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Abstract 

The accelerating urgency of climate change, resource depletion, and ecological degradation has placed unprecedented 

pressure on industries, governments, and researchers to adopt more reliable, forward-looking, and operationally relevant 

sustainability assessment tools. Life cycle assessment (LCA), standardized through ISO 14044, has long served as the 

methodological backbone for evaluating environmental impacts across product and process life cycles, yet its traditional 

reliance on static inventories, linear modeling assumptions, and data-intensive workflows has increasingly limited its 

ability to address complex, rapidly evolving technological systems (ISO, 2006). In parallel, machine learning and artificial 

intelligence have emerged as transformative analytical paradigms capable of discovering nonlinear relationships, filling 

data gaps, forecasting future conditions, and optimizing multi-objective systems. The convergence of these two domains 

represents a fundamental methodological transition from retrospective and descriptive environmental accounting toward 

predictive, adaptive, and decision-oriented sustainability science. 

This article develops a comprehensive theoretical and empirical synthesis of machine learning–integrated life cycle 

assessment based strictly on the scientific foundations provided by the referenced literature. Drawing on studies spanning 

construction materials, buildings, energy systems, agriculture, transportation, chemical processes, and emerging 

biotechnologies, the paper demonstrates how artificial intelligence is reshaping every phase of the LCA workflow, 

including inventory generation, impact factor estimation, uncertainty modeling, scenario forecasting, and optimization of 

sustainability trade-offs (Dabbaghi et al., 2021; Ghoroghi et al., 2022; Kock et al., 2023; Kleinekorte et al., 2023). Unlike 

conventional LCA approaches that depend on historical averages and fixed system boundaries, machine learning–enabled 

frameworks are shown to operate as dynamic, learning-based representations of socio-technical systems that evolve as 

new data, technologies, and climate conditions emerge. 

The article further explains how predictive modeling, surrogate process modeling, deep neural networks, fuzzy systems, 

genetic algorithms, and reinforcement learning collectively allow LCA to move from ex-post environmental auditing to ex-

ante sustainability design (Karka et al., 2022; Huntington et al., 2023; Kazemeini and Swei, 2023). Empirical evidence 

from sectors such as concrete production, bioenergy, crop cultivation, vehicle manufacturing, and carbon capture 

illustrates that AI-enhanced LCA can drastically improve both accuracy and decision relevance by capturing nonlinear 

process behavior, regional variability, and long-term uncertainty (Kaab et al., 2019; Lee et al., 2020; Javadi et al., 2021; 

Dong and Zhang, 2023). Importantly, the study also interrogates the epistemological and governance implications of 

embedding learning algorithms within environmental accounting systems, addressing issues of transparency, data bias, 

reproducibility, and policy legitimacy. 

By synthesizing theoretical developments, methodological innovations, and sector-specific applications, this article 

establishes a unified conceptual framework for intelligent life cycle assessment. It argues that machine learning is not 

merely a computational enhancement but a paradigm shift that transforms sustainability assessment into a predictive, 

optimization-driven, and policy-relevant discipline capable of guiding the global transition toward low-carbon and 

resource-efficient societies. 
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1. Introduction 

The Life cycle assessment has evolved over the past 

several decades into the most widely accepted 

methodological framework for quantifying the 

environmental impacts associated with products, 

processes, and services across their entire life cycles, 

from raw material extraction through production, use, 

and end-of-life treatment. The standardization of LCA 

under ISO 14044 provided a formalized structure for 

defining system boundaries, compiling inventories, 

conducting impact assessment, and interpreting results in 

a transparent and comparable way (ISO, 2006). This 

standardization was a critical milestone in transforming 

sustainability from a qualitative aspiration into a 

quantitative decision-making framework, enabling 

governments and industries to compare technological 

options, set regulatory thresholds, and design 

environmental policies. However, the very features that 

gave LCA its rigor—fixed inventories, deterministic 

modeling, and static assumptions—have increasingly 

become sources of limitation as global systems grow 

more complex, data-rich, and uncertain. 

Modern production systems are no longer characterized 

by stable technologies and predictable supply chains. 

They are dynamic, multi-scale, and deeply 

interconnected with climatic, economic, and social 

processes. Buildings change their energy performance 

over decades, crops respond to evolving climate 

conditions, and industrial processes are continuously 

redesigned to incorporate new materials and energy 

sources (Ji et al., 2021; Lee et al., 2020; Dong and Zhang, 

2023). Traditional LCA, which relies heavily on 

historical averages and generic databases, struggles to 

capture these dynamics, often producing results that are 

backward-looking rather than decision-relevant for 

future-oriented sustainability planning. Moreover, the 

compilation of life cycle inventories remains one of the 

most resource-intensive and uncertain steps in LCA, with 

data gaps, inconsistent reporting, and regional variability 

introducing large uncertainties that propagate through 

impact results (Khadem et al., 2022; Kock et al., 2023). 

At the same time, the digitalization of industrial systems, 

the proliferation of sensors, and the expansion of 

computational power have generated unprecedented 

volumes of data describing material flows, energy use, 

emissions, and process behavior. Machine learning and 

artificial intelligence have emerged precisely to address 

the challenges posed by such complex, high-dimensional 

data environments. By learning patterns directly from 

data rather than relying on predefined equations, 

machine learning models can capture nonlinear 

relationships, identify hidden drivers of environmental 

performance, and generate reliable predictions even in 

the presence of incomplete information (Ghoroghi et al., 

2022; Huntington et al., 2023). 

The integration of machine learning into life cycle 

assessment therefore represents a structural 

transformation of sustainability science. Instead of 

treating environmental impacts as static outputs derived 

from fixed inputs, AI-enabled LCA frameworks treat 

sustainability as a dynamic system that can be learned, 

forecasted, and optimized. Studies have already 

demonstrated that artificial neural networks can predict 

energy use and environmental impacts of buildings more 

accurately than conventional engineering models 

(D’Amico et al., 2019), that deep belief networks can 

optimize the life cycle performance of concrete mixtures 

(Dabbaghi et al., 2021), and that machine learning can 

project national building-sector carbon footprints 

decades into the future (Dong and Zhang, 2023). In 

agriculture, AI-based models have been used to predict 

crop yields and greenhouse gas emissions 

simultaneously, enabling the optimization of water, 

energy, and fertilizer use within a life cycle framework 

(Kaab et al., 2019; Nabavi-Pelesaraei et al., 2020). 

Despite this growing body of research, the conceptual 

foundations of machine learning–integrated LCA remain 
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fragmented. Many studies focus on specific applications, 

such as a single crop, a particular material, or one 

industrial process, without situating these advances 

within a broader theoretical framework. Moreover, the 

implications of embedding learning algorithms into 

environmental accounting systems for transparency, 

policy credibility, and ethical governance are rarely 

examined in depth. There remains a significant gap 

between the technical promise of AI and the institutional 

structures that govern sustainability decision-making. 

This article addresses that gap by synthesizing the 

referenced literature into a unified analytical framework 

that explains how machine learning is reshaping the 

epistemology, methodology, and practice of life cycle 

assessment. By examining how AI techniques are applied 

to inventory modeling, impact factor estimation, scenario 

forecasting, and multi-objective optimization across 

diverse sectors, the paper demonstrates that intelligent 

LCA constitutes a new generation of sustainability 

science. This new generation is characterized not by 

static snapshots of environmental performance, but by 

adaptive, predictive, and decision-support-oriented 

representations of complex socio-technical systems. 

2. Methodology 

The methodological foundation of this research article is 

built upon a structured theoretical synthesis of the 

referenced scientific literature, combined with a 

conceptual integration of machine learning and life cycle 

assessment frameworks. In accordance with ISO 14044, 

LCA consists of four interrelated phases: goal and scope 

definition, life cycle inventory analysis, life cycle impact 

assessment, and interpretation (ISO, 2006). The 

methodological innovation examined in this study lies in 

the transformation of each of these phases through the 

incorporation of artificial intelligence techniques. 

The first methodological dimension concerns the 

generation and refinement of life cycle inventory data. 

Traditional LCI compilation relies on process-based 

measurements, industrial surveys, and secondary 

databases. However, such data are often incomplete, 

inconsistent, or unavailable for emerging technologies 

and regionalized systems. Machine learning provides a 

statistical and computational framework for inferring 

missing data, interpolating between sparse observations, 

and predicting process flows under new conditions. 

Feed-forward neural networks, deep belief networks, and 

surrogate models have been used to predict energy use, 

emissions, and material flows in manufacturing, 

agriculture, and chemical processes with high accuracy 

(Dabbaghi et al., 2021; Khadem et al., 2022; Huntington 

et al., 2023). These models learn from historical process 

data and can generalize to new parameter combinations, 

enabling the construction of dynamic inventories that 

evolve as system inputs change. 

A second methodological pillar is the estimation of 

characterization factors and impact categories. In 

conventional LCA, impact factors such as global 

warming potential or ecotoxicity are derived from 

complex physical and chemical models that require 

extensive experimental data. Machine learning has been 

applied to estimate these factors directly from molecular 

descriptors, environmental fate data, and observed 

toxicity outcomes, greatly expanding the scope and 

resolution of impact assessment (Hou et al., 2020). By 

learning relationships between chemical properties and 

environmental behavior, AI-based models allow LCA to 

include substances and processes that would otherwise 

remain outside the analytical boundary. 

The third methodological dimension involves scenario 

modeling and forecasting. Sustainability decisions are 

inherently future-oriented, yet traditional LCA is 

fundamentally retrospective, based on historical 

averages. Machine learning enables the projection of life 

cycle impacts under future climate, technology, and 

policy scenarios by learning from time-series data and 

climate models. Studies on building-sector carbon 

footprints and agricultural systems demonstrate that AI 

can simulate how emissions trajectories respond to 

evolving energy mixes, climate conditions, and 

technological adoption (Lee et al., 2020; Dong and 

Zhang, 2023). These predictive capabilities transform 

LCA into a strategic planning tool rather than merely an 

accounting framework. 

The fourth methodological dimension concerns 

optimization and decision support. Sustainability 

problems are typically multi-objective, involving trade-

offs between cost, energy use, greenhouse gas emissions, 

water consumption, and ecological impacts. 

Metaheuristic algorithms, genetic algorithms, and 

reinforcement learning have been integrated with LCA 

models to identify optimal configurations of resources, 

technologies, and management strategies (Kaab et al., 

2019; Karamian et al., 2023; Kazemeini and Swei, 2023). 

These techniques search large solution spaces to find 

Pareto-optimal solutions that balance competing 

sustainability goals. 
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Throughout the article, these methodological 

components are not treated as isolated techniques but as 

elements of a coherent intelligent LCA framework. This 

framework conceptualizes sustainability assessment as a 

learning-based system that continuously updates its 

representations of environmental performance as new 

data, technologies, and policies emerge. 

3. Results 

The integration of machine learning into life cycle 

assessment has generated a wide array of empirical 

outcomes across multiple sectors, consistently 

demonstrating improvements in accuracy, predictive 

power, and decision relevance. In the domain of 

construction materials, Dabbaghi et al. (2021) showed 

that deep belief networks combined with multi-objective 

optimization could identify lightweight aggregate 

concrete mixtures that minimize both environmental 

impacts and material costs. By learning from 

experimental data on material composition and 

performance, the model was able to explore a vast design 

space that would be infeasible using conventional trial-

and-error or linear regression approaches. The resulting 

optimized mixtures exhibited significantly lower 

embodied carbon and energy use compared to traditional 

formulations, illustrating how AI-driven LCA can guide 

eco-design at the material level. 

In the built environment, artificial neural networks have 

been used to assess and forecast the energy and 

environmental performance of buildings. D’Amico et al. 

(2019) demonstrated that neural networks trained on 

Italian building data could predict life cycle energy 

consumption and emissions more accurately than 

conventional simulation tools. Building lifespan 

prediction, a critical parameter in LCA and life cycle 

costing, has also been enhanced through machine 

learning applied to large datasets of building 

characteristics and performance histories (Ji et al., 2021). 

These predictive models reduce uncertainty in long-term 

impact estimates, which is particularly important for 

infrastructure investments with lifespans of several 

decades. 

At the urban and national scale, machine learning has 

enabled the projection of carbon footprints under future 

scenarios. Dong and Zhang (2023) used machine 

learning to forecast Hong Kong’s building-sector 

emissions through 2050, accounting for changes in 

energy systems, technology adoption, and economic 

growth. Such forward-looking assessments provide 

policymakers with quantitative insights into the 

feasibility of carbon neutrality targets, something 

traditional LCA frameworks are not designed to do. 

In agriculture, AI-integrated LCA has produced 

particularly rich results due to the highly variable and 

data-intensive nature of farming systems. Neural 

networks, fuzzy inference systems, and genetic 

algorithms have been used to predict crop yields, energy 

use, and greenhouse gas emissions simultaneously, 

enabling the optimization of cropping systems within a 

life cycle framework (Khanali et al., 2017; Khoshnevisan 

et al., 2014; Nabavi-Pelesaraei et al., 2020). These 

models capture the nonlinear interactions between 

weather, soil conditions, input use, and management 

practices, providing farmers and policymakers with 

actionable sustainability metrics that reflect real-world 

variability. 

In energy and industrial systems, machine learning has 

been used to generate surrogate models of complex 

processes, enabling rapid evaluation of environmental 

impacts without the need for full-scale process 

simulation. Huntington et al. (2023) demonstrated that 

machine learning could accurately approximate the life 

cycle performance of bioproduction pathways, while 

Liao et al. (2020) used AI to generate energy and 

greenhouse gas inventories for activated carbon 

production. These surrogate models make it possible to 

screen large numbers of technological alternatives early 

in the design process, accelerating innovation while 

maintaining environmental accountability. 

Across all these domains, a consistent result emerges: 

machine learning reduces data gaps, captures system 

complexity, and provides predictive insights that 

fundamentally enhance the usefulness of life cycle 

assessment for sustainability decision-making. 

4. Discussion 

The empirical successes of machine learning–integrated 

life cycle assessment reflect deeper theoretical 

transformations in how environmental knowledge is 

produced and used. Traditional LCA is grounded in a 

mechanistic epistemology, where environmental impacts 

are calculated through predefined causal chains linking 

inputs, processes, and emissions. While this approach 

ensures transparency and interpretability, it struggles 

with complexity, uncertainty, and novelty. Machine 

learning introduces a data-driven epistemology in which 

relationships are inferred from observed patterns rather 
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than imposed by theory. This shift allows LCA to handle 

nonlinear dynamics, high-dimensional interactions, and 

evolving technologies, but it also raises important 

questions about explainability, trust, and governance. 

One of the central advantages of AI-based LCA is its 

ability to operate under uncertainty. Climate change, 

technological innovation, and economic volatility mean 

that future environmental impacts cannot be reliably 

inferred from past averages. By learning from time-series 

data and scenario inputs, machine learning models can 

generate probabilistic forecasts that reflect a range of 

possible futures (Lee et al., 2020; Dong and Zhang, 

2023). This aligns LCA with the needs of strategic 

planning and risk management, transforming it from a 

descriptive tool into a predictive one. 

At the same time, the use of black-box models challenges 

the traditional transparency of LCA. Regulatory 

frameworks and environmental labeling schemes rely on 

traceable and auditable calculations. When neural 

networks or ensemble models generate impact estimates, 

the causal pathways may be opaque, potentially 

undermining trust. This tension has led to the 

development of hybrid approaches that combine 

mechanistic LCA models with machine learning 

surrogates, preserving interpretability while enhancing 

predictive performance (Karka et al., 2022; Kleinekorte 

et al., 2023). 

Another critical issue is data bias and representativeness. 

Machine learning models are only as good as the data on 

which they are trained. If training datasets are skewed 

toward certain regions, technologies, or scales of 

operation, the resulting predictions may systematically 

misrepresent environmental performance elsewhere. 

This is particularly important in global sustainability 

assessments, where data from industrialized regions 

often dominate (Ghoroghi et al., 2022). Addressing this 

challenge requires coordinated efforts to expand and 

harmonize environmental data infrastructures. 

The integration of optimization algorithms further 

complicates the ethical and political dimensions of 

sustainability assessment. When genetic algorithms or 

reinforcement learning identify optimal strategies for 

reducing emissions or resource use, they implicitly 

encode value judgments about trade-offs between 

economic, environmental, and social objectives (Kaab et 

al., 2019; Kazemeini and Swei, 2023). Making these 

value assumptions explicit is essential for democratic 

accountability in sustainability policy. 

5. Conclusion 

The convergence of machine learning and life cycle 

assessment marks a profound transformation in the 

science and practice of sustainability. By enabling 

dynamic inventory modeling, predictive impact 

assessment, and multi-objective optimization, artificial 

intelligence allows LCA to move beyond retrospective 

accounting toward proactive sustainability design. The 

referenced literature demonstrates that across 

construction, agriculture, energy, transportation, and 

chemical industries, AI-enhanced LCA delivers more 

accurate, more relevant, and more actionable insights 

than conventional approaches. 

Yet this transformation also introduces new challenges of 

transparency, data governance, and ethical decision-

making. The future of intelligent LCA will depend not 

only on advances in algorithms but also on the 

development of institutional frameworks that ensure that 

these powerful tools are used responsibly, equitably, and 

in service of genuine sustainability transitions. When 

combined with the rigor of ISO-based LCA and the 

adaptive intelligence of machine learning, environmental 

assessment can become a cornerstone of a data-driven, 

climate-resilient global economy. 
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