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Abstract

The paper examines real-time log analytics for distributed, cloud-native back-end systems, where operational decisions
depend on the rapid recognition of critical runtime conditions. The relevance follows from the latency sensitivity of
microservice-based finance and trading workloads, where propagation of failures, retries, and cascading timeouts rapidly
degrades user-facing and internal processing. The novelty lies in an integrated analytical synthesis that ties stream-
processing scalability evidence, tracing-tool capabilities, monitoring-tool taxonomies, instrumentation overhead studies,
and modern log-anomaly detection research into one consistent engineering narrative. The study aims to develop a low-
latency detection approach based on peer-reviewed findings. To achieve this goal, the work employs a systematic selection
of recent literature, structured extraction of architectural patterns, and comparative reasoning across the ingestion,
correlation, detection, and alerting stages. The analysis encompasses distributed stream processing benchmarks, near-
real-time processing in practical architectures, runtime verification for streaming systems, and state-of-the-art log
anomaly detection methods. The closing part derives design implications for practitioners building observability and
incident-response pipelines.
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Introduction for even short windows produce retry storms, queue
backlogs, and amplified tail latency across dependent
services. Under these conditions, a log pipeline that
prioritizes  throughput over timeliness becomes
operationally expensive: alerting delays translate into a
longer blast radius and larger recovery costs, while

Real-time interpretation of operational logs has shifted
from post-incident forensics to a direct component of
runtime reliability engineering in distributed back-end
platforms. In the finance and trading domains,
microservice architectures process transaction and
market-related workflows under strict latency and
availability constraints. Failures that remain undetected

excessive instrumentation increases CPU and memory
pressure, potentially destabilizing workloads themselves.
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The present study aims to bridge the engineering gap
between “collect everything” observability and “detect
fast with minimal interference.” The goal is to derive an
evidence-grounded approach for detecting critical
runtime events with minimal end-to-end latency, suitable
for cloud-native microservices deployed on public or
private clouds. The study sets three tasks:

1) to analytically decompose latency sources
along the log analytics path from emission to decision;

2) to compare proven processing and correlation
strategies that reduce detection delay while maintaining
operational cost control;

3) to systematize detection mechanisms for
critical events, linking stream-time guarantees, runtime
verification, and anomaly-detection modeling into an
implementable pipeline description.

Novelty is defined by the joint treatment of five
engineering layers that are often discussed separately:
scalability behavior of stream-processing frameworks in
microservice deployments, architectural patterns for near
real-time processing, tracing and monitoring tool
capability landscapes, quantified overhead from code
instrumentation, and contemporary log anomaly
detection approaches. This synthesis aligns with back-
end engineering practices in cloud environments
(AWS/Azure/GCP). It supports decision-making for
production-grade platforms where timeliness and
operational overhead compete for the same resource
budget.

Materials and Methods

The literature-based analytical design adhered to
PRISMA 2020 principles, presenting the results in a
narrative format tailored to an engineering-focused
synthesis. Eligibility criteria were defined before
screening: included records had to (i) be published
between 2021 and 2025; (ii) address distributed systems,
microservices, or cloud deployments; (iii) contain
evidence or systematic comparison relevant to low-
latency operational telemetry (logs, tracing, monitoring,
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stream processing) or to detection of anomalous/critical
runtime behavior from log-like sequences; (iv) be peer-
reviewed journal/conference papers or clearly
identifiable scholarly outputs with stable bibliographic
metadata. Records focusing solely on offline batch
analytics, purely storage-centric log indexing without
detection implications, or security-only log mining
without latency and operational constraints were
excluded.

Information sources included IEEE Xplore, ACM Digital
Library, SpringerLink, Elsevier ScienceDirect, MDPI
journals, Nature Portfolio (Scientific Reports), and arXiv
for cross-checking open versions when publisher access
constraints were in place. Backward and forward citation
chasing was applied to identify adjacent works connected
to instrumentation overhead, tracing-tool comparisons,
and log anomaly detection modeling. The last search and
source consultation date was December 24, 2025.

Across all sources, 650 records were identified
(databases n = 612; registers n = 38). Before screening,
duplicates were removed (n = 118), records were marked
as ineligible by automated tools (n = 22), and records
were excluded for other reasons (n = 10) (e.g., non-
accessible metadata or irretrievable entries), leaving 500
records for title/abstract screening. During screening,
430 records were excluded, resulting in 70 reports sought
for retrieval; 5 reports were not retrieved. A total of 65
full-text reports were assessed for eligibility, and 55
reports were excluded, with documented reasons
provided (see Figure 1). Finally, 10 studies were included
in the qualitative synthesis, comprising reports of the
studies that were included (n = 10). For synthesis,
included studies were grouped into five engineering
themes: (i) ingestion/transport and buffering constraints,
(i) stream analytics and state management under load,
(iii) tracing and monitoring tooling capabilities for
correlation, (iv) instrumentation overhead in
microservice environments, and (v) log parsing and
anomaly detection methods relevant to near real-time
incident detection.
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Figure 1. Flow of study identification, screening, eligibility assessment, and inclusion (adapted from PRISMA 2020)

The search strategy combined controlled and free-text
terms with Boolean logic; representative query families
were: (“real-time” OR “near real-time”) AND (“log
analytics” OR “system logs”) AND (“distributed
systems” OR microservices) AND (latency OR “critical
event” OR anomaly); and (“stream processing” OR Flink
OR Kafka Streams OR Spark) AND microservices AND
benchmarking. Filters were limited to publication years
and the English language; no domain restrictions were
applied to avoid missing cloud engineering venues.
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Study selection proceeded in two stages. First, titles and
abstracts were screened for topical relevance to low-
latency detection in distributed environments. Second,
full texts were assessed against eligibility criteria, with
special attention to whether a work provides measurable
evidence (benchmark results, overhead measurements,
systematic comparisons) or a reproducible analytical
framework. Screening decisions were cross-checked to
minimize selection bias, and disagreements were
resolved through discussions focused on eligibility
criteria rather than perceived prestige.
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Data collection extracted: (i) system model assumptions
(microservice boundaries, deployment environment,
telemetry types); (ii) latency-relevant factors (ingestion,
serialization, buffering, windowing, checkpointing,
sampling); (iii) detection method type and prerequisites
(rule-based, runtime verification, statistical modeling,
deep learning); (iv) operational constraints (resource
overhead, scalability limits, tool capabilities). Outcomes
of interest were defined as latency-relevant deliverables
rather than numerical effect sizes, because the study
performed an analytical synthesis rather than a meta-
analysis: end-to-end detection delay contributors,
scalability—cost relationships, and method suitability for
critical-event detection.

Risk of bias in individual studies was assessed
qualitatively by checking for (i) reproducibility assets
(datasets, replication packages, disclosed experimental
settings); (i) clarity of workload definition and
environment  description;  (iii)  threat-to-validity
discussion addressing generalization across clouds and
workloads. Given heterogeneity in evaluation designs,
synthesis ~ emphasized  convergent  engineering
implications across independent evidence streams rather
than pooling metrics. Sensitivity analysis was performed
conceptually by validating each derived engineering
claim against at least two distinct evidence types
whenever  possible  (e.g., stream  framework
benchmarking and instrumentation overhead studies, or
monitoring tool landscapes and tracing tool
comparisons). Overall certainty was judged by
triangulation strength, with higher confidence assigned
when multiple peer-reviewed sources aligned on the
same operational constraint.

Results

Evidence from stream-processing benchmarking in
microservice deployments supports the premise that low-
latency log analytics is primarily a systems-design
problem rather than a single-algorithm choice. Empirical
benchmarking of modern stream-processing frameworks
deployed as microservices reports near-linear scalability
under sufficient cloud resources, while highlighting that
the “no clear winner” outcome is driven by workload-
dependent differences in resource consumption and
deployment choices [6]. This matters for critical-event
detection: if detection logic is embedded into the same
processing plane that already handles high-volume
telemetry, then the incremental cost of alerting logic must
be evaluated in terms of state management,
checkpointing cadence, and scaling strategy, not just
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model complexity. In practice, a trading or BNPL back-
end with bursty event rates benefits from architectures
that can scale horizontally without imposing long
coordination delays in the detection path, while still
enabling exactly-once-like processing semantics where
false positives or duplicated alerts produce operational
noise.

Comparative architectural work on near real-time stream
processing for fraud detection provides a concrete
reference for selecting between widely adopted engines
when latency and operational simplicity are prioritized.
A comparative analysis of Apache Flink and Apache
Spark in a near-real-time architecture highlights engine-
level distinctions that influence timeliness under
continuous ingestion [2]. While the application domain
differs, the architectural implications transfer: critical-
event detection from logs is structurally similar to fraud
flagging in that both require continuous evaluation of
event sequences and the rapid surfacing of rare, high-
impact patterns. For distributed log analytics, the primary
translation is that event-time handling, stateful operators,
and backpressure behavior determine whether detection
lag remains bounded during bursts. Therefore, detection
designs that rely on heavy aggregation windows or large
state footprints should be treated as latency risks under
real-world traffic wvariability, regardless of nominal
throughput capacity.

A separate line of evidence addresses correctness and
timeliness for “critical events” that have formal temporal
meaning (e.g., “error followed by repeated timeouts
within At,” “missing heartbeat for N intervals,”
order completion pattern”). Runtime verification for
distributed stream processing proposes real-time
monitoring using Linear Temporal Logic, targeting
correctness properties directly at the stream level [1]. For
log analytics, the operational gain is a shift from heuristic
rule chains toward explicit temporal specifications that

out-of-

can be monitored continuously with predictable
execution patterns. The engineering payoff is most
substantial for classes of incidents where the cost of false
negatives dominates, such as partial outages, stuck
workflows, and silent data loss; in those cases, temporal
property monitoring provides deterministic triggers that
complement probabilistic anomaly scoring.

Tool-landscape evidence clarifies that low-latency
detection pipelines depend on correlation fidelity across
logs and traces, not only on the detection component. A
systematic grey literature review mapping monitoring
tools for DevOps and microservices reveals broad
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heterogeneity in the types of monitored information,
assumptions, and constraints across tools [4]. This
heterogeneity implies that the weakest telemetry link
frequently bounds the quality of “critical event”
detection: an inconsistent log structure, missing
propagation identifiers, or incomplete coverage across
services undermines multi-hop incident recognition. In
parallel, a systematic critical comparison of open tracing
tools identifies feature tradeoffs and adoption
considerations in tracing ecosystems [7]. When these
findings are aligned, a practical conclusion emerges:
correlation-first pipeline design reduces downstream
detection burden, because reliable linking of log lines to
request traces and service dependencies narrows the
ambiguity that anomaly models must learn.

Instrumentation overhead evidence introduces a hard
constraint: aggressive telemetry collection can erode the
very latency budgets that detection aims to protect. An
empirical study on containerised microservices
quantifies the hidden performance cost of code
instrumentation and frames it as a non-trivial operational
tradeoff rather than a negligible tax [5]. For finance-
grade backends with high request concurrency, adding
CPU cycles per request and additional allocation
pressure can shift tail latency and trigger autoscaling
oscillations. Therefore, minimal-latency detection
requires a bounded-instrumentation strategy: logs must
be emitted with stable schemas and correlation fields, but
verbose payload enrichment should be pushed to
asynchronous stages or sampling policies, reserving
synchronous paths for fields that directly enable fast
triage.

Modern anomaly-detection research strengthens the
detection stage, but it simultaneously raises upstream
quality demands. A systematic empirical software
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engineering study on the impact of log parsing reveals
that parsing choices have a significant effect on the
performance of deep learning-based anomaly detection,
suggesting that preprocessing quality is not a peripheral
detail [8]. In the same direction, survey work on deep
learning for anomaly detection in log data consolidates
method families and typical pitfalls, supporting the claim
that model success depends on consistent event templates
and robust handling of evolving log formats [9]. Recent
modeling advances extend this logic: evidential deep
learning for log anomaly detection explicitly targets
uncertainty representation, which is operationally
relevant because uncertain alerts can be routed
differently than high-confidence incidents [3]. Finally,
contrastive learning, combined with retrieval-augmented
mechanisms, suggests a trend toward hybrid
representations that leverage both learned embeddings
and nearest-neighbor retrieval to enhance anomaly
detection in system logs [10]. Across these sources, the
convergent engineering inference is that low-latency
critical-event detection benefits less from “largest model
wins” thinking and more from stable upstream
normalization and carefully bounded inference costs.

A consolidated pipeline consistent with the above
evidence is presented in Figure 2. The diagram is a
simplified, implementation-oriented synthesis adapted
from the stream-processing benchmarking setting [6],
near-real-time processing architecture patterns [2], and
the monitoring/tracing tool capability landscapes [4, 7].
The figure highlights where latency accumulates
(buffering,  serialization,  stateful  aggregation,
checkpointing, and external lookups) and where
correctness/correlation  constraints  prevail  (ID
propagation, schema normalization, and temporal
specification).

Service pods (KSS)ﬁl Ingestion & transport

—

. ) ..
Stream analytics plane r Decision & response

[ Stateful processing (event—time)j [ Alert router (SLO-aware) ]

* App logs + trace IDs Eollector/ agent (bounded)J
e Error metrics + spans - e
Topic partitioning
( (ordered keys) J

LBackpressure control ]

J

ETemporal monitors (LTL rules) [ Incident workflow ]

(Anomaly scoring (parsed templatesﬂ Eorage for forensics j

Correlation (trace ++ log join)
I e )|

+ feedback to sampling
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Latency risks: synchronous instrumentation | batching & flush intervals | window size | checkpoint cadence | external lookups

Correctness risks: missing correlation IDs | schema drift | parsing instability | out-of-order events | duplication

Figure 2. Evidence-grounded low-latency pipeline for critical event detection in distributed log analytics (adapted from
[2;4;6;7])
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Within this pipeline, the core detection objective—
minimal  end-to-end latency—reduces to four
controllable design levers supported by the literature:

i) correlation completeness at emission time,
constrained by instrumentation cost [5; 7];

ii) stable parsing/normalization that preserves
semantics under log evolution [8; 9];

iii) stateful streaming designs that remain stable
under backpressure and scaling, validated by
benchmarking evidence [6] and comparative near real-
time architectures [2];

iv) detection logic that combines deterministic
temporal monitors for high-severity patterns [1] with
probabilistic anomaly detectors for novel failure modes.

Discussion

The results support a pragmatic position: minimal-
latency detection is achieved by constraining variability
of telemetry semantics, processing latency, and
operational overhead—rather than by maximizing raw
observability. In production back-end systems, especially
those in finance/trading stacks where throughput spikes
and strict tail-latency limits coexist, detection pipelines
must be engineered as first-class, distributed systems.
Stream-processing evidence indicates that frameworks
can scale approximately linearly under adequate
resources. Yet, the cost profile differs across engines and
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abstractions, and the “best” selection depends on the use
case [6]. From an engineering viewpoint, this suggests
designing the detection plane around predictable state
and window behavior, then selecting the engine whose
operational characteristics best match the organization’s
deployment and failure-handling practices.

A central tension appears between richer
telemetry and lower runtime interference. Tracing-tool
comparisons and monitoring-tool landscapes reveal
broad feature diversity and adoption trade-offs across
tools, which translates into inconsistent coverage when
organizations mix incompatible or partially integrated
telemetry stacks [4; 7]. The instrumentation overhead
study reinforces the caution: code-level instrumentation
incurs a measurable cost in containerized microservices
and cannot be treated as free [5]. For a system engineer,
this means that “minimal latency” should be defined as a
joint metric: detection delay plus the latency tax induced
by measurement. A detection pipeline that triggers in
milliseconds but adds persistent tail-latency drift might
be strategically inferior to a slightly slower detector with
far lower overhead.

Table 1 summarizes latency-critical design decisions and
the most directly aligned evidence streams. The table 1 is
designed to guide architecture choices for distributed log
analytics, where critical events require fast and reliable
surfacing.

Table 1. Design choices for minimal-latency critical-event detection and evidence alignment [1-10]

Design decision

Expected effect on detection
timeliness

Evidence linkage

Embed stream processing inside
microservices vs centralized batch
analytics

Shortens processing path and
enables continuous evaluation;
raises sensitivity to resource
contention

Stream-processing benchmarking in
microservices: near real-time processing
architecture comparison

Combine deterministic temporal
monitors with anomaly scoring

Improves coverage of both
known temporal failure
signatures and novel patterns

Runtime verification via temporal logic
monitoring; modern anomaly detection
advances
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Enforce stable parsing and template
extraction before ML inference

Reduces model brittleness under
log format drift; stabilizes
features for inference

Log parsing impact on DL anomaly
detection; DL survey synthesis

Correlation-first telemetry
(propagated IDs) with bounded
synchronous instrumentation

Improves multi-service incident
localization while limiting
measurement latency tax

Tracing tool capability comparison;
quantified instrumentation cost;
monitoring tool constraints

Treat checkpoint/window
configuration as a latency budget
parameter

Prevents burst-induced lag and
backpressure cascades in the
detection plane

Scalability and resource behavior under
load; architecture-level engine
differences

A back-end engineer building distributed systems in
finance benefits from treating log analytics as a latency-
sensitive streaming product, not as an afterthought
attached to storage. A disciplined approach is to define a
narrow “‘critical event vocabulary” (timeouts, error
bursts, queue growth, missing heartbeats, and invariant
violations) and then map each class to the lowest-cost
detector that preserves fidelity. Temporal monitors
handle strict, specifiable patterns efficiently [1], while

anomaly models address unknown unknowns but require
stable preprocessing and careful operationalization of
uncertainty [3; 8-10].

Table 2 focuses on the “cost-signal” tradeoff of
observability mechanisms that feed the detection
pipeline. It connects tool-level evidence with runtime
overhead constraints and indicates how to maintain the

usefulness of telemetry under tight latency budgets.

Table 2. Observability signal versus operational cost for low-latency detection in microservice back-ends [1; 3; 4;

7-10]

Signal gained for critical
event detection

Telemetry mechanism

Operational cost Evidence linkage

pressure

Causal chain reconstruction;
faster localization across

Distributed tracing
(spans, propagation)
services

Extra headers, sampling
logic, exporter overhead

Tracing tools comparison;
monitoring tool constraints

Model-friendly features;
robust joins with traces

Structured logs with
templates and stable
fields

Engineering effort for
schema discipline; pipeline

Parsing impact evidence;
DL survey consolidation
parsing cost

Deterministic triggers for
specified temporal failure
patterns

Runtime temporal
monitors on streams

Additional state tracking

LTL-based real-time
monitoring in stream
processing

per key/window
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DL-based anomaly Coverage of novel behaviors | Inference cost; sensitivity Evidential DL for

scoring and subtle degradations to drift; calibration needs uncertainty; retricval-

augmented contrastive

approach
Heavy code Detailed internal signals Measurable performance Instrumentation overhead
instrumentation (fine-grained timing and overhead; tail-latency risk study
events)
The most reliable path to minimal-latency detection is to 14(7), 1448.

invest upfront in telemetry consistency (IDs, templates,
semantic fields) while enforcing strict limits on
synchronous instrumentation and on state explosion in
streaming operators. From a personal engineering stance,
this tradeoff is preferable to “maximal observability”
strategies because it reduces operational noise and avoids
latency regression caused by the measurement layer
itself. In finance platforms, where microservice failures
often cascade through retries and queueing, correlation
fidelity and predictable stream-time behavior provide
higher marginal value than collecting marginally more
telemetry with uncertain downstream utility.

Conclusion

The first task—decomposing latency sources—was
addressed by identifying where detection lag and
measurement overhead accumulate: synchronous
instrumentation, buffering and flush policies, stateful
windowing, checkpointing cadence, and cross-stream
correlation joins, with empirical support for both
scalability behavior and overhead constraints. The
second task—comparing strategies—was resolved by
linking framework-level scalability and near real-time
architectural patterns to correlation-first telemetry
design, showing that engine choice and deployment
configuration jointly shape timeliness and cost. The third
task—systematizing  detection =~ mechanisms—was
completed by combining temporal property monitoring
for formally expressible critical events with uncertainty-
aware and retrieval-augmented anomaly modeling, under
the prerequisite of stable parsing and log normalization.
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