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Abstract

The accelerating urgency of climate change, resource depletion, and ecological degradation has placed unprecedented
pressure on industries, governments, and researchers to adopt more reliable, forward-looking, and operationally relevant
sustainability assessment tools. Life cycle assessment (LCA), standardized through 1SO 14044, has long served as the
methodological backbone for evaluating environmental impacts across product and process life cycles, yet its traditional
reliance on static inventories, linear modeling assumptions, and data-intensive workflows has increasingly limited its
ability to address complex, rapidly evolving technological systems (ISO, 2006). In parallel, machine learning and artificial
intelligence have emerged as transformative analytical paradigms capable of discovering nonlinear relationships, filling
data gaps, forecasting future conditions, and optimizing multi-objective systems. The convergence of these two domains
represents a fundamental methodological transition from retrospective and descriptive environmental accounting toward
predictive, adaptive, and decision-oriented sustainability science.

This article develops a comprehensive theoretical and empirical synthesis of machine learning—integrated life cycle
assessment based strictly on the scientific foundations provided by the referenced literature. Drawing on studies spanning
construction materials, buildings, energy systems, agriculture, transportation, chemical processes, and emerging
biotechnologies, the paper demonstrates how artificial intelligence is reshaping every phase of the LCA workflow,
including inventory generation, impact factor estimation, uncertainty modeling, scenario forecasting, and optimization of
sustainability trade-offs (Dabbaghi et al., 2021; Ghoroghi et al., 2022; Kock et al., 2023; Kleinekorte et al., 2023). Unlike
conventional LCA approaches that depend on historical averages and fixed system boundaries, machine learning—enabled
frameworks are shown to operate as dynamic, learning-based representations of socio-technical systems that evolve as
new data, technologies, and climate conditions emerge.

The article further explains how predictive modeling, surrogate process modeling, deep neural networks, fuzzy systems,
genetic algorithms, and reinforcement learning collectively allow LCA to move from ex-post environmental auditing to ex-
ante sustainability design (Karka et al., 2022; Huntington et al., 2023; Kazemeini and Swei, 2023). Empirical evidence
from sectors such as concrete production, bioenergy, crop cultivation, vehicle manufacturing, and carbon capture
illustrates that Al-enhanced LCA can drastically improve both accuracy and decision relevance by capturing nonlinear
process behavior, regional variability, and long-term uncertainty (Kaab et al., 2019; Lee et al., 2020; Javadi et al., 2021;
Dong and Zhang, 2023). Importantly, the study also interrogates the epistemological and governance implications of
embedding learning algorithms within environmental accounting systems, addressing issues of transparency, data bias,
reproducibility, and policy legitimacy.

By synthesizing theoretical developments, methodological innovations, and sector-specific applications, this article
establishes a unified conceptual framework for intelligent life cycle assessment. It argues that machine learning is not
merely a computational enhancement but a paradigm shift that transforms sustainability assessment into a predictive,
optimization-driven, and policy-relevant discipline capable of guiding the global transition toward low-carbon and
resource-efficient societies.
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1. Introduction

The Life cycle assessment has evolved over the past
several decades into the most widely accepted
methodological framework for quantifying the
environmental impacts associated with products,
processes, and services across their entire life cycles,
from raw material extraction through production, use,
and end-of-life treatment. The standardization of LCA
under ISO 14044 provided a formalized structure for
defining system boundaries, compiling inventories,
conducting impact assessment, and interpreting results in
a transparent and comparable way (ISO, 2006). This
standardization was a critical milestone in transforming
sustainability from a qualitative aspiration into a
quantitative  decision-making framework, enabling
governments and industries to compare technological
options, set regulatory thresholds, and design
environmental policies. However, the very features that
gave LCA its rigor—fixed inventories, deterministic
modeling, and static assumptions—have increasingly
become sources of limitation as global systems grow
more complex, data-rich, and uncertain.

Modern production systems are no longer characterized
by stable technologies and predictable supply chains.
They are dynamic, multi-scale, and deeply
interconnected with climatic, economic, and social
processes. Buildings change their energy performance
over decades, crops respond to evolving climate
conditions, and industrial processes are continuously
redesigned to incorporate new materials and energy
sources (Jietal., 2021; Lee et al., 2020; Dong and Zhang,
2023). Traditional LCA, which relies heavily on
historical averages and generic databases, struggles to
capture these dynamics, often producing results that are
backward-looking rather than decision-relevant for
future-oriented sustainability planning. Moreover, the
compilation of life cycle inventories remains one of the
most resource-intensive and uncertain steps in LCA, with
data gaps, inconsistent reporting, and regional variability
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introducing large uncertainties that propagate through
impact results (Khadem et al., 2022; Kock et al., 2023).

At the same time, the digitalization of industrial systems,
the proliferation of sensors, and the expansion of
computational power have generated unprecedented
volumes of data describing material flows, energy use,
emissions, and process behavior. Machine learning and
artificial intelligence have emerged precisely to address
the challenges posed by such complex, high-dimensional
data environments. By learning patterns directly from
data rather than relying on predefined equations,
machine learning models can capture nonlinear
relationships, identify hidden drivers of environmental
performance, and generate reliable predictions even in
the presence of incomplete information (Ghoroghi et al.,
2022; Huntington et al., 2023).

The integration of machine learning into life cycle
assessment  therefore  represents a  structural
transformation of sustainability science. Instead of
treating environmental impacts as static outputs derived
from fixed inputs, Al-enabled LCA frameworks treat
sustainability as a dynamic system that can be learned,
forecasted, and optimized. Studies have already
demonstrated that artificial neural networks can predict
energy use and environmental impacts of buildings more
accurately than conventional engineering models
(D’Amico et al., 2019), that deep belief networks can
optimize the life cycle performance of concrete mixtures
(Dabbaghi et al., 2021), and that machine learning can
project national building-sector carbon footprints
decades into the future (Dong and Zhang, 2023). In
agriculture, Al-based models have been used to predict
crop yields and greenhouse gas emissions
simultaneously, enabling the optimization of water,
energy, and fertilizer use within a life cycle framework
(Kaab et al., 2019; Nabavi-Pelesaraei et al., 2020).

Despite this growing body of research, the conceptual
foundations of machine learning—integrated LCA remain
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fragmented. Many studies focus on specific applications,
such as a single crop, a particular material, or one
industrial process, without situating these advances
within a broader theoretical framework. Moreover, the
implications of embedding learning algorithms into
environmental accounting systems for transparency,
policy credibility, and ethical governance are rarely
examined in depth. There remains a significant gap
between the technical promise of Al and the institutional
structures that govern sustainability decision-making.

This article addresses that gap by synthesizing the
referenced literature into a unified analytical framework
that explains how machine learning is reshaping the
epistemology, methodology, and practice of life cycle
assessment. By examining how Al techniques are applied
to inventory modeling, impact factor estimation, scenario
forecasting, and multi-objective optimization across
diverse sectors, the paper demonstrates that intelligent
LCA constitutes a new generation of sustainability
science. This new generation is characterized not by
static snapshots of environmental performance, but by
adaptive, predictive, and decision-support-oriented
representations of complex socio-technical systems.

2. Methodology

The methodological foundation of this research article is
built upon a structured theoretical synthesis of the
referenced scientific literature, combined with a
conceptual integration of machine learning and life cycle
assessment frameworks. In accordance with ISO 14044,
LCA consists of four interrelated phases: goal and scope
definition, life cycle inventory analysis, life cycle impact
assessment, and interpretation (ISO, 2006). The
methodological innovation examined in this study lies in
the transformation of each of these phases through the
incorporation of artificial intelligence techniques.

The first methodological dimension concerns the
generation and refinement of life cycle inventory data.
Traditional LCI compilation relies on process-based
measurements, industrial surveys, and secondary
databases. However, such data are often incomplete,
inconsistent, or unavailable for emerging technologies
and regionalized systems. Machine learning provides a
statistical and computational framework for inferring
missing data, interpolating between sparse observations,
and predicting process flows under new conditions.
Feed-forward neural networks, deep belief networks, and
surrogate models have been used to predict energy use,
emissions, and material flows in manufacturing,
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agriculture, and chemical processes with high accuracy
(Dabbaghi et al., 2021; Khadem et al., 2022; Huntington
et al., 2023). These models learn from historical process
data and can generalize to new parameter combinations,
enabling the construction of dynamic inventories that
evolve as system inputs change.

A second methodological pillar is the estimation of
characterization factors and impact categories. In
conventional LCA, impact factors such as global
warming potential or ecotoxicity are derived from
complex physical and chemical models that require
extensive experimental data. Machine learning has been
applied to estimate these factors directly from molecular
descriptors, environmental fate data, and observed
toxicity outcomes, greatly expanding the scope and
resolution of impact assessment (Hou et al., 2020). By
learning relationships between chemical properties and
environmental behavior, Al-based models allow LCA to
include substances and processes that would otherwise
remain outside the analytical boundary.

The third methodological dimension involves scenario
modeling and forecasting. Sustainability decisions are
inherently future-oriented, yet traditional LCA is
fundamentally retrospective, based on historical
averages. Machine learning enables the projection of life
cycle impacts under future climate, technology, and
policy scenarios by learning from time-series data and
climate models. Studies on building-sector carbon
footprints and agricultural systems demonstrate that Al
can simulate how emissions trajectories respond to
evolving energy mixes, climate conditions, and
technological adoption (Lee et al., 2020; Dong and
Zhang, 2023). These predictive capabilities transform
LCA into a strategic planning tool rather than merely an
accounting framework.

The fourth methodological dimension concerns
optimization and decision support. Sustainability
problems are typically multi-objective, involving trade-
offs between cost, energy use, greenhouse gas emissions,
water  consumption, and ecological impacts.
Metaheuristic algorithms, genetic algorithms, and
reinforcement learning have been integrated with LCA
models to identify optimal configurations of resources,
technologies, and management strategies (Kaab et al.,
2019; Karamian et al., 2023; Kazemeini and Swei, 2023).
These techniques search large solution spaces to find
Pareto-optimal solutions that balance competing
sustainability goals.
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Throughout the article, these methodological
components are not treated as isolated techniques but as
elements of a coherent intelligent LCA framework. This
framework conceptualizes sustainability assessment as a
learning-based system that continuously updates its
representations of environmental performance as new
data, technologies, and policies emerge.

3. Results

The integration of machine learning into life cycle
assessment has generated a wide array of empirical
outcomes across multiple sectors, consistently
demonstrating improvements in accuracy, predictive
power, and decision relevance. In the domain of
construction materials, Dabbaghi et al. (2021) showed
that deep belief networks combined with multi-objective
optimization could identify lightweight aggregate
concrete mixtures that minimize both environmental
impacts and material costs. By learning from
experimental data on material composition and
performance, the model was able to explore a vast design
space that would be infeasible using conventional trial-
and-error or linear regression approaches. The resulting
optimized mixtures exhibited significantly lower
embodied carbon and energy use compared to traditional
formulations, illustrating how Al-driven LCA can guide
eco-design at the material level.

In the built environment, artificial neural networks have
been used to assess and forecast the energy and
environmental performance of buildings. D’ Amico et al.
(2019) demonstrated that neural networks trained on
Italian building data could predict life cycle energy
consumption and emissions more accurately than
conventional simulation tools. Building lifespan
prediction, a critical parameter in LCA and life cycle
costing, has also been enhanced through machine
learning applied to large datasets of building
characteristics and performance histories (Ji et al., 2021).
These predictive models reduce uncertainty in long-term
impact estimates, which is particularly important for
infrastructure investments with lifespans of several
decades.

At the urban and national scale, machine learning has
enabled the projection of carbon footprints under future
scenarios. Dong and Zhang (2023) used machine
learning to forecast Hong Kong’s building-sector
emissions through 2050, accounting for changes in
energy systems, technology adoption, and economic
growth. Such forward-looking assessments provide
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policymakers with quantitative insights into the
feasibility of carbon neutrality targets, something
traditional LCA frameworks are not designed to do.

In agriculture, Al-integrated LCA has produced
particularly rich results due to the highly variable and
data-intensive nature of farming systems. Neural
networks, fuzzy inference systems, and genetic
algorithms have been used to predict crop yields, energy
use, and greenhouse gas emissions simultaneously,
enabling the optimization of cropping systems within a
life cycle framework (Khanali et al., 2017; Khoshnevisan
et al., 2014; Nabavi-Pelesaraei et al., 2020). These
models capture the nonlinear interactions between
weather, soil conditions, input use, and management
practices, providing farmers and policymakers with
actionable sustainability metrics that reflect real-world
variability.

In energy and industrial systems, machine learning has
been used to generate surrogate models of complex
processes, enabling rapid evaluation of environmental
impacts without the need for full-scale process
simulation. Huntington et al. (2023) demonstrated that
machine learning could accurately approximate the life
cycle performance of bioproduction pathways, while
Liao et al. (2020) used AI to generate energy and
greenhouse gas inventories for activated carbon
production. These surrogate models make it possible to
screen large numbers of technological alternatives early
in the design process, accelerating innovation while
maintaining environmental accountability.

Across all these domains, a consistent result emerges:
machine learning reduces data gaps, captures system
complexity, and provides predictive insights that
fundamentally enhance the usefulness of life cycle
assessment for sustainability decision-making.

4. Discussion

The empirical successes of machine learning—integrated
life cycle assessment reflect deeper theoretical
transformations in how environmental knowledge is
produced and used. Traditional LCA is grounded in a
mechanistic epistemology, where environmental impacts
are calculated through predefined causal chains linking
inputs, processes, and emissions. While this approach
ensures transparency and interpretability, it struggles
with complexity, uncertainty, and novelty. Machine
learning introduces a data-driven epistemology in which
relationships are inferred from observed patterns rather
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than imposed by theory. This shift allows LCA to handle
nonlinear dynamics, high-dimensional interactions, and
evolving technologies, but it also raises important
questions about explainability, trust, and governance.

One of the central advantages of Al-based LCA is its
ability to operate under uncertainty. Climate change,
technological innovation, and economic volatility mean
that future environmental impacts cannot be reliably
inferred from past averages. By learning from time-series
data and scenario inputs, machine learning models can
generate probabilistic forecasts that reflect a range of
possible futures (Lee et al., 2020; Dong and Zhang,
2023). This aligns LCA with the needs of strategic
planning and risk management, transforming it from a
descriptive tool into a predictive one.

At the same time, the use of black-box models challenges
the traditional transparency of LCA. Regulatory
frameworks and environmental labeling schemes rely on
traceable and auditable calculations. When neural
networks or ensemble models generate impact estimates,
the causal pathways may be opaque, potentially
undermining trust. This tension has led to the
development of hybrid approaches that combine
mechanistic LCA models with machine learning
surrogates, preserving interpretability while enhancing
predictive performance (Karka et al., 2022; Kleinekorte
et al., 2023).

Another critical issue is data bias and representativeness.
Machine learning models are only as good as the data on
which they are trained. If training datasets are skewed
toward certain regions, technologies, or scales of
operation, the resulting predictions may systematically
misrepresent environmental performance elsewhere.
This is particularly important in global sustainability
assessments, where data from industrialized regions
often dominate (Ghoroghi et al., 2022). Addressing this
challenge requires coordinated efforts to expand and
harmonize environmental data infrastructures.

The integration of optimization algorithms further
complicates the ethical and political dimensions of
sustainability assessment. When genetic algorithms or
reinforcement learning identify optimal strategies for
reducing emissions or resource use, they implicitly
encode value judgments about trade-offs between
economic, environmental, and social objectives (Kaab et
al., 2019; Kazemeini and Swei, 2023). Making these
value assumptions explicit is essential for democratic
accountability in sustainability policy.
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5. Conclusion

The convergence of machine learning and life cycle
assessment marks a profound transformation in the
science and practice of sustainability. By enabling
dynamic inventory modeling, predictive impact
assessment, and multi-objective optimization, artificial
intelligence allows LCA to move beyond retrospective
accounting toward proactive sustainability design. The
referenced literature ~ demonstrates that  across
construction, agriculture, energy, transportation, and
chemical industries, Al-enhanced LCA delivers more
accurate, more relevant, and more actionable insights
than conventional approaches.

Yet this transformation also introduces new challenges of
transparency, data governance, and ethical decision-
making. The future of intelligent LCA will depend not
only on advances in algorithms but also on the
development of institutional frameworks that ensure that
these powerful tools are used responsibly, equitably, and
in service of genuine sustainability transitions. When
combined with the rigor of ISO-based LCA and the
adaptive intelligence of machine learning, environmental
assessment can become a cornerstone of a data-driven,
climate-resilient global economy.
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