The American Journal of Engineering and Technology

ISSN 2689-0984 Volume 08 - 2026

Architectural Strategies for Reprocessing Historical Data in Real-Time
Systems

! Rybchanka Aliaksandr
! Senior Full-stack Software Engineer Amsterdam, The Netherlands

Received: 18" Nov 2025 | Received Revised Version: 28" Nov 2025 | Accepted: 12 Jan 2026 | Published: 27" Jan 2026

Volume 08 Issue 01 2025 | Crossref DOI: 10.37547/tajet/\Volume08lssue01-15

Abstract

This study examines architectural strategies for reprocessing historical data in real-time systems built around the Kappa
architecture and Apache Kafka—based microservices. The research addresses the growing need to recompute derived state,
machine-learning features and aggregates without interrupting continuous processing or violating correctness guarantees.
The work systematises approaches to “time-travel” over event logs, including full-topic replay, snapshot-plus-log
reconstruction and isolated backfill pipelines. Special attention is given to the interaction between Kafka, stateful stream
processors such as Apache Flink and Kafka Streams, and microservice-oriented designs that rely on local or external state
stores. The goal is to formulate practical design guidelines for architecting reprocessing workflows under strict latency,
availability and consistency requirements. The article presents an analytical comparison of modern stream-processing
platforms and real-world case studies from the financial and fraud detection domains. In conclusion, the study formulates
recommendations on choosing between local and external state, structuring replay traffic, and integrating reprocessing
pipelines into production Kappa-style systems without global downtime.

Keywords: Kappa architecture, Apache Kafka, real-time stream processing, historical data reprocessing, time-travel
replay, Kafka Streams, Apache Flink, stateful microservices, event sourcing, data streaming architecture.

© 2026 Rybchanka Aliaksandr. This work is licensed under a Creative Commons Attribution 4.0 International License
(CCBY 4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Aliaksandr, R. (2026). Architectural Strategies for Reprocessing Historical Data in Real-Time Systems.
The American Journal of Engineering and Technology, 8(01), 108-116. https://doi.org/10.37547/tajet/\Volume08lssue01-
15

snapshots conflicts with event-driven architectures that
use Kafka as a durable log and favour Kappa-style
designs where both historical and live traffic pass

1. Introduction

Real-time products increasingly depend on derived

views built from continuous event streams, such as fraud-
scoring features, user behaviour aggregates, materialised
timelines, alerts, and monitoring indicators. These views
evolve over years of production activity and rest on
assumptions encoded in stream-processing topologies.
As schemas, business rules and machine-learning models
change, teams face recurring pressure to recompute long
histories of events while keeping real-time flows
responsive. Conventional batch reprocessing over static

The Am. J. Eng. Technol. 2026

through the same streaming pipeline.

Historical reprocessing in such environments presents
several practical constraints. Event logs often span
multiple years and petabyte-scale topic histories.
Systems must respect event-time semantics, ordering
within partitions and exactly-once guarantees during
replay. Production microservices rely on local state
stores or external databases that already encode years of

108

The American Journal of Engineering and Technology

ISSN 2689-0984

operational behaviour. Restarting entire clusters or
duplicating infrastructure is rarely a viable option. At the
same time, regulatory requirements, backfills for new
machine-learning features, and corrections of logic errors
demand predictable strategies for recomputing historical
states.

The goal of this article is to describe architectural
strategies that enable the reprocessing of historical data
in real-time systems built on Kafka and Kappa
architectures, while preserving availability and
correctness. The first task is to analyse how stateful
stream-processing engines and Kafka-centric
microservice architectures support replay, snapshot-
based reconstruction and hybrid approaches. The second
task is to compare local state stores embedded in stream
processors with external operational or analytical
databases in the context of large-scale reprocessing and
long retention. The third task is to formulate design
recommendations on partitioning, topic topology,
isolation of backfill pipelines and coordination with
downstream services, tailored to organisations that
already operate Kafka-centric microservice landscapes.

The novelty of the work lies in its focus on “time-travel”
and large-scale replay in Kappa-oriented systems.
Existing publications describe performance
characteristics of Kafka, Flink and Kafka Streams, or
present domain-specific pipelines in finance and fraud
detection. The present study consolidates that knowledge
into an architecture-level view centred on replay and
reconstruction, connecting research on state
management, microservices and real-time streaming into
a coherent set of patterns directly applicable to modern
Kafka-based infrastructures.

2. Materials and Methods

The study relies on recent publications that examine
Kafka-centric streaming, microservice architectures and
state management in modern stream-processing engines.
A. Bozkurt, with co-authors, analyses joint use of Apache
Flink and Apache Kafka in a real-time case study,
focusing on integration patterns, low-latency event
handling and performance characteristics of a combined
pipeline [1]. R. S. Dev and J. Usha present a unified
fraud-detection pipeline that integrates Kafka, ksqlDB
and Apache Flink, describing end-to-end real-time
processing of transactional streams in a production-like
environment [2]. Y. Mei and collaborators introduce
disaggregated state management in Apache Flink 2.0,
detailing remote state storage, asynchronous execution

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

and implications for checkpointing, recovery and
rescaling of large stateful jobs [3]. S. Pamarthi examines
adoption of Kafka and Flink in financial services,
outlining streaming architectures for fraud detection, risk
monitoring and customer analytics built on an event-
driven backbone [4]. I. Pelle and co-authors conduct a
quantitative performance analysis of Kafka and Kafka
Streams in cloud-native deployments, providing
measurements of latency, throughput and resource
footprint for stream-processing workloads relevant to
IoT and similar scenarios [5]. S. M. Podduturi
investigates real-time data processing in microservices
architectures, with emphasis on event-driven
communication, patterns such as CQRS and event
sourcing, and the impact of streaming technologies on
scalability and reliability [6]. S. Saket and colleagues
describe migration from batch processing to a Kafka- and
Flink-based streaming pipeline for real-time event
joining in a machine-learning context, addressing
challenges around event-time semantics, checkpointing
and scalability [7]. V. K. Tambi studies real-time data
stream processing using Kafka-driven Al pipelines,
illustrating how Kafka topics feed machine-learning
models and how model outputs integrate back into
streaming systems [8]. B. Tanneru explores the use of
Kafka messaging in microservices for real-time data
processing, focusing on communication patterns,
decoupling of services and operational concerns [9]. G.
Wang and an extended team rethink distributed stream
processing in Apache Kafka, defining consistency and
completeness guarantees and elaborating on exactly-
once semantics in Kafka Streams-based applications
[10].

The article employs an analytical methodology that
synthesises the conceptual framework of the reviewed
works. Comparative analysis is used to contrast local
versus external state management in the context of
replay, taking into account performance measurements,
fault-tolerance mechanisms, and operational practices
discussed in the literature [3, 5, 10]. The structural
analysis of streaming pipelines, as described in case
studies from payments, fraud detection, and financial
analytics, supports the generalisation of architectural
patterns for historical reprocessing [1, 2, 4, 7, 8]. The
study further applies typological classification to identify
families of replay strategies—full log replay, snapshot-
plus-log reconstruction and isolated backfill pipelines—
and to relate them to microservice patterns such as event
sourcing and CQRS [6,9]. The resulting
recommendations emerge from correlating these patterns

109

The American Journal of Engineering and Technology

ISSN 2689-0984

with properties of Kappa architecture and Kafka-centric
microservice ecosystems rather than from experimental
benchmarking.

3. Results

Architectural strategies for reprocessing historical data in
real-time systems must respect the properties of Kafka as
an append-only log, the semantics of stateful stream
processors and the operational constraints of
microservice environments. The reviewed literature
converges on a picture in which Kafka topics, stream
processors and state stores form an integrated substrate
for both online processing and replay.

Works that combine Kafka and Flink illustrate how a
unified event log underpins both live and recomputation
workloads. In the case study by A. Bozkurt and co-
authors, Kafka serves as the backbone for ingestion. At
the same time, Flink performs low-latency event
processing, with business-specific transformations
implemented as stream topologies over Kafka topics [1].
Dev and Usha build a similar structure in the fraud-
detection pipeline: Kafka captures transactional events,
ksqlDB expresses immediate business rules, and Flink
implements deeper analytics with complex event
processing and machine-learning models [2]. Pamarthi
extends this pattern to multiple financial use cases, such
as fraud detection and risk monitoring, where Kafka and
Flink jointly provide end-to-end streaming for mission-
critical workloads [4]. In all three cases, replaying
historical data is conceptually achieved by feeding past
events back into the same Kafka topics and letting the
streaming jobs recompute the derived state, which
directly aligns with Kappa architecture principles.

A more detailed view of stateful processing emerges
from research on Flink and Kafka Streams. Mei and co-
authors describe how Flink 2.0 decouples computation
from state by storing operator state in a remote
distributed file system, with local disk used as cache [3].
Continuous streaming of state updates into the remote
store, combined with an asynchronous execution model,
leads to faster checkpointing and recovery. These
properties directly influence replay strategies: large
historical reprocessing runs benefit from disaggregated
state, as checkpoints remain fast and jobs can be rescaled
or migrated during long backfills without incurring
costly state transfers [3]. Pelle and colleagues evaluate
Kafka and Kafka Streams in cloud-native deployments,
showing that the combined system sustains sub-second
latency and predictable scaling under different

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

workloads, while explicitly highlighting the resource
footprint of Kafka Streams’ local RocksDB-backed state
[5]. Wang and co-authors detail the correctness
guarantees of Kafka Streams, including exactly-once
semantics in the presence of failures and out-of-order
data [10]. For historical reprocessing, this means that
once input topics and changelog topics are stored
durably, it is possible to rebuild local state stores by
replaying logs from the beginning or from a specific
offset while preserving transactional guarantees.

Microservice-oriented publications highlight
architectural patterns that integrate streaming with
service decomposition, emphasising the importance of
service decomposition in microservice-oriented
architectures. Podduturi describes microservice
landscapes where each service owns its data and
communicates through event-driven mechanisms, with
architectures frequently relying on patterns such as event
sourcing, CQRS and saga-style coordination [6]. Tanneru
focuses on Kafka as a central messaging layer for
microservices. Services publish domain events into
Kafka topics and subscribe to relevant topics to maintain
their own materialised views and databases [9]. In these
settings, historical reprocessing involves replaying
domain events into consumers—either by rewinding
consumer offsets on existing topics or by copying subsets
of events into dedicated “backfill topics” that are
consumed by specialised pipelines.

Across the surveyed cases, three main strategies for
reprocessing historical data in Kafka-centric real-time
systems can be distinguished.

The first strategy is full-topic replay into the existing
real-time pipeline. In its simplest form, this involves
resetting consumer offsets to an earlier point or creating
a new consumer group that reads from the beginning of
the topic while the topologies remain identical. This
approach suits corrections of business logic that affect
pure transformations without external side effects.
Studies on Kafka Streams and Flink demonstrate that
local state can be reconstructed entirely from the log and
changelog topics, provided that retention is sufficient and
exactly-once semantics are enabled [3, 5, 10]. Saket and
co-authors, in their migration to a streaming pipeline for
machine-learning features, explicitly rely on event-time
semantics and stateful operators backed by RocksDB and
checkpointing to maintain correctness when processing
both historical and live data [7]. Full-topic replay
remains a straightforward concept, but for high-
throughput systems with multi-year retention, it risks

110

The American Journal of Engineering and Technology

ISSN 2689-0984

overloading production clusters; therefore, it often
requires throttling, separate consumer groups and careful
capacity planning grounded in measured throughput
figures such as those reported by Pelle et al. [5].

The second strategy combines snapshots with log replay.
Here, a consistent snapshot of the state—either a Flink
savepoint, a Kafka Streams state store backup, or an
external database snapshot—is taken at a known point in
the log. Historical reprocessing starts from that snapshot
and replays only the tail of the log from the snapshot
position onwards. Mei and co-authors demonstrate that
Flink 2.0 can handle huge states with rapid checkpointing
and recovery thanks to disaggregated storage [3]. This
behaviour supports long-running backfills: operators can
create new jobs that restore from a past savepoint and
then replay a time-bounded segment of Kafka topics,
reconstructing state corresponding to a specific historical
interval without having to rewind the entire log. Dev and
Usha’s fraud-detection pipeline implicitly follows this
pattern when it uses checkpointing and stateful operators
to maintain model-related features; re-training or feature
definition changes can be addressed by restoring older
checkpoints and replaying segments of transactional
history [2]. Similarly, Kafka Streams applications, as
described by Wang et al., depend on changelog topics to
reconstruct local state stores. Snapshots of changelogs,
combined with offsets, yield a practical mechanism for
partial replay [10].

The third strategy isolates a dedicated backfill pipeline
from the online path. Several works describe
architectures where new streaming jobs or microservices
read historical data from Kafka or external storage,
compute derived results, and publish them into new
topics or external stores without disrupting the existing
pipeline [1, 4, 6-9]. Bozkurt and colleagues, for example,
construct Flink topologies tailored to specific analytical
tasks and evaluate their behaviour under different
scenarios [1]. Pamarthi’s financial streaming
architectures feature separate flows for fraud detection,
risk monitoring and analytics, suggesting a natural split
between live scoring and historical recomputation [4].
Podduturi outlines the use of event sourcing and CQRS,

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

where read models are materialised from an event log by
dedicated projection services [6]. In such designs,
backfill work is performed by launching additional
projector instances that read from earlier offsets or from
historical copies of topics and rebuild read models in
isolation. Once reprocessing finishes, a controlled
cutover shifts traffic to the new projections or state
stores.

These strategies can be combined with specific design
choices around state location. Local state stores, such as
RocksDB in Kafka Streams or Flink’s embedded state
backends, favour low latency during live processing and
replay, as state is co-located with computation [3, 5, 10].
They depend on Kafka changelog topics or remote file
systems to persist and restore state. External stores—
such as relational databases, key-value stores, or search
engines—offer independent scaling, familiar query
interfaces, and potentially reduced operational coupling
to the streaming cluster, as illustrated in microservice
architectures and Kafka-centric integration scenarios [0,
8, 9]. When historical reprocessing is performed,
pipelines that rely on local state typically replay events
faster, limited mainly by Kafka throughput and state-
backend IO. In contrast, pipelines that write into external
stores need to consider write amplification, index
rebuilds and transactional semantics on the external side.

The reviewed works on Al and domain-specific pipelines
add further nuance. Tambi examines Kafka-driven Al
models where Kafka topics feed online inference, and
reprocessing historical data corresponds to replaying
event streams into updated models to regenerate features
or predictions [8]. Saket et al. describe a transition from
batch to streaming for training data preparation, where
Flink streaming joins over Kafka replaces batch joins
over static tables [7]. In such settings, historical
reprocessing must respect event-time semantics during
replay to avoid distorting feature windows and training
distributions.

Figure 1 summarises these relationships in the form of an
integrated Kappa-style pipeline, adapted from the fraud-
detection streaming architecture described by Pamarthi.

111

The American Journal of Engineering and Technology

ISSN 2689-0984

Volume 08 - 2026

@ Kafka \ ‘ Downs'tream
Topic) > Services
Transactional L Alllsdoly) : '

Producers

N\

G ‘
| Object |

l

Store ii
O@ Archival 1 ~
O » [Backiill

O@ Kafka ‘ Topic
Cluster

-~

[]
‘\ Flink Job |
‘ Specialized ‘
‘ Reprocesssing“ 2
Job
External
Analytics
Store

Fig. 1. Kafka—Flink pipeline for real-time and historical reprocessing in a fraud-detection scenario (compiled by
the author based on [4])

In the illustrated topology, transactional producers write
into a primary Kafka topic. A Flink job consumes this
topic, maintains state in a disaggregated backend as
described by Mei et al. and emits fraud alerts into a
separate topic used by downstream services [3, 4].
Historical data stored in an object store or an archival
Kafka cluster can be re-ingested into the same primary
topic or into a dedicated backfill topic, which is
consumed by a specialised reprocessing job. This job
shares the same transformation logic but writes results
into a new alerts topic and into an external analytics
store. Control over consumer groups, topic selection and
output destinations allow operators to replay years of
history without pausing real-time fraud detection,
illustrating how the architectural strategies discussed
above materialise in a concrete system.

Overall, the literature indicates that robust historical
reprocessing in real-time systems rests on three pillars:
durable event logs with sufficient retention and
partitioning, stateful stream processors with strong
correctness guarantees and efficient state management,
and microservice-level patterns that separate online paths
from backfill pipelines. Kafka and its ecosystem,

The Am. J. Eng. Technol. 2026

combined with Flink, Kafka Streams, and microservice
practices, supply the building blocks. Architectural
decisions on state placement, replay strategy, and cutover
mechanism determine how effectively historical data can
be reprocessed in production.

4. Discussion

The analytical synthesis of the reviewed works enables a
structured comparison of design options for historical
reprocessing in Kafka-based Kappa architectures. A first-
dimension concerns where the state resides during both
online processing and replay. A second dimension
concerns the organisation of pipelines and topics used for
replay and cutover.

Table 1 contrasts local state stores embedded in stream
processors with external state stores managed outside the
streaming runtime. The comparison draws on empirical
measurements of Kafka Streams performance [5],
descriptions of Flink’s embedded and disaggregated state
[3], the correctness properties of Kafka Streams [10], and
architectural accounts of microservices using external
databases alongside Kafka [6, 8, 9].

112

The American Journal of Engineering and Technology

ISSN 2689-0984

Volume 08 - 2026

Table 1 — Local versus external state stores for historical reprocessing in Kafka-based real-time systems [2-10]

Dimension

Local state (embedded stores)

External state (databases, data lakes)

State location
and technology

State co-located with processors, stored in
RocksDB or similar backends in Kafka
Streams and Flink, with durability achieved
through changelogs or remote DFS.

State is stored in independent systems, such as
relational databases, key-value stores, search
engines, or analytical warehouses, accessed over
the network.

Latency during
online
processing

Low end-to-end latency due to local lookups
and writes; empirical studies report sub-
second processing under realistic loads when
Kafka Streams and Kafka are tuned
appropriately.

Latency depends on the external system's
response time, transaction model, and network
conditions; it may be suitable for use cases where
a few extra milliseconds are acceptable.

Behaviour under
large-scale
replay

High-throughput replay is limited mainly by
Kafka I/0, checkpointing, and compaction
behaviour in the state backend. Flink 2.0’s

disaggregated state further reduces
checkpoint and recovery overhead for replay
workloads.

Replay throughput is often constrained by write
amplification and indexing overhead in external
stores; long backfills may require throttling,
batch writes or temporary relaxation of
secondary indexes.

Failure isolation
and blast radius

Failures in stream processors directly affect
the availability of state; recovery depends on
restoring state from changelogs or remote
snapshots, which have been optimised in
modern Flink deployments.

Failures in the streaming layer and external
stores are partially decoupled; external state may
remain available even if streaming jobs are
restarted, but consistency between log and
database must be managed explicitly.

Operational
complexity

Operators manage fewer moving parts; the
state lifecycle is tied to the streaming cluster,
simplifying backup and restore at the price of

tighter coupling.

Teams maintain separate operational stacks
(Kafka, stream processors, databases), with
dedicated backup, upgrade, and scaling
procedures. As complexity increases, so does
flexibility.

Typical use cases

High-throughput pipelines where most reads
and writes stay within streaming jobs and
where replay speed and correctness
guarantees are priority (fraud detection, time-
sensitive analytics).

Microservices that combine streaming with rich
query workloads, ad-hoc analytics or
transactional updates shared with non-streaming
components (customer profiles, configuration
stores, search indices).

The table indicates that local state stores, especially when
combined with disaggregated architectures such as Flink
2.0, favour scenarios where historical reprocessing
requires sustained high throughput and where the main
outputs are derived streams rather than shared
transactional databases [3, 5]. External state stores are

The Am. J. Eng. Technol. 2026

suitable for ecosystems where the same data must serve
diverse query patterns and where microservices or
analytical tools expect traditional database interfaces [6,
8, 9]. For Kappa-style architectures, a common
compromise involves keeping operationally critical state
within stream processors while pushing slower-moving

113

The American Journal of Engineering and Technology

ISSN 2689-0984

or read-heavy projections into external stores, which are
fed by derived Kafka topics.

Table 2 summarises the architectural strategies for
historical reprocessing identified in the literature and in

Volume 08 - 2026

the previous section, relating them to typical tooling and
scenarios. The classification relies on case studies that
utilise Kafka and Flink in conjunction [1, 2, 4, 7], Al
pipelines driven by Kafka [8], and microservices that
employ Kafka as an event bus [6, 9].

Table 2 — Architectural strategies for reprocessing historical data in Kafka-centric Kappa architectures [1-10]

Strategy Short description

Typical tooling and topic
design

Example scenarios and sources

Full log replay Historical events are read from
through the

online pipeline

the beginning (or from a chosen
offset) of production topics by a
consumer group running the
same topology as the online
path; live traffic continues on the
same issues with separate
consumer groups.

Kafka topics with sufficient
retention; Kafka Streams or
Flink jobs using embedded or
disaggregated state; separate
consumer groups for live and
replay traffic; optional
throttling.

Correcting pure transformation
logic or enriching existing
aggregates without external side
effects; migrating from batch to

streaming as described in real-time

event joining and case studies of
Flink—Kafka integrations.

Snapshot-plus-
log
reconstruction

Reprocessing begins from a state
snapshot (Flink savepoint, Kafka
Streams state backup, or
database snapshot) and replays
only the subsequent part of the
log, reconstructing the state for a
chosen historical interval.

Checkpointing or snapshot
mechanisms in Flink 2.0 and
Kafka Streams, dedicated
topics for changelogs, and
infrastructure for storing and
cataloguing snapshots and
their corresponding offsets.

Rolling back to old model versions

or business rules, recomputing

features for a fixed time window in
fraud detection or risk analytics, as

reported in streaming pipelines in
finance and fraud-detection
systems.

Isolated backfill
pipelines

Historical data is copied into
dedicated “backfill topics” or
read from archival storage and
processed by specialised
streaming jobs or microservices;
outputs are written into new
topics or external stores, and
traffic is switched after
verification.

Kafka Connect or custom
loaders to re-ingest historical
data; parallel pipelines in
Flink or Kafka Streams;
separate output topics or
databases for backfilled
projections; controlled
cutover via topic re-wiring or
configuration changes.

Building new read models in event-

sourced microservice landscapes,
generating new Al features from
old events, or introducing
additional analytics streams
without disturbing existing
consumers.

Hybrid selective Only subsets of partitions,
tenants or event types are
replayed, often combined with
filters or projection services that

target specific microservices or

replay

analytical products.

Fine-grained topic
partitioning by tenant or
domain; selective consumers
that read only specific
partitions; projection services
implemented as microservices
subscribing to filtered topics.

Tenant-specific backfills in multi-
tenant SaaS platforms, selective
reconstruction of corrupted
projections, or country-specific
regulatory recomputation where
only part of the event space is
relevant.

The Am. J. Eng. Technol. 2026

114

The American Journal of Engineering and Technology

ISSN 2689-0984

These strategies reflect a trade-off between simplicity
and control. Full log replay utilises existing
infrastructure but risks competing with online processing
for resources [3, 5, 10]. Snapshot-plus-log reconstruction
reduces reprocessing time for long histories, but it
depends on reliable snapshot management [2, 3, 10].
Isolated backfill pipelines add complexity in topic
management and cutover procedures, yet they align well
with microservice practices around independent
deployments and gradual rollout [1, 4, 6-9]. Hybrid
selective replay demonstrates how careful partitioning
and topic design enable the limitation of reprocessing
scope and reduction of operational risk [5-7, 9].

For organisations already invested in Kafka-centric
Kappa architectures, the literature suggests combining
these strategies in a layered design. Operational states
that must be continuously accurate—for example, fraud
scores or risk indicators—can be handled by local or
disaggregated state stores with either full replay or
snapshot-plus-log reconstruction [2—4, 7, 10]. Derived
projections consumed by external services can be rebuilt
through isolated pipelines and cut over when consistency
checks pass [1, 4, 6, 8, 9]. Domain events used for both
operational and analytical purposes benefit from careful
schema evolution and topic retention policies, so that
historical replay remains technically feasible for several
years of data [5-7].

The choice between local and external state, and between
direct replay and isolated backfill, closely interacts with
an organisation’s operational maturity. Systems
described in high-throughput IoT and financial scenarios
rely heavily on automation for scaling, checkpoint
management and monitoring [3-5]. Microservice
landscapes emphasise design patterns and contract-based
event schemas to contain the complexity of replay and
backfill [6, 8, 9]. In both categories, the success of
historical reprocessing depends not only on the raw
performance of Kafka and stream processors, but on
disciplined topic design, versioning strategies for
topologies and state, and well-defined procedures for
validating replay results before exposing them to end
users.

5. Conclusion

The study demonstrates that the effective reprocessing of
historical data in Kafka-centric real-time systems relies
on treating the event log as the primary system of record
and designing stateful processing around this
assumption. When architectures follow Kappa

The Am. J. Eng. Technol. 2026

Volume 08 - 2026

principles, the replay of event logs, combined with strong
exactly-once guarantees in Kafka Streams and Apache
Flink, becomes the foundation for reconstructing
application state without relying on separate batch
stacks.

Comparative analysis of local and external state stores
indicates that embedded or disaggregated state backends
favour high-throughput backfills and tight control over
correctness. In contrast, external databases bring
flexibility at the cost of more complex replay procedures.
Systems that integrate Kafka with microservice patterns
such as event sourcing and CQRS benefit from isolating
backfill pipelines and using topic-level controls for
cutover.

The examined strategies—full log replay, snapshot-plus-
log reconstruction, isolated backfill pipelines and hybrid
selective replay—provide a practical toolkit for
engineering “time-travel” capabilities into existing
Kafka-based infrastructures. Combining these patterns
with rigorous topic design, disciplined state management
and operational safeguards allows organisations to
recompute years of history while keeping real-time
services responsive, which makes such approaches
especially suitable for streaming-heavy microservice
ecosystems built on Kafka and Kappa architecture.

References

1. Bozkurt, A., Ekici, F., & Yetiskul, H. (2023).
Utilizing Flink and Kafka technologies for real-
time data processing: A case study. The Eurasia
Proceedings of Science, Technology, Engineering
and Mathematics, 24, 177-183.
https://doi.org/10.55549/epstem.1406274

2. Dev, R. S., & Usha, J. (2025). Real-time processing
with Kafka, ksqIDB & Apache Flink: A fraud
detection pipeline. International Journal of
Computer Applications, 187(60), 13—18.
https://www.ijcaonline.org/archives/volumel87/nu
mber60/dev-2025-ijca-925872.pdf

3. Mei, Y, Lan, Z., Huang, L., Lei, Y., Yin, H., Xia,
R., Hu, K., Carbone, P., Kalavri, V., & Wang, F.
(2025). Disaggregated state management in Apache
Flink 2.0. Proceedings of the VLDB Endowment,
18(12), 4846-4859.
https://doi.org/10.14778/3750601.3750609

4. Pamarthi, S. (2023). Apache Flink and Apache
Kafka in financial services: Real-time streaming for

115

https://www.ijcaonline.org/archives/volume187/number60/dev-2025-ijca-925872.pdf
https://www.ijcaonline.org/archives/volume187/number60/dev-2025-ijca-925872.pdf
https://www.ijcaonline.org/archives/volume187/number60/dev-2025-ijca-925872.pdf
https://www.ijcaonline.org/archives/volume187/number60/dev-2025-ijca-925872.pdf
https://doi.org/10.14778/3750601.3750609
https://doi.org/10.14778/3750601.3750609
https://doi.org/10.14778/3750601.3750609

data processing and analytics [White paper].
https://www.researchgate.net/publication/39701773
3 Apache Flink and Apache Kafka in Financial
_Services_Real-

Time Streaming for Data Processing and Analyt
ics

Pelle, 1., Szoke, B., Fayad, A., Cinkler, T., & Toka,
L. (2023). A comprehensive performance analysis
of stream processing with Kafka in cloud native
deployments for IoT use-cases. In NOMS 2023:
IEEE/IFIP Network Operations and Management
Symposium (pp. 1-6).
https://doi.org/10.1109/NOMS56928.2023.1015437
7

Podduturi, S. M. (2024). Real-time data processing
in microservices architectures. International
Journal of Computer Engineering and Technology,
15(6), 760-773.
https://doi.org/10.5281/zenodo.14228620

Saket, S., Chandela, V., & Kalim, M. D. (2024).
Real-time event joining in practice with Kafka and

The Am. J. Eng. Technol. 2026

10.

The American Journal of Engineering and Technology
ISSN 2689-0984

Volume 08 - 2026

Flink. arXiv. Advance online publication.
https://arxiv.org/abs/2410.15533

Tambi, V. K. (2023). Real-time data stream
processing with Kafka-driven Al models.
International Journal of Current Engineering and
Scientific Research. Advance online publication.
https://philpapers.org/archive/VARRDS.pdf

Tanneru, B. (2023). Application of Kafka
messaging in microservices for real-time data
processing. International Journal of Innovative
Research in Engineering & Multidisciplinary
Physical Sciences, 11(5), 1-4.
https://doi.org/10.5281/zenodo.14945204

Wang, G., Chen, L., Dikshit, A., Gustafson, J.,
Chen, B., Sax, M. J., Roesler, J., Blee-Goldman, S.,
Cadonna, B., Mehta, A., Madan, V., & Rao, J.
(2021). Consistency and completeness: Rethinking
distributed stream processing in Apache Kafka. In
Proceedings of the 2021 International Conference
on Management of Data (SIGMOD °21) (pp. 2602—
2613). https://doi.org/10.1145/3448016.3457556

116

https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://doi.org/10.5281/zenodo.14228620
https://doi.org/10.5281/zenodo.14228620
https://doi.org/10.5281/zenodo.14228620
https://philpapers.org/archive/VARRDS.pdf
https://philpapers.org/archive/VARRDS.pdf
https://philpapers.org/archive/VARRDS.pdf
https://doi.org/10.5281/zenodo.14945204
https://doi.org/10.5281/zenodo.14945204
https://doi.org/10.5281/zenodo.14945204
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/3448016.3457556

