
The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 8

Real-Time Log Analytics in Distributed Systems: Minimal-Latency

Detection of Critical Events for Cloud-Native Back-End Platforms

1 Ivan Akimov
1 Software Engineer Dubai, United Arab Emirates

Received: 19th Nov 2025 | Received Revised Version: 29th Nov 2025 | Accepted: 17th Jan 2026 | Published: 05th Feb 2026

Volume 08 Issue 02 2026 | Crossref DOI: 10.37547/tajet/Volume08Issue02-02

Abstract

The paper examines real-time log analytics for distributed, cloud-native back-end systems, where operational decisions

depend on the rapid recognition of critical runtime conditions. The relevance follows from the latency sensitivity of

microservice-based finance and trading workloads, where propagation of failures, retries, and cascading timeouts rapidly

degrades user-facing and internal processing. The novelty lies in an integrated analytical synthesis that ties stream-

processing scalability evidence, tracing-tool capabilities, monitoring-tool taxonomies, instrumentation overhead studies,

and modern log-anomaly detection research into one consistent engineering narrative. The study aims to develop a low-

latency detection approach based on peer-reviewed findings. To achieve this goal, the work employs a systematic selection

of recent literature, structured extraction of architectural patterns, and comparative reasoning across the ingestion,

correlation, detection, and alerting stages. The analysis encompasses distributed stream processing benchmarks, near-

real-time processing in practical architectures, runtime verification for streaming systems, and state-of-the-art log

anomaly detection methods. The closing part derives design implications for practitioners building observability and

incident-response pipelines.

Keywords: real-time log analytics, distributed systems, stream processing, observability, microservices, critical event

detection, low latency, tracing, anomaly detection, cloud platforms.

© 2026 Ivan Akimov. This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Akimov, I. (2026). Real-Time Log Analytics in Distributed Systems: Minimal-Latency Detection of

Critical Events for Cloud-Native Back-End Platforms. The American Journal of Engineering and Technology, 8(2), 08–16.

https://doi.org/10.37547/tajet/Volume08Issue02-02

Introduction

Real-time interpretation of operational logs has shifted

from post-incident forensics to a direct component of

runtime reliability engineering in distributed back-end

platforms. In the finance and trading domains,

microservice architectures process transaction and

market-related workflows under strict latency and

availability constraints. Failures that remain undetected

for even short windows produce retry storms, queue

backlogs, and amplified tail latency across dependent

services. Under these conditions, a log pipeline that

prioritizes throughput over timeliness becomes

operationally expensive: alerting delays translate into a

longer blast radius and larger recovery costs, while

excessive instrumentation increases CPU and memory

pressure, potentially destabilizing workloads themselves.

https://doi.org/10.37547/tajet/Volume08Issue02-02

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 9

The present study aims to bridge the engineering gap

between “collect everything” observability and “detect

fast with minimal interference.” The goal is to derive an

evidence-grounded approach for detecting critical

runtime events with minimal end-to-end latency, suitable

for cloud-native microservices deployed on public or

private clouds. The study sets three tasks:

1) to analytically decompose latency sources

along the log analytics path from emission to decision;

2) to compare proven processing and correlation

strategies that reduce detection delay while maintaining

operational cost control;

3) to systematize detection mechanisms for

critical events, linking stream-time guarantees, runtime

verification, and anomaly-detection modeling into an

implementable pipeline description.

Novelty is defined by the joint treatment of five

engineering layers that are often discussed separately:

scalability behavior of stream-processing frameworks in

microservice deployments, architectural patterns for near

real-time processing, tracing and monitoring tool

capability landscapes, quantified overhead from code

instrumentation, and contemporary log anomaly

detection approaches. This synthesis aligns with back-

end engineering practices in cloud environments

(AWS/Azure/GCP). It supports decision-making for

production-grade platforms where timeliness and

operational overhead compete for the same resource

budget.

Materials and Methods

The literature-based analytical design adhered to

PRISMA 2020 principles, presenting the results in a

narrative format tailored to an engineering-focused

synthesis. Eligibility criteria were defined before

screening: included records had to (i) be published

between 2021 and 2025; (ii) address distributed systems,

microservices, or cloud deployments; (iii) contain

evidence or systematic comparison relevant to low-

latency operational telemetry (logs, tracing, monitoring,

stream processing) or to detection of anomalous/critical

runtime behavior from log-like sequences; (iv) be peer-

reviewed journal/conference papers or clearly

identifiable scholarly outputs with stable bibliographic

metadata. Records focusing solely on offline batch

analytics, purely storage-centric log indexing without

detection implications, or security-only log mining

without latency and operational constraints were

excluded.

Information sources included IEEE Xplore, ACM Digital

Library, SpringerLink, Elsevier ScienceDirect, MDPI

journals, Nature Portfolio (Scientific Reports), and arXiv

for cross-checking open versions when publisher access

constraints were in place. Backward and forward citation

chasing was applied to identify adjacent works connected

to instrumentation overhead, tracing-tool comparisons,

and log anomaly detection modeling. The last search and

source consultation date was December 24, 2025.

Across all sources, 650 records were identified

(databases n = 612; registers n = 38). Before screening,

duplicates were removed (n = 118), records were marked

as ineligible by automated tools (n = 22), and records

were excluded for other reasons (n = 10) (e.g., non-

accessible metadata or irretrievable entries), leaving 500

records for title/abstract screening. During screening,

430 records were excluded, resulting in 70 reports sought

for retrieval; 5 reports were not retrieved. A total of 65

full-text reports were assessed for eligibility, and 55

reports were excluded, with documented reasons

provided (see Figure 1). Finally, 10 studies were included

in the qualitative synthesis, comprising reports of the

studies that were included (n = 10). For synthesis,

included studies were grouped into five engineering

themes: (i) ingestion/transport and buffering constraints,

(ii) stream analytics and state management under load,

(iii) tracing and monitoring tooling capabilities for

correlation, (iv) instrumentation overhead in

microservice environments, and (v) log parsing and

anomaly detection methods relevant to near real-time

incident detection.

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 10

Figure 1. Flow of study identification, screening, eligibility assessment, and inclusion (adapted from PRISMA 2020)

The search strategy combined controlled and free-text

terms with Boolean logic; representative query families

were: (“real-time” OR “near real-time”) AND (“log

analytics” OR “system logs”) AND (“distributed

systems” OR microservices) AND (latency OR “critical

event” OR anomaly); and (“stream processing” OR Flink

OR Kafka Streams OR Spark) AND microservices AND

benchmarking. Filters were limited to publication years

and the English language; no domain restrictions were

applied to avoid missing cloud engineering venues.

Study selection proceeded in two stages. First, titles and

abstracts were screened for topical relevance to low-

latency detection in distributed environments. Second,

full texts were assessed against eligibility criteria, with

special attention to whether a work provides measurable

evidence (benchmark results, overhead measurements,

systematic comparisons) or a reproducible analytical

framework. Screening decisions were cross-checked to

minimize selection bias, and disagreements were

resolved through discussions focused on eligibility

criteria rather than perceived prestige.

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 11

Data collection extracted: (i) system model assumptions

(microservice boundaries, deployment environment,

telemetry types); (ii) latency-relevant factors (ingestion,

serialization, buffering, windowing, checkpointing,

sampling); (iii) detection method type and prerequisites

(rule-based, runtime verification, statistical modeling,

deep learning); (iv) operational constraints (resource

overhead, scalability limits, tool capabilities). Outcomes

of interest were defined as latency-relevant deliverables

rather than numerical effect sizes, because the study

performed an analytical synthesis rather than a meta-

analysis: end-to-end detection delay contributors,

scalability–cost relationships, and method suitability for

critical-event detection.

Risk of bias in individual studies was assessed

qualitatively by checking for (i) reproducibility assets

(datasets, replication packages, disclosed experimental

settings); (ii) clarity of workload definition and

environment description; (iii) threat-to-validity

discussion addressing generalization across clouds and

workloads. Given heterogeneity in evaluation designs,

synthesis emphasized convergent engineering

implications across independent evidence streams rather

than pooling metrics. Sensitivity analysis was performed

conceptually by validating each derived engineering

claim against at least two distinct evidence types

whenever possible (e.g., stream framework

benchmarking and instrumentation overhead studies, or

monitoring tool landscapes and tracing tool

comparisons). Overall certainty was judged by

triangulation strength, with higher confidence assigned

when multiple peer-reviewed sources aligned on the

same operational constraint.

Results

Evidence from stream-processing benchmarking in

microservice deployments supports the premise that low-

latency log analytics is primarily a systems-design

problem rather than a single-algorithm choice. Empirical

benchmarking of modern stream-processing frameworks

deployed as microservices reports near-linear scalability

under sufficient cloud resources, while highlighting that

the “no clear winner” outcome is driven by workload-

dependent differences in resource consumption and

deployment choices [6]. This matters for critical-event

detection: if detection logic is embedded into the same

processing plane that already handles high-volume

telemetry, then the incremental cost of alerting logic must

be evaluated in terms of state management,

checkpointing cadence, and scaling strategy, not just

model complexity. In practice, a trading or BNPL back-

end with bursty event rates benefits from architectures

that can scale horizontally without imposing long

coordination delays in the detection path, while still

enabling exactly-once-like processing semantics where

false positives or duplicated alerts produce operational

noise.

Comparative architectural work on near real-time stream

processing for fraud detection provides a concrete

reference for selecting between widely adopted engines

when latency and operational simplicity are prioritized.

A comparative analysis of Apache Flink and Apache

Spark in a near-real-time architecture highlights engine-

level distinctions that influence timeliness under

continuous ingestion [2]. While the application domain

differs, the architectural implications transfer: critical-

event detection from logs is structurally similar to fraud

flagging in that both require continuous evaluation of

event sequences and the rapid surfacing of rare, high-

impact patterns. For distributed log analytics, the primary

translation is that event-time handling, stateful operators,

and backpressure behavior determine whether detection

lag remains bounded during bursts. Therefore, detection

designs that rely on heavy aggregation windows or large

state footprints should be treated as latency risks under

real-world traffic variability, regardless of nominal

throughput capacity.

A separate line of evidence addresses correctness and

timeliness for “critical events” that have formal temporal

meaning (e.g., “error followed by repeated timeouts

within Δt,” “missing heartbeat for N intervals,” “out-of-

order completion pattern”). Runtime verification for

distributed stream processing proposes real-time

monitoring using Linear Temporal Logic, targeting

correctness properties directly at the stream level [1]. For

log analytics, the operational gain is a shift from heuristic

rule chains toward explicit temporal specifications that

can be monitored continuously with predictable

execution patterns. The engineering payoff is most

substantial for classes of incidents where the cost of false

negatives dominates, such as partial outages, stuck

workflows, and silent data loss; in those cases, temporal

property monitoring provides deterministic triggers that

complement probabilistic anomaly scoring.

Tool-landscape evidence clarifies that low-latency

detection pipelines depend on correlation fidelity across

logs and traces, not only on the detection component. A

systematic grey literature review mapping monitoring

tools for DevOps and microservices reveals broad

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 12

heterogeneity in the types of monitored information,

assumptions, and constraints across tools [4]. This

heterogeneity implies that the weakest telemetry link

frequently bounds the quality of “critical event”

detection: an inconsistent log structure, missing

propagation identifiers, or incomplete coverage across

services undermines multi-hop incident recognition. In

parallel, a systematic critical comparison of open tracing

tools identifies feature tradeoffs and adoption

considerations in tracing ecosystems [7]. When these

findings are aligned, a practical conclusion emerges:

correlation-first pipeline design reduces downstream

detection burden, because reliable linking of log lines to

request traces and service dependencies narrows the

ambiguity that anomaly models must learn.

Instrumentation overhead evidence introduces a hard

constraint: aggressive telemetry collection can erode the

very latency budgets that detection aims to protect. An

empirical study on containerised microservices

quantifies the hidden performance cost of code

instrumentation and frames it as a non-trivial operational

tradeoff rather than a negligible tax [5]. For finance-

grade backends with high request concurrency, adding

CPU cycles per request and additional allocation

pressure can shift tail latency and trigger autoscaling

oscillations. Therefore, minimal-latency detection

requires a bounded-instrumentation strategy: logs must

be emitted with stable schemas and correlation fields, but

verbose payload enrichment should be pushed to

asynchronous stages or sampling policies, reserving

synchronous paths for fields that directly enable fast

triage.

Modern anomaly-detection research strengthens the

detection stage, but it simultaneously raises upstream

quality demands. A systematic empirical software

engineering study on the impact of log parsing reveals

that parsing choices have a significant effect on the

performance of deep learning-based anomaly detection,

suggesting that preprocessing quality is not a peripheral

detail [8]. In the same direction, survey work on deep

learning for anomaly detection in log data consolidates

method families and typical pitfalls, supporting the claim

that model success depends on consistent event templates

and robust handling of evolving log formats [9]. Recent

modeling advances extend this logic: evidential deep

learning for log anomaly detection explicitly targets

uncertainty representation, which is operationally

relevant because uncertain alerts can be routed

differently than high-confidence incidents [3]. Finally,

contrastive learning, combined with retrieval-augmented

mechanisms, suggests a trend toward hybrid

representations that leverage both learned embeddings

and nearest-neighbor retrieval to enhance anomaly

detection in system logs [10]. Across these sources, the

convergent engineering inference is that low-latency

critical-event detection benefits less from “largest model

wins” thinking and more from stable upstream

normalization and carefully bounded inference costs.

A consolidated pipeline consistent with the above

evidence is presented in Figure 2. The diagram is a

simplified, implementation-oriented synthesis adapted

from the stream-processing benchmarking setting [6],

near-real-time processing architecture patterns [2], and

the monitoring/tracing tool capability landscapes [4, 7].

The figure highlights where latency accumulates

(buffering, serialization, stateful aggregation,

checkpointing, and external lookups) and where

correctness/correlation constraints prevail (ID

propagation, schema normalization, and temporal

specification).

Figure 2. Evidence-grounded low-latency pipeline for critical event detection in distributed log analytics (adapted from

[2; 4; 6; 7])

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 13

Within this pipeline, the core detection objective—

minimal end-to-end latency—reduces to four

controllable design levers supported by the literature:

i) correlation completeness at emission time,

constrained by instrumentation cost [5; 7];

ii) stable parsing/normalization that preserves

semantics under log evolution [8; 9];

iii) stateful streaming designs that remain stable

under backpressure and scaling, validated by

benchmarking evidence [6] and comparative near real-

time architectures [2];

iv) detection logic that combines deterministic

temporal monitors for high-severity patterns [1] with

probabilistic anomaly detectors for novel failure modes.

Discussion

The results support a pragmatic position: minimal-

latency detection is achieved by constraining variability

of telemetry semantics, processing latency, and

operational overhead—rather than by maximizing raw

observability. In production back-end systems, especially

those in finance/trading stacks where throughput spikes

and strict tail-latency limits coexist, detection pipelines

must be engineered as first-class, distributed systems.

Stream-processing evidence indicates that frameworks

can scale approximately linearly under adequate

resources. Yet, the cost profile differs across engines and

abstractions, and the “best” selection depends on the use

case [6]. From an engineering viewpoint, this suggests

designing the detection plane around predictable state

and window behavior, then selecting the engine whose

operational characteristics best match the organization’s

deployment and failure-handling practices.

A central tension appears between richer

telemetry and lower runtime interference. Tracing-tool

comparisons and monitoring-tool landscapes reveal

broad feature diversity and adoption trade-offs across

tools, which translates into inconsistent coverage when

organizations mix incompatible or partially integrated

telemetry stacks [4; 7]. The instrumentation overhead

study reinforces the caution: code-level instrumentation

incurs a measurable cost in containerized microservices

and cannot be treated as free [5]. For a system engineer,

this means that “minimal latency” should be defined as a

joint metric: detection delay plus the latency tax induced

by measurement. A detection pipeline that triggers in

milliseconds but adds persistent tail-latency drift might

be strategically inferior to a slightly slower detector with

far lower overhead.

Table 1 summarizes latency-critical design decisions and

the most directly aligned evidence streams. The table 1 is

designed to guide architecture choices for distributed log

analytics, where critical events require fast and reliable

surfacing.

Table 1. Design choices for minimal-latency critical-event detection and evidence alignment [1–10]

Design decision Expected effect on detection

timeliness

Evidence linkage

Embed stream processing inside

microservices vs centralized batch

analytics

Shortens processing path and

enables continuous evaluation;

raises sensitivity to resource

contention

Stream-processing benchmarking in

microservices: near real-time processing

architecture comparison

Combine deterministic temporal

monitors with anomaly scoring

Improves coverage of both

known temporal failure

signatures and novel patterns

Runtime verification via temporal logic

monitoring; modern anomaly detection

advances

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 14

Enforce stable parsing and template

extraction before ML inference

Reduces model brittleness under

log format drift; stabilizes

features for inference

Log parsing impact on DL anomaly

detection; DL survey synthesis

Correlation-first telemetry

(propagated IDs) with bounded

synchronous instrumentation

Improves multi-service incident

localization while limiting

measurement latency tax

Tracing tool capability comparison;

quantified instrumentation cost;

monitoring tool constraints

Treat checkpoint/window

configuration as a latency budget

parameter

Prevents burst-induced lag and

backpressure cascades in the

detection plane

Scalability and resource behavior under

load; architecture-level engine

differences

A back-end engineer building distributed systems in

finance benefits from treating log analytics as a latency-

sensitive streaming product, not as an afterthought

attached to storage. A disciplined approach is to define a

narrow “critical event vocabulary” (timeouts, error

bursts, queue growth, missing heartbeats, and invariant

violations) and then map each class to the lowest-cost

detector that preserves fidelity. Temporal monitors

handle strict, specifiable patterns efficiently [1], while

anomaly models address unknown unknowns but require

stable preprocessing and careful operationalization of

uncertainty [3; 8–10].

Table 2 focuses on the “cost–signal” tradeoff of

observability mechanisms that feed the detection

pipeline. It connects tool-level evidence with runtime

overhead constraints and indicates how to maintain the

usefulness of telemetry under tight latency budgets.

Table 2. Observability signal versus operational cost for low-latency detection in microservice back-ends [1; 3; 4;

7–10]

Telemetry mechanism Signal gained for critical

event detection

Operational cost

pressure

Evidence linkage

Distributed tracing

(spans, propagation)

Causal chain reconstruction;

faster localization across

services

Extra headers, sampling

logic, exporter overhead

Tracing tools comparison;

monitoring tool constraints

Structured logs with

templates and stable

fields

Model-friendly features;

robust joins with traces

Engineering effort for

schema discipline; pipeline

parsing cost

Parsing impact evidence;

DL survey consolidation

Runtime temporal

monitors on streams

Deterministic triggers for

specified temporal failure

patterns

Additional state tracking

per key/window

LTL-based real-time

monitoring in stream

processing

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 15

DL-based anomaly

scoring

Coverage of novel behaviors

and subtle degradations

Inference cost; sensitivity

to drift; calibration needs

Evidential DL for

uncertainty; retrieval-

augmented contrastive

approach

Heavy code

instrumentation

Detailed internal signals

(fine-grained timing and

events)

Measurable performance

overhead; tail-latency risk

Instrumentation overhead

study

The most reliable path to minimal-latency detection is to

invest upfront in telemetry consistency (IDs, templates,

semantic fields) while enforcing strict limits on

synchronous instrumentation and on state explosion in

streaming operators. From a personal engineering stance,

this tradeoff is preferable to “maximal observability”

strategies because it reduces operational noise and avoids

latency regression caused by the measurement layer

itself. In finance platforms, where microservice failures

often cascade through retries and queueing, correlation

fidelity and predictable stream-time behavior provide

higher marginal value than collecting marginally more

telemetry with uncertain downstream utility.

Conclusion

The first task—decomposing latency sources—was

addressed by identifying where detection lag and

measurement overhead accumulate: synchronous

instrumentation, buffering and flush policies, stateful

windowing, checkpointing cadence, and cross-stream

correlation joins, with empirical support for both

scalability behavior and overhead constraints. The

second task—comparing strategies—was resolved by

linking framework-level scalability and near real-time

architectural patterns to correlation-first telemetry

design, showing that engine choice and deployment

configuration jointly shape timeliness and cost. The third

task—systematizing detection mechanisms—was

completed by combining temporal property monitoring

for formally expressible critical events with uncertainty-

aware and retrieval-augmented anomaly modeling, under

the prerequisite of stable parsing and log normalization.

References

1. Aladib, L., Su, G., & Yang, J. (2025). Real-Time

Monitoring for Distributed Stream Processing

Systems Using Linear Temporal Logic. Electronics,

14(7), 1448.

https://doi.org/10.3390/electronics14071448

2. Daksa, D., & Kemala, E. (2025). Comparative

Analysis of Apache Flink and Apache Spark for

Near Real-Time Fraud Detection in Stream

Processing Architecture. Procedia Computer

Science, 242, 4691–4698.

https://doi.org/10.1016/j.procs.2024.11.247

3. Duan, X., Du, D., Liu, Z., Zhu, H., & Liang, C.

(2024). LogEDL: Log Anomaly Detection by

Evidential Deep Learning. Applied Sciences,

14(16), 7055. https://doi.org/10.3390/app14167055

4. Giamattei, L., Guerriero, A., Pietrantuono, R.,

Russo, S., Malavolta, I., Islam, T., … Simon

Panojo, F. (2024). Monitoring tools for DevOps

and microservices: A systematic grey literature

review. Journal of Systems and Software, 208,

111906. https://doi.org/10.1016/j.jss.2023.111906

5. Hammad, M., Ahmad, A. & Andras, P. (2025). An

empirical study on the performance overhead of

code instrumentation in containerised

microservices. Journal of Systems and Software,

230, 112573.

https://doi.org/10.1016/j.jss.2025.112573.

6. Henning, S., & Hasselbring, W. (2024).

Benchmarking scalability of stream processing

frameworks deployed as microservices in the

cloud. Journal of Systems and Software, 208,

111879. https://doi.org/10.1016/j.jss.2023.111879

7. Janes, A., Li, X., & Lenarduzzi, V. (2023). Open

tracing tools: Overview and critical comparison.

Journal of Systems and Software, 204, 111793.

https://doi.org/10.1016/j.jss.2023.111793

8. Khan, Z. A., Shin, D., Bianculli, D., & Briand, L.

C. (2024). The Impact of Log Parsing on Deep

Learning-based Anomaly Detection in System

Logs. Empirical Software Engineering, 29, 10.

https://doi.org/10.1007/s10664-023-10440-5

https://doi.org/10.3390/electronics14071448
https://doi.org/10.3390/electronics14071448
https://doi.org/10.1016/j.procs.2024.11.247
https://doi.org/10.1016/j.procs.2024.11.247
https://doi.org/10.3390/app14167055
https://doi.org/10.1016/j.jss.2023.111906
https://doi.org/10.1016/j.jss.2023.111879
https://doi.org/10.1016/j.jss.2023.111793
https://doi.org/10.1016/j.jss.2023.111793
https://doi.org/10.1007/s10664-023-10440-5
https://doi.org/10.1007/s10664-023-10440-5

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 16

9. Landauer, M., & Skopik, F. (2023). Deep learning

for anomaly detection in log data: A survey.

Internet of Things and Cyber-Physical Systems, 5,

100071.

https://doi.org/10.1016/j.iotcps.2023.100071

10. Li, W., Wu, Y., Huang, W., Ou, W., Wang, H.,

Zhou, F., & Deng, L. (2025). System log anomaly

detection based on contrastive learning and

retrieval augmented. Scientific Reports, 15, 38370.

https://doi.org/10.1038/s41598-025-22208-7

https://doi.org/10.1016/j.iotcps.2023.100071
https://doi.org/10.1016/j.iotcps.2023.100071
https://doi.org/10.1038/s41598-025-22208-7
https://doi.org/10.1038/s41598-025-22208-7

