-5 years): Multi-site randomized trials, 

longitudinal outcome assessment, component integration 

optimization, cost-effectiveness analysis, domain-specific 

customizations. 

 

Long-term (5+ years): Multimodal AI integration, 

federated learning for privacy-preserving personalization, 

explainable AI advancement, real-world transfer 

prediction, global contextualization, emerging modality 

exploration. 

 

6. Conclusion 

 

This systematic review of 165 AI-enabled clinical training 

systems reveals a paradox: substantial individual 

component maturity alongside critical system-level 

fragmentation. Evidence validates VR/AR procedural 

effectiveness (25-40% retention gains), LLM dialogue 

realism (85% contextual accuracy), graph augmentation 

clinical accuracy (73% error reduction), adaptive learning 

efficiency (20-30% time savings), and AI evaluation 

feasibility (78% expert agreement). However, 67% of 

systems employ single approaches; integration, validation, 

and scalability gaps persist. 

The proposed framework addresses these deficiencies 

through evidence-informed integration of graph-

augmented LLMs, immersive interfaces, multi-

dimensional adaptation, and comprehensive evaluation. 

Modular design enables incremental implementation while 

bidirectional data flows create continuous improvement 

loops. This conceptual architecture, grounded in systematic 

evidence synthesis, establishes a research foundation for 

next-generation clinical training systems that are clinically 

safe, experientially realistic, comprehensively 

personalized, and holistically evaluated. Empirical 

validation through staged implementation and rigorous 

multisite trials represents essential next steps toward 

transforming clinical education. 
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