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Abstract 

The paper examines real-time log analytics for distributed, cloud-native back-end systems, where operational decisions 

depend on the rapid recognition of critical runtime conditions. The relevance follows from the latency sensitivity of 

microservice-based finance and trading workloads, where propagation of failures, retries, and cascading timeouts rapidly 

degrades user-facing and internal processing. The novelty lies in an integrated analytical synthesis that ties stream-

processing scalability evidence, tracing-tool capabilities, monitoring-tool taxonomies, instrumentation overhead studies, 

and modern log-anomaly detection research into one consistent engineering narrative. The study aims to develop a low-

latency detection approach based on peer-reviewed findings. To achieve this goal, the work employs a systematic selection 

of recent literature, structured extraction of architectural patterns, and comparative reasoning across the ingestion, 

correlation, detection, and alerting stages. The analysis encompasses distributed stream processing benchmarks, near-

real-time processing in practical architectures, runtime verification for streaming systems, and state-of-the-art log 

anomaly detection methods. The closing part derives design implications for practitioners building observability and 

incident-response pipelines. 
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Introduction 

Real-time interpretation of operational logs has shifted 

from post-incident forensics to a direct component of 

runtime reliability engineering in distributed back-end 

platforms. In the finance and trading domains, 

microservice architectures process transaction and 

market-related workflows under strict latency and 

availability constraints. Failures that remain undetected 

for even short windows produce retry storms, queue 

backlogs, and amplified tail latency across dependent 

services. Under these conditions, a log pipeline that 

prioritizes throughput over timeliness becomes 

operationally expensive: alerting delays translate into a 

longer blast radius and larger recovery costs, while 

excessive instrumentation increases CPU and memory 

pressure, potentially destabilizing workloads themselves. 

https://doi.org/10.37547/tajet/Volume08Issue02-02
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The present study aims to bridge the engineering gap 

between “collect everything” observability and “detect 

fast with minimal interference.” The goal is to derive an 

evidence-grounded approach for detecting critical 

runtime events with minimal end-to-end latency, suitable 

for cloud-native microservices deployed on public or 

private clouds. The study sets three tasks:  

1) to analytically decompose latency sources 

along the log analytics path from emission to decision;  

2) to compare proven processing and correlation 

strategies that reduce detection delay while maintaining 

operational cost control;  

3) to systematize detection mechanisms for 

critical events, linking stream-time guarantees, runtime 

verification, and anomaly-detection modeling into an 

implementable pipeline description. 

Novelty is defined by the joint treatment of five 

engineering layers that are often discussed separately: 

scalability behavior of stream-processing frameworks in 

microservice deployments, architectural patterns for near 

real-time processing, tracing and monitoring tool 

capability landscapes, quantified overhead from code 

instrumentation, and contemporary log anomaly 

detection approaches. This synthesis aligns with back-

end engineering practices in cloud environments 

(AWS/Azure/GCP). It supports decision-making for 

production-grade platforms where timeliness and 

operational overhead compete for the same resource 

budget. 

Materials and Methods 

The literature-based analytical design adhered to 

PRISMA 2020 principles, presenting the results in a 

narrative format tailored to an engineering-focused 

synthesis. Eligibility criteria were defined before 

screening: included records had to (i) be published 

between 2021 and 2025; (ii) address distributed systems, 

microservices, or cloud deployments; (iii) contain 

evidence or systematic comparison relevant to low-

latency operational telemetry (logs, tracing, monitoring, 

stream processing) or to detection of anomalous/critical 

runtime behavior from log-like sequences; (iv) be peer-

reviewed journal/conference papers or clearly 

identifiable scholarly outputs with stable bibliographic 

metadata. Records focusing solely on offline batch 

analytics, purely storage-centric log indexing without 

detection implications, or security-only log mining 

without latency and operational constraints were 

excluded. 

Information sources included IEEE Xplore, ACM Digital 

Library, SpringerLink, Elsevier ScienceDirect, MDPI 

journals, Nature Portfolio (Scientific Reports), and arXiv 

for cross-checking open versions when publisher access 

constraints were in place. Backward and forward citation 

chasing was applied to identify adjacent works connected 

to instrumentation overhead, tracing-tool comparisons, 

and log anomaly detection modeling. The last search and 

source consultation date was December 24, 2025. 

Across all sources, 650 records were identified 

(databases n = 612; registers n = 38). Before screening, 

duplicates were removed (n = 118), records were marked 

as ineligible by automated tools (n = 22), and records 

were excluded for other reasons (n = 10) (e.g., non-

accessible metadata or irretrievable entries), leaving 500 

records for title/abstract screening. During screening, 

430 records were excluded, resulting in 70 reports sought 

for retrieval; 5 reports were not retrieved. A total of 65 

full-text reports were assessed for eligibility, and 55 

reports were excluded, with documented reasons 

provided (see Figure 1). Finally, 10 studies were included 

in the qualitative synthesis, comprising reports of the 

studies that were included (n = 10). For synthesis, 

included studies were grouped into five engineering 

themes: (i) ingestion/transport and buffering constraints, 

(ii) stream analytics and state management under load, 

(iii) tracing and monitoring tooling capabilities for 

correlation, (iv) instrumentation overhead in 

microservice environments, and (v) log parsing and 

anomaly detection methods relevant to near real-time 

incident detection. 
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Figure 1. Flow of study identification, screening, eligibility assessment, and inclusion (adapted from PRISMA 2020) 

The search strategy combined controlled and free-text 

terms with Boolean logic; representative query families 

were: (“real-time” OR “near real-time”) AND (“log 

analytics” OR “system logs”) AND (“distributed 

systems” OR microservices) AND (latency OR “critical 

event” OR anomaly); and (“stream processing” OR Flink 

OR Kafka Streams OR Spark) AND microservices AND 

benchmarking. Filters were limited to publication years 

and the English language; no domain restrictions were 

applied to avoid missing cloud engineering venues. 

Study selection proceeded in two stages. First, titles and 

abstracts were screened for topical relevance to low-

latency detection in distributed environments. Second, 

full texts were assessed against eligibility criteria, with 

special attention to whether a work provides measurable 

evidence (benchmark results, overhead measurements, 

systematic comparisons) or a reproducible analytical 

framework. Screening decisions were cross-checked to 

minimize selection bias, and disagreements were 

resolved through discussions focused on eligibility 

criteria rather than perceived prestige. 
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Data collection extracted: (i) system model assumptions 

(microservice boundaries, deployment environment, 

telemetry types); (ii) latency-relevant factors (ingestion, 

serialization, buffering, windowing, checkpointing, 

sampling); (iii) detection method type and prerequisites 

(rule-based, runtime verification, statistical modeling, 

deep learning); (iv) operational constraints (resource 

overhead, scalability limits, tool capabilities). Outcomes 

of interest were defined as latency-relevant deliverables 

rather than numerical effect sizes, because the study 

performed an analytical synthesis rather than a meta-

analysis: end-to-end detection delay contributors, 

scalability–cost relationships, and method suitability for 

critical-event detection. 

Risk of bias in individual studies was assessed 

qualitatively by checking for (i) reproducibility assets 

(datasets, replication packages, disclosed experimental 

settings); (ii) clarity of workload definition and 

environment description; (iii) threat-to-validity 

discussion addressing generalization across clouds and 

workloads. Given heterogeneity in evaluation designs, 

synthesis emphasized convergent engineering 

implications across independent evidence streams rather 

than pooling metrics. Sensitivity analysis was performed 

conceptually by validating each derived engineering 

claim against at least two distinct evidence types 

whenever possible (e.g., stream framework 

benchmarking and instrumentation overhead studies, or 

monitoring tool landscapes and tracing tool 

comparisons). Overall certainty was judged by 

triangulation strength, with higher confidence assigned 

when multiple peer-reviewed sources aligned on the 

same operational constraint. 

Results 

Evidence from stream-processing benchmarking in 

microservice deployments supports the premise that low-

latency log analytics is primarily a systems-design 

problem rather than a single-algorithm choice. Empirical 

benchmarking of modern stream-processing frameworks 

deployed as microservices reports near-linear scalability 

under sufficient cloud resources, while highlighting that 

the “no clear winner” outcome is driven by workload-

dependent differences in resource consumption and 

deployment choices [6]. This matters for critical-event 

detection: if detection logic is embedded into the same 

processing plane that already handles high-volume 

telemetry, then the incremental cost of alerting logic must 

be evaluated in terms of state management, 

checkpointing cadence, and scaling strategy, not just 

model complexity. In practice, a trading or BNPL back-

end with bursty event rates benefits from architectures 

that can scale horizontally without imposing long 

coordination delays in the detection path, while still 

enabling exactly-once-like processing semantics where 

false positives or duplicated alerts produce operational 

noise. 

Comparative architectural work on near real-time stream 

processing for fraud detection provides a concrete 

reference for selecting between widely adopted engines 

when latency and operational simplicity are prioritized. 

A comparative analysis of Apache Flink and Apache 

Spark in a near-real-time architecture highlights engine-

level distinctions that influence timeliness under 

continuous ingestion [2]. While the application domain 

differs, the architectural implications transfer: critical-

event detection from logs is structurally similar to fraud 

flagging in that both require continuous evaluation of 

event sequences and the rapid surfacing of rare, high-

impact patterns. For distributed log analytics, the primary 

translation is that event-time handling, stateful operators, 

and backpressure behavior determine whether detection 

lag remains bounded during bursts. Therefore, detection 

designs that rely on heavy aggregation windows or large 

state footprints should be treated as latency risks under 

real-world traffic variability, regardless of nominal 

throughput capacity. 

A separate line of evidence addresses correctness and 

timeliness for “critical events” that have formal temporal 

meaning (e.g., “error followed by repeated timeouts 

within Δt,” “missing heartbeat for N intervals,” “out-of-

order completion pattern”). Runtime verification for 

distributed stream processing proposes real-time 

monitoring using Linear Temporal Logic, targeting 

correctness properties directly at the stream level [1]. For 

log analytics, the operational gain is a shift from heuristic 

rule chains toward explicit temporal specifications that 

can be monitored continuously with predictable 

execution patterns. The engineering payoff is most 

substantial for classes of incidents where the cost of false 

negatives dominates, such as partial outages, stuck 

workflows, and silent data loss; in those cases, temporal 

property monitoring provides deterministic triggers that 

complement probabilistic anomaly scoring. 

Tool-landscape evidence clarifies that low-latency 

detection pipelines depend on correlation fidelity across 

logs and traces, not only on the detection component. A 

systematic grey literature review mapping monitoring 

tools for DevOps and microservices reveals broad 
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heterogeneity in the types of monitored information, 

assumptions, and constraints across tools [4]. This 

heterogeneity implies that the weakest telemetry link 

frequently bounds the quality of “critical event” 

detection: an inconsistent log structure, missing 

propagation identifiers, or incomplete coverage across 

services undermines multi-hop incident recognition. In 

parallel, a systematic critical comparison of open tracing 

tools identifies feature tradeoffs and adoption 

considerations in tracing ecosystems [7]. When these 

findings are aligned, a practical conclusion emerges: 

correlation-first pipeline design reduces downstream 

detection burden, because reliable linking of log lines to 

request traces and service dependencies narrows the 

ambiguity that anomaly models must learn. 

Instrumentation overhead evidence introduces a hard 

constraint: aggressive telemetry collection can erode the 

very latency budgets that detection aims to protect. An 

empirical study on containerised microservices 

quantifies the hidden performance cost of code 

instrumentation and frames it as a non-trivial operational 

tradeoff rather than a negligible tax [5]. For finance-

grade backends with high request concurrency, adding 

CPU cycles per request and additional allocation 

pressure can shift tail latency and trigger autoscaling 

oscillations. Therefore, minimal-latency detection 

requires a bounded-instrumentation strategy: logs must 

be emitted with stable schemas and correlation fields, but 

verbose payload enrichment should be pushed to 

asynchronous stages or sampling policies, reserving 

synchronous paths for fields that directly enable fast 

triage. 

Modern anomaly-detection research strengthens the 

detection stage, but it simultaneously raises upstream 

quality demands. A systematic empirical software 

engineering study on the impact of log parsing reveals 

that parsing choices have a significant effect on the 

performance of deep learning-based anomaly detection, 

suggesting that preprocessing quality is not a peripheral 

detail [8]. In the same direction, survey work on deep 

learning for anomaly detection in log data consolidates 

method families and typical pitfalls, supporting the claim 

that model success depends on consistent event templates 

and robust handling of evolving log formats [9]. Recent 

modeling advances extend this logic: evidential deep 

learning for log anomaly detection explicitly targets 

uncertainty representation, which is operationally 

relevant because uncertain alerts can be routed 

differently than high-confidence incidents [3]. Finally, 

contrastive learning, combined with retrieval-augmented 

mechanisms, suggests a trend toward hybrid 

representations that leverage both learned embeddings 

and nearest-neighbor retrieval to enhance anomaly 

detection in system logs [10]. Across these sources, the 

convergent engineering inference is that low-latency 

critical-event detection benefits less from “largest model 

wins” thinking and more from stable upstream 

normalization and carefully bounded inference costs. 

A consolidated pipeline consistent with the above 

evidence is presented in Figure 2. The diagram is a 

simplified, implementation-oriented synthesis adapted 

from the stream-processing benchmarking setting [6], 

near-real-time processing architecture patterns [2], and 

the monitoring/tracing tool capability landscapes [4, 7]. 

The figure highlights where latency accumulates 

(buffering, serialization, stateful aggregation, 

checkpointing, and external lookups) and where 

correctness/correlation constraints prevail (ID 

propagation, schema normalization, and temporal 

specification).  

 

 
Figure 2. Evidence-grounded low-latency pipeline for critical event detection in distributed log analytics (adapted from 

[2; 4; 6; 7]) 
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Within this pipeline, the core detection objective—

minimal end-to-end latency—reduces to four 

controllable design levers supported by the literature:  

i) correlation completeness at emission time, 

constrained by instrumentation cost [5; 7];  

ii) stable parsing/normalization that preserves 

semantics under log evolution [8; 9];  

iii) stateful streaming designs that remain stable 

under backpressure and scaling, validated by 

benchmarking evidence [6] and comparative near real-

time architectures [2];  

iv) detection logic that combines deterministic 

temporal monitors for high-severity patterns [1] with 

probabilistic anomaly detectors for novel failure modes. 

Discussion 

The results support a pragmatic position: minimal-

latency detection is achieved by constraining variability 

of telemetry semantics, processing latency, and 

operational overhead—rather than by maximizing raw 

observability. In production back-end systems, especially 

those in finance/trading stacks where throughput spikes 

and strict tail-latency limits coexist, detection pipelines 

must be engineered as first-class, distributed systems. 

Stream-processing evidence indicates that frameworks 

can scale approximately linearly under adequate 

resources. Yet, the cost profile differs across engines and 

abstractions, and the “best” selection depends on the use 

case [6]. From an engineering viewpoint, this suggests 

designing the detection plane around predictable state 

and window behavior, then selecting the engine whose 

operational characteristics best match the organization’s 

deployment and failure-handling practices. 

A central tension appears between richer 

telemetry and lower runtime interference. Tracing-tool 

comparisons and monitoring-tool landscapes reveal 

broad feature diversity and adoption trade-offs across 

tools, which translates into inconsistent coverage when 

organizations mix incompatible or partially integrated 

telemetry stacks [4; 7]. The instrumentation overhead 

study reinforces the caution: code-level instrumentation 

incurs a measurable cost in containerized microservices 

and cannot be treated as free [5]. For a system engineer, 

this means that “minimal latency” should be defined as a 

joint metric: detection delay plus the latency tax induced 

by measurement. A detection pipeline that triggers in 

milliseconds but adds persistent tail-latency drift might 

be strategically inferior to a slightly slower detector with 

far lower overhead. 

Table 1 summarizes latency-critical design decisions and 

the most directly aligned evidence streams. The table 1 is 

designed to guide architecture choices for distributed log 

analytics, where critical events require fast and reliable 

surfacing.  

 

Table 1. Design choices for minimal-latency critical-event detection and evidence alignment [1–10] 

Design decision Expected effect on detection 

timeliness 

Evidence linkage 

Embed stream processing inside 

microservices vs centralized batch 

analytics 

Shortens processing path and 

enables continuous evaluation; 

raises sensitivity to resource 

contention 

Stream-processing benchmarking in 

microservices: near real-time processing 

architecture comparison 

Combine deterministic temporal 

monitors with anomaly scoring 

Improves coverage of both 

known temporal failure 

signatures and novel patterns 

Runtime verification via temporal logic 

monitoring; modern anomaly detection 

advances 
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Enforce stable parsing and template 

extraction before ML inference 

Reduces model brittleness under 

log format drift; stabilizes 

features for inference 

Log parsing impact on DL anomaly 

detection; DL survey synthesis 

Correlation-first telemetry 

(propagated IDs) with bounded 

synchronous instrumentation 

Improves multi-service incident 

localization while limiting 

measurement latency tax 

Tracing tool capability comparison; 

quantified instrumentation cost; 

monitoring tool constraints 

Treat checkpoint/window 

configuration as a latency budget 

parameter 

Prevents burst-induced lag and 

backpressure cascades in the 

detection plane 

Scalability and resource behavior under 

load; architecture-level engine 

differences 

A back-end engineer building distributed systems in 

finance benefits from treating log analytics as a latency-

sensitive streaming product, not as an afterthought 

attached to storage. A disciplined approach is to define a 

narrow “critical event vocabulary” (timeouts, error 

bursts, queue growth, missing heartbeats, and invariant 

violations) and then map each class to the lowest-cost 

detector that preserves fidelity. Temporal monitors 

handle strict, specifiable patterns efficiently [1], while 

anomaly models address unknown unknowns but require 

stable preprocessing and careful operationalization of 

uncertainty [3; 8–10]. 

Table 2 focuses on the “cost–signal” tradeoff of 

observability mechanisms that feed the detection 

pipeline. It connects tool-level evidence with runtime 

overhead constraints and indicates how to maintain the 

usefulness of telemetry under tight latency budgets.  

 

Table 2. Observability signal versus operational cost for low-latency detection in microservice back-ends [1; 3; 4; 

7–10]  

Telemetry mechanism Signal gained for critical 

event detection 

Operational cost 

pressure 

Evidence linkage 

Distributed tracing 

(spans, propagation) 

Causal chain reconstruction; 

faster localization across 

services 

Extra headers, sampling 

logic, exporter overhead 

Tracing tools comparison; 

monitoring tool constraints 

Structured logs with 

templates and stable 

fields 

Model-friendly features; 

robust joins with traces 

Engineering effort for 

schema discipline; pipeline 

parsing cost 

Parsing impact evidence; 

DL survey consolidation 

Runtime temporal 

monitors on streams 

Deterministic triggers for 

specified temporal failure 

patterns 

Additional state tracking 

per key/window 

LTL-based real-time 

monitoring in stream 

processing 
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DL-based anomaly 

scoring 

Coverage of novel behaviors 

and subtle degradations 

Inference cost; sensitivity 

to drift; calibration needs 

Evidential DL for 

uncertainty; retrieval-

augmented contrastive 

approach 

Heavy code 

instrumentation 

Detailed internal signals 

(fine-grained timing and 

events) 

Measurable performance 

overhead; tail-latency risk 

Instrumentation overhead 

study 

The most reliable path to minimal-latency detection is to 

invest upfront in telemetry consistency (IDs, templates, 

semantic fields) while enforcing strict limits on 

synchronous instrumentation and on state explosion in 

streaming operators. From a personal engineering stance, 

this tradeoff is preferable to “maximal observability” 

strategies because it reduces operational noise and avoids 

latency regression caused by the measurement layer 

itself. In finance platforms, where microservice failures 

often cascade through retries and queueing, correlation 

fidelity and predictable stream-time behavior provide 

higher marginal value than collecting marginally more 

telemetry with uncertain downstream utility. 

Conclusion 

The first task—decomposing latency sources—was 

addressed by identifying where detection lag and 

measurement overhead accumulate: synchronous 

instrumentation, buffering and flush policies, stateful 

windowing, checkpointing cadence, and cross-stream 

correlation joins, with empirical support for both 

scalability behavior and overhead constraints. The 

second task—comparing strategies—was resolved by 

linking framework-level scalability and near real-time 

architectural patterns to correlation-first telemetry 

design, showing that engine choice and deployment 

configuration jointly shape timeliness and cost. The third 

task—systematizing detection mechanisms—was 

completed by combining temporal property monitoring 

for formally expressible critical events with uncertainty-

aware and retrieval-augmented anomaly modeling, under 

the prerequisite of stable parsing and log normalization. 
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