
The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 108

Architectural Strategies for Reprocessing Historical Data in Real-Time

Systems

1 Rybchanka Aliaksandr
1 Senior Full-stack Software Engineer Amsterdam, The Netherlands

Received: 18th Nov 2025 | Received Revised Version: 28th Nov 2025 | Accepted: 12th Jan 2026 | Published: 27th Jan 2026

Volume 08 Issue 01 2025 | Crossref DOI: 10.37547/tajet/Volume08Issue01-15

Abstract

This study examines architectural strategies for reprocessing historical data in real-time systems built around the Kappa

architecture and Apache Kafka–based microservices. The research addresses the growing need to recompute derived state,

machine-learning features and aggregates without interrupting continuous processing or violating correctness guarantees.

The work systematises approaches to “time-travel” over event logs, including full-topic replay, snapshot-plus-log

reconstruction and isolated backfill pipelines. Special attention is given to the interaction between Kafka, stateful stream

processors such as Apache Flink and Kafka Streams, and microservice-oriented designs that rely on local or external state

stores. The goal is to formulate practical design guidelines for architecting reprocessing workflows under strict latency,

availability and consistency requirements. The article presents an analytical comparison of modern stream-processing

platforms and real-world case studies from the financial and fraud detection domains. In conclusion, the study formulates

recommendations on choosing between local and external state, structuring replay traffic, and integrating reprocessing

pipelines into production Kappa-style systems without global downtime.

Keywords: Kappa architecture, Apache Kafka, real-time stream processing, historical data reprocessing, time-travel

replay, Kafka Streams, Apache Flink, stateful microservices, event sourcing, data streaming architecture.

© 2026 Rybchanka Aliaksandr. This work is licensed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work with proper attribution.

Cite This Article: Aliaksandr, R. (2026). Architectural Strategies for Reprocessing Historical Data in Real-Time Systems.

The American Journal of Engineering and Technology, 8(01), 108–116. https://doi.org/10.37547/tajet/Volume08Issue01-

15

1. Introduction

Real-time products increasingly depend on derived

views built from continuous event streams, such as fraud-

scoring features, user behaviour aggregates, materialised

timelines, alerts, and monitoring indicators. These views

evolve over years of production activity and rest on

assumptions encoded in stream-processing topologies.

As schemas, business rules and machine-learning models

change, teams face recurring pressure to recompute long

histories of events while keeping real-time flows

responsive. Conventional batch reprocessing over static

snapshots conflicts with event-driven architectures that

use Kafka as a durable log and favour Kappa-style

designs where both historical and live traffic pass

through the same streaming pipeline.

Historical reprocessing in such environments presents

several practical constraints. Event logs often span

multiple years and petabyte-scale topic histories.

Systems must respect event-time semantics, ordering

within partitions and exactly-once guarantees during

replay. Production microservices rely on local state

stores or external databases that already encode years of

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 109

operational behaviour. Restarting entire clusters or

duplicating infrastructure is rarely a viable option. At the

same time, regulatory requirements, backfills for new

machine-learning features, and corrections of logic errors

demand predictable strategies for recomputing historical

states.

The goal of this article is to describe architectural

strategies that enable the reprocessing of historical data

in real-time systems built on Kafka and Kappa

architectures, while preserving availability and

correctness. The first task is to analyse how stateful

stream-processing engines and Kafka-centric

microservice architectures support replay, snapshot-

based reconstruction and hybrid approaches. The second

task is to compare local state stores embedded in stream

processors with external operational or analytical

databases in the context of large-scale reprocessing and

long retention. The third task is to formulate design

recommendations on partitioning, topic topology,

isolation of backfill pipelines and coordination with

downstream services, tailored to organisations that

already operate Kafka-centric microservice landscapes.

The novelty of the work lies in its focus on “time-travel”

and large-scale replay in Kappa-oriented systems.

Existing publications describe performance

characteristics of Kafka, Flink and Kafka Streams, or

present domain-specific pipelines in finance and fraud

detection. The present study consolidates that knowledge

into an architecture-level view centred on replay and

reconstruction, connecting research on state

management, microservices and real-time streaming into

a coherent set of patterns directly applicable to modern

Kafka-based infrastructures.

2. Materials and Methods

The study relies on recent publications that examine

Kafka-centric streaming, microservice architectures and

state management in modern stream-processing engines.

A. Bozkurt, with co-authors, analyses joint use of Apache

Flink and Apache Kafka in a real-time case study,

focusing on integration patterns, low-latency event

handling and performance characteristics of a combined

pipeline [1]. R. S. Dev and J. Usha present a unified

fraud-detection pipeline that integrates Kafka, ksqlDB

and Apache Flink, describing end-to-end real-time

processing of transactional streams in a production-like

environment [2]. Y. Mei and collaborators introduce

disaggregated state management in Apache Flink 2.0,

detailing remote state storage, asynchronous execution

and implications for checkpointing, recovery and

rescaling of large stateful jobs [3]. S. Pamarthi examines

adoption of Kafka and Flink in financial services,

outlining streaming architectures for fraud detection, risk

monitoring and customer analytics built on an event-

driven backbone [4]. I. Pelle and co-authors conduct a

quantitative performance analysis of Kafka and Kafka

Streams in cloud-native deployments, providing

measurements of latency, throughput and resource

footprint for stream-processing workloads relevant to

IoT and similar scenarios [5]. S. M. Podduturi

investigates real-time data processing in microservices

architectures, with emphasis on event-driven

communication, patterns such as CQRS and event

sourcing, and the impact of streaming technologies on

scalability and reliability [6]. S. Saket and colleagues

describe migration from batch processing to a Kafka- and

Flink-based streaming pipeline for real-time event

joining in a machine-learning context, addressing

challenges around event-time semantics, checkpointing

and scalability [7]. V. K. Tambi studies real-time data

stream processing using Kafka-driven AI pipelines,

illustrating how Kafka topics feed machine-learning

models and how model outputs integrate back into

streaming systems [8]. B. Tanneru explores the use of

Kafka messaging in microservices for real-time data

processing, focusing on communication patterns,

decoupling of services and operational concerns [9]. G.

Wang and an extended team rethink distributed stream

processing in Apache Kafka, defining consistency and

completeness guarantees and elaborating on exactly-

once semantics in Kafka Streams-based applications

[10].

The article employs an analytical methodology that

synthesises the conceptual framework of the reviewed

works. Comparative analysis is used to contrast local

versus external state management in the context of

replay, taking into account performance measurements,

fault-tolerance mechanisms, and operational practices

discussed in the literature [3, 5, 10]. The structural

analysis of streaming pipelines, as described in case

studies from payments, fraud detection, and financial

analytics, supports the generalisation of architectural

patterns for historical reprocessing [1, 2, 4, 7, 8]. The

study further applies typological classification to identify

families of replay strategies—full log replay, snapshot-

plus-log reconstruction and isolated backfill pipelines—

and to relate them to microservice patterns such as event

sourcing and CQRS [6,9]. The resulting

recommendations emerge from correlating these patterns

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 110

with properties of Kappa architecture and Kafka-centric

microservice ecosystems rather than from experimental

benchmarking.

3. Results

Architectural strategies for reprocessing historical data in

real-time systems must respect the properties of Kafka as

an append-only log, the semantics of stateful stream

processors and the operational constraints of

microservice environments. The reviewed literature

converges on a picture in which Kafka topics, stream

processors and state stores form an integrated substrate

for both online processing and replay.

Works that combine Kafka and Flink illustrate how a

unified event log underpins both live and recomputation

workloads. In the case study by A. Bozkurt and co-

authors, Kafka serves as the backbone for ingestion. At

the same time, Flink performs low-latency event

processing, with business-specific transformations

implemented as stream topologies over Kafka topics [1].

Dev and Usha build a similar structure in the fraud-

detection pipeline: Kafka captures transactional events,

ksqlDB expresses immediate business rules, and Flink

implements deeper analytics with complex event

processing and machine-learning models [2]. Pamarthi

extends this pattern to multiple financial use cases, such

as fraud detection and risk monitoring, where Kafka and

Flink jointly provide end-to-end streaming for mission-

critical workloads [4]. In all three cases, replaying

historical data is conceptually achieved by feeding past

events back into the same Kafka topics and letting the

streaming jobs recompute the derived state, which

directly aligns with Kappa architecture principles.

A more detailed view of stateful processing emerges

from research on Flink and Kafka Streams. Mei and co-

authors describe how Flink 2.0 decouples computation

from state by storing operator state in a remote

distributed file system, with local disk used as cache [3].

Continuous streaming of state updates into the remote

store, combined with an asynchronous execution model,

leads to faster checkpointing and recovery. These

properties directly influence replay strategies: large

historical reprocessing runs benefit from disaggregated

state, as checkpoints remain fast and jobs can be rescaled

or migrated during long backfills without incurring

costly state transfers [3]. Pelle and colleagues evaluate

Kafka and Kafka Streams in cloud-native deployments,

showing that the combined system sustains sub-second

latency and predictable scaling under different

workloads, while explicitly highlighting the resource

footprint of Kafka Streams’ local RocksDB-backed state

[5]. Wang and co-authors detail the correctness

guarantees of Kafka Streams, including exactly-once

semantics in the presence of failures and out-of-order

data [10]. For historical reprocessing, this means that

once input topics and changelog topics are stored

durably, it is possible to rebuild local state stores by

replaying logs from the beginning or from a specific

offset while preserving transactional guarantees.

Microservice-oriented publications highlight

architectural patterns that integrate streaming with

service decomposition, emphasising the importance of

service decomposition in microservice-oriented

architectures. Podduturi describes microservice

landscapes where each service owns its data and

communicates through event-driven mechanisms, with

architectures frequently relying on patterns such as event

sourcing, CQRS and saga-style coordination [6]. Tanneru

focuses on Kafka as a central messaging layer for

microservices. Services publish domain events into

Kafka topics and subscribe to relevant topics to maintain

their own materialised views and databases [9]. In these

settings, historical reprocessing involves replaying

domain events into consumers—either by rewinding

consumer offsets on existing topics or by copying subsets

of events into dedicated “backfill topics” that are

consumed by specialised pipelines.

Across the surveyed cases, three main strategies for

reprocessing historical data in Kafka-centric real-time

systems can be distinguished.

The first strategy is full-topic replay into the existing

real-time pipeline. In its simplest form, this involves

resetting consumer offsets to an earlier point or creating

a new consumer group that reads from the beginning of

the topic while the topologies remain identical. This

approach suits corrections of business logic that affect

pure transformations without external side effects.

Studies on Kafka Streams and Flink demonstrate that

local state can be reconstructed entirely from the log and

changelog topics, provided that retention is sufficient and

exactly-once semantics are enabled [3, 5, 10]. Saket and

co-authors, in their migration to a streaming pipeline for

machine-learning features, explicitly rely on event-time

semantics and stateful operators backed by RocksDB and

checkpointing to maintain correctness when processing

both historical and live data [7]. Full-topic replay

remains a straightforward concept, but for high-

throughput systems with multi-year retention, it risks

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 111

overloading production clusters; therefore, it often

requires throttling, separate consumer groups and careful

capacity planning grounded in measured throughput

figures such as those reported by Pelle et al. [5].

The second strategy combines snapshots with log replay.

Here, a consistent snapshot of the state—either a Flink

savepoint, a Kafka Streams state store backup, or an

external database snapshot—is taken at a known point in

the log. Historical reprocessing starts from that snapshot

and replays only the tail of the log from the snapshot

position onwards. Mei and co-authors demonstrate that

Flink 2.0 can handle huge states with rapid checkpointing

and recovery thanks to disaggregated storage [3]. This

behaviour supports long-running backfills: operators can

create new jobs that restore from a past savepoint and

then replay a time-bounded segment of Kafka topics,

reconstructing state corresponding to a specific historical

interval without having to rewind the entire log. Dev and

Usha’s fraud-detection pipeline implicitly follows this

pattern when it uses checkpointing and stateful operators

to maintain model-related features; re-training or feature

definition changes can be addressed by restoring older

checkpoints and replaying segments of transactional

history [2]. Similarly, Kafka Streams applications, as

described by Wang et al., depend on changelog topics to

reconstruct local state stores. Snapshots of changelogs,

combined with offsets, yield a practical mechanism for

partial replay [10].

The third strategy isolates a dedicated backfill pipeline

from the online path. Several works describe

architectures where new streaming jobs or microservices

read historical data from Kafka or external storage,

compute derived results, and publish them into new

topics or external stores without disrupting the existing

pipeline [1, 4, 6–9]. Bozkurt and colleagues, for example,

construct Flink topologies tailored to specific analytical

tasks and evaluate their behaviour under different

scenarios [1]. Pamarthi’s financial streaming

architectures feature separate flows for fraud detection,

risk monitoring and analytics, suggesting a natural split

between live scoring and historical recomputation [4].

Podduturi outlines the use of event sourcing and CQRS,

where read models are materialised from an event log by

dedicated projection services [6]. In such designs,

backfill work is performed by launching additional

projector instances that read from earlier offsets or from

historical copies of topics and rebuild read models in

isolation. Once reprocessing finishes, a controlled

cutover shifts traffic to the new projections or state

stores.

These strategies can be combined with specific design

choices around state location. Local state stores, such as

RocksDB in Kafka Streams or Flink’s embedded state

backends, favour low latency during live processing and

replay, as state is co-located with computation [3, 5, 10].

They depend on Kafka changelog topics or remote file

systems to persist and restore state. External stores—

such as relational databases, key-value stores, or search

engines—offer independent scaling, familiar query

interfaces, and potentially reduced operational coupling

to the streaming cluster, as illustrated in microservice

architectures and Kafka-centric integration scenarios [6,

8, 9]. When historical reprocessing is performed,

pipelines that rely on local state typically replay events

faster, limited mainly by Kafka throughput and state-

backend IO. In contrast, pipelines that write into external

stores need to consider write amplification, index

rebuilds and transactional semantics on the external side.

The reviewed works on AI and domain-specific pipelines

add further nuance. Tambi examines Kafka-driven AI

models where Kafka topics feed online inference, and

reprocessing historical data corresponds to replaying

event streams into updated models to regenerate features

or predictions [8]. Saket et al. describe a transition from

batch to streaming for training data preparation, where

Flink streaming joins over Kafka replaces batch joins

over static tables [7]. In such settings, historical

reprocessing must respect event-time semantics during

replay to avoid distorting feature windows and training

distributions.

Figure 1 summarises these relationships in the form of an

integrated Kappa-style pipeline, adapted from the fraud-

detection streaming architecture described by Pamarthi.

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 112

Fig. 1. Kafka–Flink pipeline for real-time and historical reprocessing in a fraud-detection scenario (compiled by

the author based on [4])

In the illustrated topology, transactional producers write

into a primary Kafka topic. A Flink job consumes this

topic, maintains state in a disaggregated backend as

described by Mei et al. and emits fraud alerts into a

separate topic used by downstream services [3, 4].

Historical data stored in an object store or an archival

Kafka cluster can be re-ingested into the same primary

topic or into a dedicated backfill topic, which is

consumed by a specialised reprocessing job. This job

shares the same transformation logic but writes results

into a new alerts topic and into an external analytics

store. Control over consumer groups, topic selection and

output destinations allow operators to replay years of

history without pausing real-time fraud detection,

illustrating how the architectural strategies discussed

above materialise in a concrete system.

Overall, the literature indicates that robust historical

reprocessing in real-time systems rests on three pillars:

durable event logs with sufficient retention and

partitioning, stateful stream processors with strong

correctness guarantees and efficient state management,

and microservice-level patterns that separate online paths

from backfill pipelines. Kafka and its ecosystem,

combined with Flink, Kafka Streams, and microservice

practices, supply the building blocks. Architectural

decisions on state placement, replay strategy, and cutover

mechanism determine how effectively historical data can

be reprocessed in production.

4. Discussion

The analytical synthesis of the reviewed works enables a

structured comparison of design options for historical

reprocessing in Kafka-based Kappa architectures. A first-

dimension concerns where the state resides during both

online processing and replay. A second dimension

concerns the organisation of pipelines and topics used for

replay and cutover.

Table 1 contrasts local state stores embedded in stream

processors with external state stores managed outside the

streaming runtime. The comparison draws on empirical

measurements of Kafka Streams performance [5],

descriptions of Flink’s embedded and disaggregated state

[3], the correctness properties of Kafka Streams [10], and

architectural accounts of microservices using external

databases alongside Kafka [6, 8, 9].

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 113

Table 1 – Local versus external state stores for historical reprocessing in Kafka-based real-time systems [2–10]

Dimension Local state (embedded stores) External state (databases, data lakes)

State location

and technology

State co-located with processors, stored in

RocksDB or similar backends in Kafka

Streams and Flink, with durability achieved

through changelogs or remote DFS.

State is stored in independent systems, such as

relational databases, key-value stores, search

engines, or analytical warehouses, accessed over

the network.

Latency during

online

processing

Low end-to-end latency due to local lookups

and writes; empirical studies report sub-

second processing under realistic loads when

Kafka Streams and Kafka are tuned

appropriately.

Latency depends on the external system's

response time, transaction model, and network

conditions; it may be suitable for use cases where

a few extra milliseconds are acceptable.

Behaviour under

large-scale

replay

High-throughput replay is limited mainly by

Kafka I/O, checkpointing, and compaction

behaviour in the state backend. Flink 2.0’s

disaggregated state further reduces

checkpoint and recovery overhead for replay

workloads.

Replay throughput is often constrained by write

amplification and indexing overhead in external

stores; long backfills may require throttling,

batch writes or temporary relaxation of

secondary indexes.

Failure isolation

and blast radius

Failures in stream processors directly affect

the availability of state; recovery depends on

restoring state from changelogs or remote

snapshots, which have been optimised in

modern Flink deployments.

Failures in the streaming layer and external

stores are partially decoupled; external state may

remain available even if streaming jobs are

restarted, but consistency between log and

database must be managed explicitly.

Operational

complexity

Operators manage fewer moving parts; the

state lifecycle is tied to the streaming cluster,

simplifying backup and restore at the price of

tighter coupling.

Teams maintain separate operational stacks

(Kafka, stream processors, databases), with

dedicated backup, upgrade, and scaling

procedures. As complexity increases, so does

flexibility.

Typical use cases High-throughput pipelines where most reads

and writes stay within streaming jobs and

where replay speed and correctness

guarantees are priority (fraud detection, time-

sensitive analytics).

Microservices that combine streaming with rich

query workloads, ad-hoc analytics or

transactional updates shared with non-streaming

components (customer profiles, configuration

stores, search indices).

The table indicates that local state stores, especially when

combined with disaggregated architectures such as Flink

2.0, favour scenarios where historical reprocessing

requires sustained high throughput and where the main

outputs are derived streams rather than shared

transactional databases [3, 5]. External state stores are

suitable for ecosystems where the same data must serve

diverse query patterns and where microservices or

analytical tools expect traditional database interfaces [6,

8, 9]. For Kappa-style architectures, a common

compromise involves keeping operationally critical state

within stream processors while pushing slower-moving

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 114

or read-heavy projections into external stores, which are

fed by derived Kafka topics.

Table 2 summarises the architectural strategies for

historical reprocessing identified in the literature and in

the previous section, relating them to typical tooling and

scenarios. The classification relies on case studies that

utilise Kafka and Flink in conjunction [1, 2, 4, 7], AI

pipelines driven by Kafka [8], and microservices that

employ Kafka as an event bus [6, 9].

Table 2 – Architectural strategies for reprocessing historical data in Kafka-centric Kappa architectures [1–10]

Strategy Short description Typical tooling and topic

design

Example scenarios and sources

Full log replay

through the

online pipeline

Historical events are read from

the beginning (or from a chosen

offset) of production topics by a

consumer group running the

same topology as the online

path; live traffic continues on the

same issues with separate

consumer groups.

Kafka topics with sufficient

retention; Kafka Streams or

Flink jobs using embedded or

disaggregated state; separate

consumer groups for live and

replay traffic; optional

throttling.

Correcting pure transformation

logic or enriching existing

aggregates without external side

effects; migrating from batch to

streaming as described in real-time

event joining and case studies of

Flink–Kafka integrations.

Snapshot-plus-

log

reconstruction

Reprocessing begins from a state

snapshot (Flink savepoint, Kafka

Streams state backup, or

database snapshot) and replays

only the subsequent part of the

log, reconstructing the state for a

chosen historical interval.

Checkpointing or snapshot

mechanisms in Flink 2.0 and

Kafka Streams, dedicated

topics for changelogs, and

infrastructure for storing and

cataloguing snapshots and

their corresponding offsets.

Rolling back to old model versions

or business rules, recomputing

features for a fixed time window in

fraud detection or risk analytics, as

reported in streaming pipelines in

finance and fraud-detection

systems.

Isolated backfill

pipelines

Historical data is copied into

dedicated “backfill topics” or

read from archival storage and

processed by specialised

streaming jobs or microservices;

outputs are written into new

topics or external stores, and

traffic is switched after

verification.

Kafka Connect or custom

loaders to re-ingest historical

data; parallel pipelines in

Flink or Kafka Streams;

separate output topics or

databases for backfilled

projections; controlled

cutover via topic re-wiring or

configuration changes.

Building new read models in event-

sourced microservice landscapes,

generating new AI features from

old events, or introducing

additional analytics streams

without disturbing existing

consumers.

Hybrid selective

replay

Only subsets of partitions,

tenants or event types are

replayed, often combined with

filters or projection services that

target specific microservices or

analytical products.

Fine-grained topic

partitioning by tenant or

domain; selective consumers

that read only specific

partitions; projection services

implemented as microservices

subscribing to filtered topics.

Tenant-specific backfills in multi-

tenant SaaS platforms, selective

reconstruction of corrupted

projections, or country-specific

regulatory recomputation where

only part of the event space is

relevant.

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 115

These strategies reflect a trade-off between simplicity

and control. Full log replay utilises existing

infrastructure but risks competing with online processing

for resources [3, 5, 10]. Snapshot-plus-log reconstruction

reduces reprocessing time for long histories, but it

depends on reliable snapshot management [2, 3, 10].

Isolated backfill pipelines add complexity in topic

management and cutover procedures, yet they align well

with microservice practices around independent

deployments and gradual rollout [1, 4, 6–9]. Hybrid

selective replay demonstrates how careful partitioning

and topic design enable the limitation of reprocessing

scope and reduction of operational risk [5–7, 9].

For organisations already invested in Kafka-centric

Kappa architectures, the literature suggests combining

these strategies in a layered design. Operational states

that must be continuously accurate—for example, fraud

scores or risk indicators—can be handled by local or

disaggregated state stores with either full replay or

snapshot-plus-log reconstruction [2–4, 7, 10]. Derived

projections consumed by external services can be rebuilt

through isolated pipelines and cut over when consistency

checks pass [1, 4, 6, 8, 9]. Domain events used for both

operational and analytical purposes benefit from careful

schema evolution and topic retention policies, so that

historical replay remains technically feasible for several

years of data [5–7].

The choice between local and external state, and between

direct replay and isolated backfill, closely interacts with

an organisation’s operational maturity. Systems

described in high-throughput IoT and financial scenarios

rely heavily on automation for scaling, checkpoint

management and monitoring [3–5]. Microservice

landscapes emphasise design patterns and contract-based

event schemas to contain the complexity of replay and

backfill [6, 8, 9]. In both categories, the success of

historical reprocessing depends not only on the raw

performance of Kafka and stream processors, but on

disciplined topic design, versioning strategies for

topologies and state, and well-defined procedures for

validating replay results before exposing them to end

users.

5. Conclusion

The study demonstrates that the effective reprocessing of

historical data in Kafka-centric real-time systems relies

on treating the event log as the primary system of record

and designing stateful processing around this

assumption. When architectures follow Kappa

principles, the replay of event logs, combined with strong

exactly-once guarantees in Kafka Streams and Apache

Flink, becomes the foundation for reconstructing

application state without relying on separate batch

stacks.

Comparative analysis of local and external state stores

indicates that embedded or disaggregated state backends

favour high-throughput backfills and tight control over

correctness. In contrast, external databases bring

flexibility at the cost of more complex replay procedures.

Systems that integrate Kafka with microservice patterns

such as event sourcing and CQRS benefit from isolating

backfill pipelines and using topic-level controls for

cutover.

The examined strategies—full log replay, snapshot-plus-

log reconstruction, isolated backfill pipelines and hybrid

selective replay—provide a practical toolkit for

engineering “time-travel” capabilities into existing

Kafka-based infrastructures. Combining these patterns

with rigorous topic design, disciplined state management

and operational safeguards allows organisations to

recompute years of history while keeping real-time

services responsive, which makes such approaches

especially suitable for streaming-heavy microservice

ecosystems built on Kafka and Kappa architecture.

References

1. Bozkurt, A., Ekici, F., & Yetiskul, H. (2023).

Utilizing Flink and Kafka technologies for real-

time data processing: A case study. The Eurasia

Proceedings of Science, Technology, Engineering

and Mathematics, 24, 177–183.

https://doi.org/10.55549/epstem.1406274

2. Dev, R. S., & Usha, J. (2025). Real-time processing

with Kafka, ksqlDB & Apache Flink: A fraud

detection pipeline. International Journal of

Computer Applications, 187(60), 13–18.

https://www.ijcaonline.org/archives/volume187/nu

mber60/dev-2025-ijca-925872.pdf

3. Mei, Y., Lan, Z., Huang, L., Lei, Y., Yin, H., Xia,

R., Hu, K., Carbone, P., Kalavri, V., & Wang, F.

(2025). Disaggregated state management in Apache

Flink 2.0. Proceedings of the VLDB Endowment,

18(12), 4846–4859.

https://doi.org/10.14778/3750601.3750609

4. Pamarthi, S. (2023). Apache Flink and Apache

Kafka in financial services: Real-time streaming for

https://www.ijcaonline.org/archives/volume187/number60/dev-2025-ijca-925872.pdf
https://www.ijcaonline.org/archives/volume187/number60/dev-2025-ijca-925872.pdf
https://www.ijcaonline.org/archives/volume187/number60/dev-2025-ijca-925872.pdf
https://www.ijcaonline.org/archives/volume187/number60/dev-2025-ijca-925872.pdf
https://doi.org/10.14778/3750601.3750609
https://doi.org/10.14778/3750601.3750609
https://doi.org/10.14778/3750601.3750609

The American Journal of Engineering and Technology
ISSN 2689-0984 Volume 08 - 2026

The Am. J. Eng. Technol. 2026 116

data processing and analytics [White paper].

https://www.researchgate.net/publication/39701773

3_Apache_Flink_and_Apache_Kafka_in_Financial

_Services_Real-

Time_Streaming_for_Data_Processing_and_Analyt

ics

5. Pelle, I., Szőke, B., Fayad, A., Cinkler, T., & Toka,

L. (2023). A comprehensive performance analysis

of stream processing with Kafka in cloud native

deployments for IoT use-cases. In NOMS 2023:

IEEE/IFIP Network Operations and Management

Symposium (pp. 1–6).

https://doi.org/10.1109/NOMS56928.2023.1015437

7

6. Podduturi, S. M. (2024). Real-time data processing

in microservices architectures. International

Journal of Computer Engineering and Technology,

15(6), 760–773.

https://doi.org/10.5281/zenodo.14228620

7. Saket, S., Chandela, V., & Kalim, M. D. (2024).

Real-time event joining in practice with Kafka and

Flink. arXiv. Advance online publication.

https://arxiv.org/abs/2410.15533

8. Tambi, V. K. (2023). Real-time data stream

processing with Kafka-driven AI models.

International Journal of Current Engineering and

Scientific Research. Advance online publication.

https://philpapers.org/archive/VARRDS.pdf

9. Tanneru, B. (2023). Application of Kafka

messaging in microservices for real-time data

processing. International Journal of Innovative

Research in Engineering & Multidisciplinary

Physical Sciences, 11(5), 1–4.

https://doi.org/10.5281/zenodo.14945204

10. Wang, G., Chen, L., Dikshit, A., Gustafson, J.,

Chen, B., Sax, M. J., Roesler, J., Blee-Goldman, S.,

Cadonna, B., Mehta, A., Madan, V., & Rao, J.

(2021). Consistency and completeness: Rethinking

distributed stream processing in Apache Kafka. In

Proceedings of the 2021 International Conference

on Management of Data (SIGMOD ’21) (pp. 2602–

2613). https://doi.org/10.1145/3448016.3457556

https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://www.researchgate.net/publication/397017733_Apache_Flink_and_Apache_Kafka_in_Financial_Services_Real-Time_Streaming_for_Data_Processing_and_Analytics
https://doi.org/10.5281/zenodo.14228620
https://doi.org/10.5281/zenodo.14228620
https://doi.org/10.5281/zenodo.14228620
https://philpapers.org/archive/VARRDS.pdf
https://philpapers.org/archive/VARRDS.pdf
https://philpapers.org/archive/VARRDS.pdf
https://doi.org/10.5281/zenodo.14945204
https://doi.org/10.5281/zenodo.14945204
https://doi.org/10.5281/zenodo.14945204
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/3448016.3457556

