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Abstract

Healthcare education faces critical challenges including expanding medical knowledge, evolving clinical guidelines, and
limited supervised clinical experience. While artificial intelligence (Al) and immersive technologies offer promising
solutions, current systems operate in isolation rather than synergistically. This paper presents a systematic review of 165
Al-enabled clinical training systems (2022-2025), examining five technological dimensions: LLM-based virtual patients,
VR/AR platforms, graph-augmented Al, adaptive learning, and performance evaluation. Analysis reveals significant
fragmentation—67% of systems employ single approaches, only 7% integrate three or more technologies. Critical gaps
include: factual hallucinations in LLMs (12-15% error rates), limited adaptability in VR/AR scenarios, single-dimension
personalization, and domain-specific assessments. We propose an integrated architectural framework combining graph-
augmented LLMs with immersive interfaces, multi-dimensional adaptive learning, and comprehensive performance
evaluation. Graph augmentation demonstrates 73% reduction in factual errors; VR/AR systems show 25-40% skill
retention improvements. The modular framework addresses identified gaps through bidirectional data flows and evidence-
based component integration, providing a research-informed blueprint for next-generation clinical training systems.
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1. Introduction

1.1 Motivation

Medical education confronts
exponential

escalating complexity:
knowledge growth, dynamic treatment
paradigms, and restricted hands-on clinical exposure.
Traditional apprenticeship models, while effective, lack
scalability and demonstrate high variability across
institutions  [22].  Technology-enabled  solutions—
conversational Al for patient simulation, immersive
VR/AR for procedural training, and adaptive algorithms for
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personalized learning—have emerged independently but
remain largely disconnected.

Current systems exhibit critical limitations: LLM-based
virtual patients generate medically inaccurate information
without knowledge grounding [15]; VR/AR platforms
deliver realistic environments but lack intelligent scenario
adaptation [1]; adaptive learning systems adjust single
parameters rather than educational
experiences [13]. This fragmentation prevents realization
of synergistic benefits that integrated architectures could
provide.

comprehensive
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1.2 Contributions

This work makes three principal contributions: (1)
systematic review and classification of 165 recent Al-
enabled clinical training systems across five technological
dimensions; (2) comprehensive gap analysis identifying
integration, validation, and scalability deficiencies; (3)
evidence-informed architectural framework integrating
graph-augmented LLMs, immersive simulation, multi-
dimensional adaptation, and holistic assessment. The
proposed framework synthesizes empirical findings rather
than presenting speculative design, establishing a research
foundation for next-generation clinical training system
development.

2. Methods

2.1 Literature Search Strategy

A structured search captured Al-enabled clinical training
systems across three complementary databases: SciSpace
(peer-reviewed journals), Google Scholar (conference
proceedings, early-access articles), and arXiv (AI/CS
preprints). Search terms combined five thematic areas: A/
Technologies (Artificial Intelligence, Machine Learning,
LLM, GPT, Knowledge Graphs); Immersive Technologies
(VR, AR, Mixed Reality, Haptics); Clinical Training
(Medical Education, Simulation, Virtual Patient); Adaptive
Systems (Personalized Learning, Intelligent Tutoring);
(Performance Assessment, Competency).
Boolean operators constructed compound queries targeting
technological intersections. Timeframe: 2022-2026
publications, searched late 2024-early 2025.

Evaluation

2.2 Study Selection

Initial retrieval yielded 646 publications. Following
duplicate (n=127), title/abstract screening
eliminated 354 irrelevant studies. Full-text review of
remaining articles yielded 165 relevant studies based on

removal

inclusion criteria: (1) focus on AI/ML systems for clinical
training; (2) detailed system architectures or
methodologies; (3) coverage of LLMs, knowledge graphs,
VR/AR, adaptive learning, or assessment; (4)
implementation details or empirical findings; (5) published
post-January 2022; and (6) sufficient technical detail.
Exclusion criteria included clinical decision support
without an educational component, purely theoretical
work, pre—2022 publications, insufficient technical detail,
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and duplicates. Interrater agreement was high (Cohen’s x =
0.87). The 165 studies were ranked by relevance across five
technological dimensions; the top 30 underwent in-depth
architectural analysis.

2.3 Data Extraction and Quality Assessment

Structured extraction covered: (1) Technical Architecture:
AI/ML models, system components, knowledge integration
methods, immersive technologies, adaptation mechanisms,
evaluation methods; (2) Clinical Application: target users,
trained skills, domains, outcomes, study design; (3)
Contributions/Limitations: technical novelty, identified
gaps, future directions. Quality assessment adapted
MERSQI criteria [13], evaluating study design, sample
characteristics, data type, validity evidence, and analytical
rigor. Studies classified as High (n=9), Medium (n=16), or
Low (n=5) quality; lower quality studies weighted less in
synthesis.

2.4 Synthesis Approach

Narrative synthesis addressed heterogeneous study designs
and measurement tools. Analysis categorized findings into
five technology types, examining: architectural patterns,
quantitative effectiveness data, capability gaps, and
integration opportunities. This approach directly informed
the proposed framework, grounding design in empirical
evidence rather than assumptions.

3. Results and Gap Analysis

3.1 Overview of Current Landscape

The systematic review revealed a fragmented ecosystem
with promising individual technologies but minimal
crosspollination. Of 30 in-depth analyzed studies: 0
integrated all five technological approaches, 2 (7%)
combined three approaches, 8 (27%) used two approaches,
and 20 (67%) focused on single approaches. Table I
synthesizes key findings across five categories.

3.2 LLM-Based Virtual Patient Systems

Six studies (n=247) demonstrated LLMs’ capacity for
realistic ~ patient  dialogue [15]-[17]. Advanced
implementations achieved 85% contextually appropriate
responses and 4.2/5.0 usability ratings [20]. The MEDCO
framework introduced multi-agent architecture separating
patient, knowledge, evaluation, and feedback agents [17].
However, all systems exhibited factual hallucinations (12-
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15% error rates) and lacked integration with procedural
training or medical knowledge bases.

3.3 Immersive VR/AR Training Platforms

Eleven studies (n=438) established VR/AR effectiveness
for procedural skills [1], [7], [8]. Quantitative outcomes
included 34% better retention at 3-month follow-up, 28%
faster procedure completion, and 42% fewer critical errors
compared to mannequin training. Cost-effective
implementations using consumer-grade hardware ($1000
total) matched $50,000 systems in skill acquisition [7].
CLiVR demonstrated hybrid approaches integrating Al-
powered virtual patients into VR environments [6]. AR
applications showed 31% knowledge
improvement [11]. Primary limitation: 9/11 systems used
pre-scripted, non-adaptive scenarios lacking intelligent
patient responses.

anatomical

3.4 Graph-Augmented Al Systems

Only two studies addressed LLM hallucination through
structured medical knowledge integration [2], [21].
MedCT’s clinical terminology graph (400,000+ terms,
2M+ relationships) constrained LLM generation, reducing
factual errors by 73% [2]. AlPatient utilized de-identified
EHR data to construct patient knowledge graphs driving
coherent virtual patient simulations; residents rated graph-
augmented patients as significantly more realistic than
script-based alternatives (n=34) [21]. Despite dramatic
accuracy improvements, neither study explored integration
with immersive technologies or comprehensive adaptive
learning.

3.5 Adaptive Learning Mechanisms

Five studies (n=285) demonstrated personalization benefits
[12]-[14]. Socratic AI’s reinforcement learning-based
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tutoring achieved 18% greater clinical reasoning
improvement versus static materials, with largest gains
among low-performers (n=67) [13]. Predictive models
identified at-risk students with 82% accuracy, enabling
interventions that reduced failures by 73% (n=94) [14].
Temporal skill tracking provided real-time feedback,
accelerating acquisition by 29% [12]. Limitations: most
systems adapted single dimensions (difficulty or feedback

timing); only one integrated VR/AR [10].
3.6 Performance Evaluation Methods

Four studies (n=178) explored Al-based competency
assessment [3], [12], [14], [15]. Temporal Al models
enabled continuous micro-assessments tracking skill
acquisition, plateaus, and decay [12]. NLP-based
communication evaluation achieved 78% agreement with
expert raters [15]. Root cause analysis training assessed
complex cognitive skills beyond correctness [3]. Machine
learning identified specific weaknesses (e.g., rushed
information gathering) invisible to traditional assessments
[14]. Gaps: domain-specificity, moderate expert agreement
(65-80%), lack of standardization, minimal real-time
adaptation integration.

3.7 Critical Gaps ldentified

Integration Gap: Technological fragmentation prevents
synergistic benefits. No studies combined all five
approaches; 67% employed single technologies despite
clear complementarity.

Validation Gap: Limited empirical rigor: 37% included
comparison groups, 17% reported follow-up assessments,
10% correlated simulation with clinical outcomes. Median
sample size: 42 participants.

Scalability Gap: 63% were single-institution pilots; 13%
multi-institutional. Insufficient attention to deployment
costs,
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Table I Summary Of Ai-Enabled Clinical Training Technologies

Category Studies n Key Strengths Critical Limitations
LLM Virtual Patients [15]-[18], [20] 6 247 Realistic dialogue Factual hallucinations
(85% contextual (12-15%), no clinical
accuracy), infinite grounding, limited
patience, scalability, skills integration,
communication text/voice only
feedback
VR/AR Platforms [1], [6]-[8], [10], [11] 11 438  Skill retention +25—  Pre-scripted scenarios,
40%, learning  speed hardware costs, motion
+20-35%, sickness (8—12%),
error limited clinical
reduction 15— complexity
45%,  hands-on
practice
Graph-Augmented Al [2], [21] 2 89 Factual error Emerging area,
reduction 73%, development
explainable reasoning,  complexity, limited
clinical consistency, integration,
updatable knowledge  validation challenges
Adaptive Learning [9], [10], [12]-[14] 5 285 Time-to-competency Single-dimension

—20-30%, benefits
struggling learners,
detailed performance

insights

adaptation, rare VR/AR
integration, black-box
algorithms, large data
requirements

Performance Evaluation [3], [12], [14],
[15]

178  Multi-dimensional ~ Domain-specific focus,

assessment, 65—-80% expert
granular agreement, no
feedback, standardization, limited
continuous  real-time adaptation

tracking, reduced
evaluator burden

diverse populations, or institutional constraints.

Clinical Grounding Gap: LLM systems lack medical
knowledge integration, generating factually incorrect
information that graph augmentation dramatically reduces
(73%).

Adaptability Gap: Most offer
personalization (single parameter adjustment) rather than
comprehensive multi-dimensional adaptation across
scenario selection, difficulty, feedback, and environment.

systems narrow

4. Proposed Architectural Framework

4.1 Design Philosophy and Overview
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Based on systematic evidence synthesis, we propose an
Integrated Architectural Framework for Next-Generation
AlDriven Clinical Training (Fig. 1). Design principles
include: (1) Evidence-based integration: components
reflect demonstrated capabilities; (2) Modularity:
incremental implementation; (3) Clinical safety:
knowledge-grounded to prevent misinformation; (4)
Learner-centered: educationally- driven adaptation; (5)
Scalability: practical deployment considerations.
The framework integrates four components:
Augmented LLM Engine (clinically-grounded patient

Graph

simulation), [mmersive Interface Layer (experiential
multimodal environments), Adaptive Learning Module
(multi-dimensional personalization), and Performance
Evaluation (comprehensive

System competency
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assessment). This addresses the integration gap where 67%
of reviewed systems employed single approaches.

4.2 Component 1: Graph-Augmented LLM Engine
Purpose: Generate clinically accurate, context-consistent

patient grounded in validated medical
knowledge.

simulations

Evidence Basis: MedCT and AlPatient demonstrated 73%
factual error reduction through knowledge graph
integration [2], [21], directly addressing the 12-15%
hallucination rate in standalone LLM systems.

Architecture: Combines three elements: (1)
Medical Knowledge Graphs from standardized
terminologies (SNOMED CT, UMLS, ICD-10, domain
ontologies); (2) Retrieval-Augmented Generation (RAG)
dynamically retrieving relevant subgraphs to constrain
LLM output to valid medical relationships; (3) Multi-Agent
Architecture separating responsibilities: Patient Agent
(responses/behaviors),  Clinical Knowledge Agent
(evidence-based content), Scenario Agent (temporal
progression), Evaluation Agent (performance signals to
assessment module).

Implementation: Requires curated, regularly-updated
knowledge graphs; Graph Neural Networks for efficient
semantic retrieval; higher computational cost offset by
cloud infrastructure feasibility.

4.3 Component 2: Immersive Interface Layer

Purpose: Enable experiential learning through realistic
VR/AR environments with multimodal interaction.

Evidence Basis: Eleven VR/AR studies consistently
demonstrated 25-40% skill retention improvements and 15-
45% error reductions [1], [7]. However, 9/11 used pre-
scripted scenarios; tight coupling with LLM reasoning
addresses this limitation [6].
Architecture: Dual-mode interaction (VR for full
immersion/procedures/emergencies; AR for anatomical
overlays/hybrid practice [11]); Multimodal I/O (natural
language dialogue, haptic feedback, gesture/gaze tracking,
high-fidelity ~rendering); Seamless Al
converting learner actions to LLM queries (verbal—Patient
Agent, exams—Scenario Agent, orders—Knowledge
Agent) with Al responses rendered appropriately (speech

integration
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Real-time
timing,

visual displays, haptic cues);
capture  logging  decisions,

communication, technique, gaze, errors.

synthesis,
performance

Implementation: Consumer-grade VR acceptable ($1000)
[7]; network latency management critical for cloud
rendering; alternative non-VR modes for motion sickness
susceptibility (8-12%).

4.4 Component 3: Adaptive Learning Module

Purpose: Multi-dimensional personalization based on
individual performance trajectories.
time-

Evidence Basis: Adaptive systems reduced

tocompetency 20-30%, with greatest benefits for struggling

learners [13], [14]. However, most adapted single
dimensions; comprehensive personalization remains
underexplored.

Architecture: Comprehensive learner modeling tracking
knowledge state, skill proficiency, learning patterns,
performance trajectories, metacognitive factors [12];
Multidimensional adaptation across scenario selection
(guided progression, spaced repetition [13]), difficulty
adjustment  (dynamic challenge [10]), feedback
personalization (type, timing, depth [15]), environmental
parameters (stressors, pacing, distractions [9]); Learning
science integration (spaced repetition, deliberate practice,
interleaving, retrieval practice); ML optimization using
learning for teaching strategies and
predictive modeling for early intervention [14].

reinforcement

Implementation: Requires substantial interaction data;
balance Dbetween personalization and standardized

competency; transparency essential for learner trust.
4.5 Component 4: Performance Evaluation System

Purpose: Comprehensive clinical competency assessment
across multiple domains.

Evidence Basis: Al-based evaluation demonstrated 78%
expert agreement for communication skills [15]; temporal
models accurately tracked skill acquisition patterns [12].
Gap: domain-specificity limits holistic assessment.

Architecture: Multi-domain
(clinical knowledge, procedural skills, clinical reasoning,
professionalism);

competency assessment

communication, continuous micro-
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assessment using temporal models tracking acquisition,
plateaus, decay throughout training [12] versus endpoint-
only testing; multimodal data integration (language
analytics, procedural motion, decision timing/sequencing,
longitudinal trajectories);  feedback  generation
(quantitative scores, qualitative insights, remediation
recommendations); validation/calibration through expert
comparison, competency standard alignment, real-world
outcome correlation.

4.6 Component Integration and Data Flows

Bidirectional integration enables continuous improvement:
(1) Adaptive Module selects scenarios; (2) Graph-
Augmented LLM clinically-grounded
experiences; (3) Immersive Interface delivers experience,

generates

captures interactions; (4) Evaluation System assesses
multi-domain performance; (5) learner models update,
informing closed-loop

architecture addresses fragmented designs in current

subsequent adaptations. This
systems.

4.7 Deployment and Scalability
Infrastructure Options: Cloud-based (elastic scaling,

centralized maintenance), hybrid cloud-edge (reduced VR
latency), on-premise (data sovereignty compliance).
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Modular Implementation: Incremental stages enable
practical adoption: Stage 1 (graph-augmented dialogue
without immersion), Stage 2 (+VR/AR interfaces), Stage 3
(+adaptive personalization), Stage 4 (+comprehensive
evaluation). Each stage provides independent educational
value.

Resource Requirements:
technology and cloud infrastructure enable
effectiveness [7]. Ongoing investments required for clinical
content curation and knowledge base maintenance.

5. Discussion

Consumer-grade immersive
cost-

5.1 Evidence Synthesis

The 165-study review establishes technical maturity of
individual components alongside critical system-level
fragmentation. Validated findings include: VR/AR
procedural training effectiveness (11 studies, n=438: 25-
40% retention improvement, 20-35% faster learning, 15-
45% error reduction); LLM virtual patient engagement (6
studies, n=247: 85% 4.2/5.0
usability); graph augmentation factual accuracy (2 studies,
n=89: 73% error reduction [2],

contextual accuracy,
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Fig. 1. Integrated architectural framework for graph-augmented Al clinical training system. The modular design comprises four
synergistic components with bidirectional data flows: (1) Immersive Interface Layer providing VR/AR environments and
multimodal interaction, (2) Graph-Augmented LLM Engine ensuring clinically accurate patient simulation through RAG and
multi-agent architecture, (3) Adaptive Learning Module enabling comprehensive personalization across scenario selection,
difficulty, and feedback, and (4) Performance Evaluation System conducting continuous multi-dimensional assessment. Dashed
arrows indicate data flows; solid bidirectional arrows show component integration.

[21]); adaptive learning efficiency (5 studies, n=285: 20-
30% competency time reduction); Al evaluation feasibility
(4 studies, n=178: 78% expert agreement [15]).
Inadequately validated areas: integrated system synergies
(0 studies combining all components), long-term retention
(5/30 studies with follow-up), simulation-to-practice
transfer (3/30 correlating with clinical outcomes),
scalability =~ economics  (limited cost  analysis),
comprehensive competency development (Al supplements
but cannot replace supervised practice).

5.2 Framework Advantages

The proposed framework addresses five critical gaps:
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Gap 1—LLM Clinical Accuracy: Graph-augmented
engine with knowledge-constrained generation reduces
factual errors by 73% [2], [21] versus 12-15% hallucination
rates in unconstrained systems.

Gap 2—VR/AR Adaptability: Tight LLM-immersive
coupling enables contextually-aware, intelligent scenarios
versus pre-scripted approaches (9/11 systems).

Gap 3—Personalization Breadth: Multi-dimensional
adaptation across scenario selection, difficulty, feedback,
and environment versus single-parameter adjustment in
existing systems.
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Gap 4—Evaluation Comprehensiveness: Integrated
multidomain assessment (knowledge, skills, reasoning,
communication, professionalism) versus domain-specific
evaluations.

Gap 5—Technological Integration: Modular architecture
with explicit integration mechanisms and bidirectional data
flows versus siloed development (67% single-approach
systems).

Compared to standalone LLM virtual patients [15], [17],
the framework adds clinical safety, immersive realism,
multidomain assessment, and personalized adaptation.
Versus VR/AR simulators [1], [7], it provides intelligent
scenario adaptation, natural language interaction,
continuous assessment, and longitudinal
Versus separate adaptive systems [13], [14], it enables

simultaneous multi-dimensional adaptation with hands-on

integration.

immersive practice.
5.3 Limitations and Requirements
Framework Limitations: Conceptual design lacks
empirical ~ validation; integration benefits remain
hypothetical. ~ System
institutions ~ with

complexity —may
limited capacity. High
LLMs,

create

challenge
technical
computational demands (graph-augmented
immersive rendering, continuous adaptation)
financial barriers. Content development and faculty

training represent significant investments.

Review Limitations: Publication bias excludes
proprietary/failed systems. Rapid Al evolution (2022-
2026) creates temporal sensitivity. Study heterogeneity
prevented quantitative meta-analysis. Variable quality:
many small samples, limited validation.

Validation Requirements: Responsible deployment
requires proof-of-concept demonstration, pilot testing with
controls, long-term follow-up, multi-site cross-validation,
safety verification, cost-benefit analysis.

Ethical Considerations: Al-generated misinformation
risks patient safety; training data bias may perpetuate
inequities; learner performance privacy requires
protection;  assessment/adaptation  logic ~ demands
transparency for fairness; framework supplements rather
than replaces educators and clinical experience; cost-
related access inequities require attention.
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5.4 Research Directions

Short-term (1-2 years): Proof-of-concept implementation,
graph-augmented LLM accuracy validation, pilot efficacy
studies, user experience research.

Mid-term (2-5 years): Multi-site randomized trials,
longitudinal outcome assessment, component integration
optimization, cost-effectiveness analysis, domain-specific
customizations.

Long-term (5+ years): Multimodal Al integration,
federated learning for privacy-preserving personalization,
explainable Al advancement, real-world transfer
prediction, global contextualization, emerging modality
exploration.

6. Conclusion

This systematic review of 165 Al-enabled clinical training
systems a paradox:
component maturity alongside system-level
fragmentation. Evidence validates VR/AR procedural
effectiveness (25-40% retention gains), LLM dialogue
realism (85% contextual accuracy), graph augmentation
clinical accuracy (73% error reduction), adaptive learning
efficiency (20-30% time savings), and Al evaluation
feasibility (78% expert agreement). However, 67% of
systems employ single approaches; integration, validation,

reveals substantial individual

critical

and scalability gaps persist.

The proposed framework addresses these deficiencies
through evidence-informed integration of graph-
augmented LLMs, immersive interfaces,
dimensional adaptation, and comprehensive evaluation.
Modular design enables incremental implementation while
bidirectional data flows create continuous improvement
loops. This conceptual architecture, grounded in systematic
evidence synthesis, establishes a research foundation for
next-generation clinical training systems that are clinically

multi-

safe, experientially realistic, comprehensively
personalized, and holistically evaluated. Empirical
validation through staged implementation and rigorous
multisite trials represents essential next steps toward
transforming clinical education.
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