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Abstract 

This study examines architectural strategies for reprocessing historical data in real-time systems built around the Kappa 

architecture and Apache Kafka–based microservices. The research addresses the growing need to recompute derived state, 

machine-learning features and aggregates without interrupting continuous processing or violating correctness guarantees. 

The work systematises approaches to “time-travel” over event logs, including full-topic replay, snapshot-plus-log 

reconstruction and isolated backfill pipelines. Special attention is given to the interaction between Kafka, stateful stream 

processors such as Apache Flink and Kafka Streams, and microservice-oriented designs that rely on local or external state 

stores. The goal is to formulate practical design guidelines for architecting reprocessing workflows under strict latency, 

availability and consistency requirements. The article presents an analytical comparison of modern stream-processing 

platforms and real-world case studies from the financial and fraud detection domains. In conclusion, the study formulates 

recommendations on choosing between local and external state, structuring replay traffic, and integrating reprocessing 

pipelines into production Kappa-style systems without global downtime. 
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1. Introduction 

Real-time products increasingly depend on derived 

views built from continuous event streams, such as fraud-

scoring features, user behaviour aggregates, materialised 

timelines, alerts, and monitoring indicators. These views 

evolve over years of production activity and rest on 

assumptions encoded in stream-processing topologies. 

As schemas, business rules and machine-learning models 

change, teams face recurring pressure to recompute long 

histories of events while keeping real-time flows 

responsive. Conventional batch reprocessing over static 

snapshots conflicts with event-driven architectures that 

use Kafka as a durable log and favour Kappa-style 

designs where both historical and live traffic pass 

through the same streaming pipeline. 

Historical reprocessing in such environments presents 

several practical constraints. Event logs often span 

multiple years and petabyte-scale topic histories. 

Systems must respect event-time semantics, ordering 

within partitions and exactly-once guarantees during 

replay. Production microservices rely on local state 

stores or external databases that already encode years of 
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operational behaviour. Restarting entire clusters or 

duplicating infrastructure is rarely a viable option. At the 

same time, regulatory requirements, backfills for new 

machine-learning features, and corrections of logic errors 

demand predictable strategies for recomputing historical 

states. 

The goal of this article is to describe architectural 

strategies that enable the reprocessing of historical data 

in real-time systems built on Kafka and Kappa 

architectures, while preserving availability and 

correctness. The first task is to analyse how stateful 

stream-processing engines and Kafka-centric 

microservice architectures support replay, snapshot-

based reconstruction and hybrid approaches. The second 

task is to compare local state stores embedded in stream 

processors with external operational or analytical 

databases in the context of large-scale reprocessing and 

long retention. The third task is to formulate design 

recommendations on partitioning, topic topology, 

isolation of backfill pipelines and coordination with 

downstream services, tailored to organisations that 

already operate Kafka-centric microservice landscapes. 

The novelty of the work lies in its focus on “time-travel” 

and large-scale replay in Kappa-oriented systems. 

Existing publications describe performance 

characteristics of Kafka, Flink and Kafka Streams, or 

present domain-specific pipelines in finance and fraud 

detection. The present study consolidates that knowledge 

into an architecture-level view centred on replay and 

reconstruction, connecting research on state 

management, microservices and real-time streaming into 

a coherent set of patterns directly applicable to modern 

Kafka-based infrastructures. 

2. Materials and Methods 

The study relies on recent publications that examine 

Kafka-centric streaming, microservice architectures and 

state management in modern stream-processing engines. 

A. Bozkurt, with co-authors, analyses joint use of Apache 

Flink and Apache Kafka in a real-time case study, 

focusing on integration patterns, low-latency event 

handling and performance characteristics of a combined 

pipeline [1]. R. S. Dev and J. Usha present a unified 

fraud-detection pipeline that integrates Kafka, ksqlDB 

and Apache Flink, describing end-to-end real-time 

processing of transactional streams in a production-like 

environment [2]. Y. Mei and collaborators introduce 

disaggregated state management in Apache Flink 2.0, 

detailing remote state storage, asynchronous execution 

and implications for checkpointing, recovery and 

rescaling of large stateful jobs [3]. S. Pamarthi examines 

adoption of Kafka and Flink in financial services, 

outlining streaming architectures for fraud detection, risk 

monitoring and customer analytics built on an event-

driven backbone [4]. I. Pelle and co-authors conduct a 

quantitative performance analysis of Kafka and Kafka 

Streams in cloud-native deployments, providing 

measurements of latency, throughput and resource 

footprint for stream-processing workloads relevant to 

IoT and similar scenarios [5]. S. M. Podduturi 

investigates real-time data processing in microservices 

architectures, with emphasis on event-driven 

communication, patterns such as CQRS and event 

sourcing, and the impact of streaming technologies on 

scalability and reliability [6]. S. Saket and colleagues 

describe migration from batch processing to a Kafka- and 

Flink-based streaming pipeline for real-time event 

joining in a machine-learning context, addressing 

challenges around event-time semantics, checkpointing 

and scalability [7]. V. K. Tambi studies real-time data 

stream processing using Kafka-driven AI pipelines, 

illustrating how Kafka topics feed machine-learning 

models and how model outputs integrate back into 

streaming systems [8]. B. Tanneru explores the use of 

Kafka messaging in microservices for real-time data 

processing, focusing on communication patterns, 

decoupling of services and operational concerns [9]. G. 

Wang and an extended team rethink distributed stream 

processing in Apache Kafka, defining consistency and 

completeness guarantees and elaborating on exactly-

once semantics in Kafka Streams-based applications 

[10]. 

The article employs an analytical methodology that 

synthesises the conceptual framework of the reviewed 

works. Comparative analysis is used to contrast local 

versus external state management in the context of 

replay, taking into account performance measurements, 

fault-tolerance mechanisms, and operational practices 

discussed in the literature [3, 5, 10]. The structural 

analysis of streaming pipelines, as described in case 

studies from payments, fraud detection, and financial 

analytics, supports the generalisation of architectural 

patterns for historical reprocessing [1, 2, 4, 7, 8]. The 

study further applies typological classification to identify 

families of replay strategies—full log replay, snapshot-

plus-log reconstruction and isolated backfill pipelines—

and to relate them to microservice patterns such as event 

sourcing and CQRS [6,9]. The resulting 

recommendations emerge from correlating these patterns 
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with properties of Kappa architecture and Kafka-centric 

microservice ecosystems rather than from experimental 

benchmarking. 

3. Results 

Architectural strategies for reprocessing historical data in 

real-time systems must respect the properties of Kafka as 

an append-only log, the semantics of stateful stream 

processors and the operational constraints of 

microservice environments. The reviewed literature 

converges on a picture in which Kafka topics, stream 

processors and state stores form an integrated substrate 

for both online processing and replay. 

Works that combine Kafka and Flink illustrate how a 

unified event log underpins both live and recomputation 

workloads. In the case study by A. Bozkurt and co-

authors, Kafka serves as the backbone for ingestion. At 

the same time, Flink performs low-latency event 

processing, with business-specific transformations 

implemented as stream topologies over Kafka topics [1]. 

Dev and Usha build a similar structure in the fraud-

detection pipeline: Kafka captures transactional events, 

ksqlDB expresses immediate business rules, and Flink 

implements deeper analytics with complex event 

processing and machine-learning models [2]. Pamarthi 

extends this pattern to multiple financial use cases, such 

as fraud detection and risk monitoring, where Kafka and 

Flink jointly provide end-to-end streaming for mission-

critical workloads [4]. In all three cases, replaying 

historical data is conceptually achieved by feeding past 

events back into the same Kafka topics and letting the 

streaming jobs recompute the derived state, which 

directly aligns with Kappa architecture principles. 

A more detailed view of stateful processing emerges 

from research on Flink and Kafka Streams. Mei and co-

authors describe how Flink 2.0 decouples computation 

from state by storing operator state in a remote 

distributed file system, with local disk used as cache [3]. 

Continuous streaming of state updates into the remote 

store, combined with an asynchronous execution model, 

leads to faster checkpointing and recovery. These 

properties directly influence replay strategies: large 

historical reprocessing runs benefit from disaggregated 

state, as checkpoints remain fast and jobs can be rescaled 

or migrated during long backfills without incurring 

costly state transfers [3]. Pelle and colleagues evaluate 

Kafka and Kafka Streams in cloud-native deployments, 

showing that the combined system sustains sub-second 

latency and predictable scaling under different 

workloads, while explicitly highlighting the resource 

footprint of Kafka Streams’ local RocksDB-backed state 

[5]. Wang and co-authors detail the correctness 

guarantees of Kafka Streams, including exactly-once 

semantics in the presence of failures and out-of-order 

data [10]. For historical reprocessing, this means that 

once input topics and changelog topics are stored 

durably, it is possible to rebuild local state stores by 

replaying logs from the beginning or from a specific 

offset while preserving transactional guarantees. 

Microservice-oriented publications highlight 

architectural patterns that integrate streaming with 

service decomposition, emphasising the importance of 

service decomposition in microservice-oriented 

architectures. Podduturi describes microservice 

landscapes where each service owns its data and 

communicates through event-driven mechanisms, with 

architectures frequently relying on patterns such as event 

sourcing, CQRS and saga-style coordination [6]. Tanneru 

focuses on Kafka as a central messaging layer for 

microservices. Services publish domain events into 

Kafka topics and subscribe to relevant topics to maintain 

their own materialised views and databases [9]. In these 

settings, historical reprocessing involves replaying 

domain events into consumers—either by rewinding 

consumer offsets on existing topics or by copying subsets 

of events into dedicated “backfill topics” that are 

consumed by specialised pipelines. 

Across the surveyed cases, three main strategies for 

reprocessing historical data in Kafka-centric real-time 

systems can be distinguished. 

The first strategy is full-topic replay into the existing 

real-time pipeline. In its simplest form, this involves 

resetting consumer offsets to an earlier point or creating 

a new consumer group that reads from the beginning of 

the topic while the topologies remain identical. This 

approach suits corrections of business logic that affect 

pure transformations without external side effects. 

Studies on Kafka Streams and Flink demonstrate that 

local state can be reconstructed entirely from the log and 

changelog topics, provided that retention is sufficient and 

exactly-once semantics are enabled [3, 5, 10]. Saket and 

co-authors, in their migration to a streaming pipeline for 

machine-learning features, explicitly rely on event-time 

semantics and stateful operators backed by RocksDB and 

checkpointing to maintain correctness when processing 

both historical and live data [7]. Full-topic replay 

remains a straightforward concept, but for high-

throughput systems with multi-year retention, it risks 
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overloading production clusters; therefore, it often 

requires throttling, separate consumer groups and careful 

capacity planning grounded in measured throughput 

figures such as those reported by Pelle et al. [5]. 

The second strategy combines snapshots with log replay. 

Here, a consistent snapshot of the state—either a Flink 

savepoint, a Kafka Streams state store backup, or an 

external database snapshot—is taken at a known point in 

the log. Historical reprocessing starts from that snapshot 

and replays only the tail of the log from the snapshot 

position onwards. Mei and co-authors demonstrate that 

Flink 2.0 can handle huge states with rapid checkpointing 

and recovery thanks to disaggregated storage [3]. This 

behaviour supports long-running backfills: operators can 

create new jobs that restore from a past savepoint and 

then replay a time-bounded segment of Kafka topics, 

reconstructing state corresponding to a specific historical 

interval without having to rewind the entire log. Dev and 

Usha’s fraud-detection pipeline implicitly follows this 

pattern when it uses checkpointing and stateful operators 

to maintain model-related features; re-training or feature 

definition changes can be addressed by restoring older 

checkpoints and replaying segments of transactional 

history [2]. Similarly, Kafka Streams applications, as 

described by Wang et al., depend on changelog topics to 

reconstruct local state stores. Snapshots of changelogs, 

combined with offsets, yield a practical mechanism for 

partial replay [10]. 

The third strategy isolates a dedicated backfill pipeline 

from the online path. Several works describe 

architectures where new streaming jobs or microservices 

read historical data from Kafka or external storage, 

compute derived results, and publish them into new 

topics or external stores without disrupting the existing 

pipeline [1, 4, 6–9]. Bozkurt and colleagues, for example, 

construct Flink topologies tailored to specific analytical 

tasks and evaluate their behaviour under different 

scenarios [1]. Pamarthi’s financial streaming 

architectures feature separate flows for fraud detection, 

risk monitoring and analytics, suggesting a natural split 

between live scoring and historical recomputation [4]. 

Podduturi outlines the use of event sourcing and CQRS, 

where read models are materialised from an event log by 

dedicated projection services [6]. In such designs, 

backfill work is performed by launching additional 

projector instances that read from earlier offsets or from 

historical copies of topics and rebuild read models in 

isolation. Once reprocessing finishes, a controlled 

cutover shifts traffic to the new projections or state 

stores. 

These strategies can be combined with specific design 

choices around state location. Local state stores, such as 

RocksDB in Kafka Streams or Flink’s embedded state 

backends, favour low latency during live processing and 

replay, as state is co-located with computation [3, 5, 10]. 

They depend on Kafka changelog topics or remote file 

systems to persist and restore state. External stores—

such as relational databases, key-value stores, or search 

engines—offer independent scaling, familiar query 

interfaces, and potentially reduced operational coupling 

to the streaming cluster, as illustrated in microservice 

architectures and Kafka-centric integration scenarios [6, 

8, 9]. When historical reprocessing is performed, 

pipelines that rely on local state typically replay events 

faster, limited mainly by Kafka throughput and state-

backend IO. In contrast, pipelines that write into external 

stores need to consider write amplification, index 

rebuilds and transactional semantics on the external side. 

The reviewed works on AI and domain-specific pipelines 

add further nuance. Tambi examines Kafka-driven AI 

models where Kafka topics feed online inference, and 

reprocessing historical data corresponds to replaying 

event streams into updated models to regenerate features 

or predictions [8]. Saket et al. describe a transition from 

batch to streaming for training data preparation, where 

Flink streaming joins over Kafka replaces batch joins 

over static tables [7]. In such settings, historical 

reprocessing must respect event-time semantics during 

replay to avoid distorting feature windows and training 

distributions. 

Figure 1 summarises these relationships in the form of an 

integrated Kappa-style pipeline, adapted from the fraud-

detection streaming architecture described by Pamarthi. 
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Fig. 1. Kafka–Flink pipeline for real-time and historical reprocessing in a fraud-detection scenario (compiled by 

the author based on [4]) 

 

In the illustrated topology, transactional producers write 

into a primary Kafka topic. A Flink job consumes this 

topic, maintains state in a disaggregated backend as 

described by Mei et al. and emits fraud alerts into a 

separate topic used by downstream services [3, 4]. 

Historical data stored in an object store or an archival 

Kafka cluster can be re-ingested into the same primary 

topic or into a dedicated backfill topic, which is 

consumed by a specialised reprocessing job. This job 

shares the same transformation logic but writes results 

into a new alerts topic and into an external analytics 

store. Control over consumer groups, topic selection and 

output destinations allow operators to replay years of 

history without pausing real-time fraud detection, 

illustrating how the architectural strategies discussed 

above materialise in a concrete system. 

Overall, the literature indicates that robust historical 

reprocessing in real-time systems rests on three pillars: 

durable event logs with sufficient retention and 

partitioning, stateful stream processors with strong 

correctness guarantees and efficient state management, 

and microservice-level patterns that separate online paths 

from backfill pipelines. Kafka and its ecosystem, 

combined with Flink, Kafka Streams, and microservice 

practices, supply the building blocks. Architectural 

decisions on state placement, replay strategy, and cutover 

mechanism determine how effectively historical data can 

be reprocessed in production. 

4. Discussion 

The analytical synthesis of the reviewed works enables a 

structured comparison of design options for historical 

reprocessing in Kafka-based Kappa architectures. A first-

dimension concerns where the state resides during both 

online processing and replay. A second dimension 

concerns the organisation of pipelines and topics used for 

replay and cutover. 

Table 1 contrasts local state stores embedded in stream 

processors with external state stores managed outside the 

streaming runtime. The comparison draws on empirical 

measurements of Kafka Streams performance [5], 

descriptions of Flink’s embedded and disaggregated state 

[3], the correctness properties of Kafka Streams [10], and 

architectural accounts of microservices using external 

databases alongside Kafka [6, 8, 9]. 
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Table 1 – Local versus external state stores for historical reprocessing in Kafka-based real-time systems [2–10] 

Dimension Local state (embedded stores) External state (databases, data lakes) 

State location 

and technology 

State co-located with processors, stored in 

RocksDB or similar backends in Kafka 

Streams and Flink, with durability achieved 

through changelogs or remote DFS. 

State is stored in independent systems, such as 

relational databases, key-value stores, search 

engines, or analytical warehouses, accessed over 

the network. 

Latency during 

online 

processing 

Low end-to-end latency due to local lookups 

and writes; empirical studies report sub-

second processing under realistic loads when 

Kafka Streams and Kafka are tuned 

appropriately. 

Latency depends on the external system's 

response time, transaction model, and network 

conditions; it may be suitable for use cases where 

a few extra milliseconds are acceptable. 

Behaviour under 

large-scale 

replay 

High-throughput replay is limited mainly by 

Kafka I/O, checkpointing, and compaction 

behaviour in the state backend. Flink 2.0’s 

disaggregated state further reduces 

checkpoint and recovery overhead for replay 

workloads. 

Replay throughput is often constrained by write 

amplification and indexing overhead in external 

stores; long backfills may require throttling, 

batch writes or temporary relaxation of 

secondary indexes. 

Failure isolation 

and blast radius 

Failures in stream processors directly affect 

the availability of state; recovery depends on 

restoring state from changelogs or remote 

snapshots, which have been optimised in 

modern Flink deployments. 

Failures in the streaming layer and external 

stores are partially decoupled; external state may 

remain available even if streaming jobs are 

restarted, but consistency between log and 

database must be managed explicitly. 

Operational 

complexity 

Operators manage fewer moving parts; the 

state lifecycle is tied to the streaming cluster, 

simplifying backup and restore at the price of 

tighter coupling. 

Teams maintain separate operational stacks 

(Kafka, stream processors, databases), with 

dedicated backup, upgrade, and scaling 

procedures. As complexity increases, so does 

flexibility. 

Typical use cases High-throughput pipelines where most reads 

and writes stay within streaming jobs and 

where replay speed and correctness 

guarantees are priority (fraud detection, time-

sensitive analytics). 

Microservices that combine streaming with rich 

query workloads, ad-hoc analytics or 

transactional updates shared with non-streaming 

components (customer profiles, configuration 

stores, search indices). 

The table indicates that local state stores, especially when 

combined with disaggregated architectures such as Flink 

2.0, favour scenarios where historical reprocessing 

requires sustained high throughput and where the main 

outputs are derived streams rather than shared 

transactional databases [3, 5]. External state stores are 

suitable for ecosystems where the same data must serve 

diverse query patterns and where microservices or 

analytical tools expect traditional database interfaces [6, 

8, 9]. For Kappa-style architectures, a common 

compromise involves keeping operationally critical state 

within stream processors while pushing slower-moving 
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or read-heavy projections into external stores, which are 

fed by derived Kafka topics. 

Table 2 summarises the architectural strategies for 

historical reprocessing identified in the literature and in 

the previous section, relating them to typical tooling and 

scenarios. The classification relies on case studies that 

utilise Kafka and Flink in conjunction [1, 2, 4, 7], AI 

pipelines driven by Kafka [8], and microservices that 

employ Kafka as an event bus [6, 9]. 

 

Table 2 – Architectural strategies for reprocessing historical data in Kafka-centric Kappa architectures [1–10] 

Strategy Short description Typical tooling and topic 

design 

Example scenarios and sources 

Full log replay 

through the 

online pipeline 

Historical events are read from 

the beginning (or from a chosen 

offset) of production topics by a 

consumer group running the 

same topology as the online 

path; live traffic continues on the 

same issues with separate 

consumer groups. 

Kafka topics with sufficient 

retention; Kafka Streams or 

Flink jobs using embedded or 

disaggregated state; separate 

consumer groups for live and 

replay traffic; optional 

throttling. 

Correcting pure transformation 

logic or enriching existing 

aggregates without external side 

effects; migrating from batch to 

streaming as described in real-time 

event joining and case studies of 

Flink–Kafka integrations. 

Snapshot-plus-

log 

reconstruction 

Reprocessing begins from a state 

snapshot (Flink savepoint, Kafka 

Streams state backup, or 

database snapshot) and replays 

only the subsequent part of the 

log, reconstructing the state for a 

chosen historical interval. 

Checkpointing or snapshot 

mechanisms in Flink 2.0 and 

Kafka Streams, dedicated 

topics for changelogs, and 

infrastructure for storing and 

cataloguing snapshots and 

their corresponding offsets. 

Rolling back to old model versions 

or business rules, recomputing 

features for a fixed time window in 

fraud detection or risk analytics, as 

reported in streaming pipelines in 

finance and fraud-detection 

systems. 

Isolated backfill 

pipelines 

Historical data is copied into 

dedicated “backfill topics” or 

read from archival storage and 

processed by specialised 

streaming jobs or microservices; 

outputs are written into new 

topics or external stores, and 

traffic is switched after 

verification. 

Kafka Connect or custom 

loaders to re-ingest historical 

data; parallel pipelines in 

Flink or Kafka Streams; 

separate output topics or 

databases for backfilled 

projections; controlled 

cutover via topic re-wiring or 

configuration changes. 

Building new read models in event-

sourced microservice landscapes, 

generating new AI features from 

old events, or introducing 

additional analytics streams 

without disturbing existing 

consumers. 

Hybrid selective 

replay 

Only subsets of partitions, 

tenants or event types are 

replayed, often combined with 

filters or projection services that 

target specific microservices or 

analytical products. 

Fine-grained topic 

partitioning by tenant or 

domain; selective consumers 

that read only specific 

partitions; projection services 

implemented as microservices 

subscribing to filtered topics. 

Tenant-specific backfills in multi-

tenant SaaS platforms, selective 

reconstruction of corrupted 

projections, or country-specific 

regulatory recomputation where 

only part of the event space is 

relevant. 
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These strategies reflect a trade-off between simplicity 

and control. Full log replay utilises existing 

infrastructure but risks competing with online processing 

for resources [3, 5, 10]. Snapshot-plus-log reconstruction 

reduces reprocessing time for long histories, but it 

depends on reliable snapshot management [2, 3, 10]. 

Isolated backfill pipelines add complexity in topic 

management and cutover procedures, yet they align well 

with microservice practices around independent 

deployments and gradual rollout [1, 4, 6–9]. Hybrid 

selective replay demonstrates how careful partitioning 

and topic design enable the limitation of reprocessing 

scope and reduction of operational risk [5–7, 9]. 

For organisations already invested in Kafka-centric 

Kappa architectures, the literature suggests combining 

these strategies in a layered design. Operational states 

that must be continuously accurate—for example, fraud 

scores or risk indicators—can be handled by local or 

disaggregated state stores with either full replay or 

snapshot-plus-log reconstruction [2–4, 7, 10]. Derived 

projections consumed by external services can be rebuilt 

through isolated pipelines and cut over when consistency 

checks pass [1, 4, 6, 8, 9]. Domain events used for both 

operational and analytical purposes benefit from careful 

schema evolution and topic retention policies, so that 

historical replay remains technically feasible for several 

years of data [5–7]. 

The choice between local and external state, and between 

direct replay and isolated backfill, closely interacts with 

an organisation’s operational maturity. Systems 

described in high-throughput IoT and financial scenarios 

rely heavily on automation for scaling, checkpoint 

management and monitoring [3–5]. Microservice 

landscapes emphasise design patterns and contract-based 

event schemas to contain the complexity of replay and 

backfill [6, 8, 9]. In both categories, the success of 

historical reprocessing depends not only on the raw 

performance of Kafka and stream processors, but on 

disciplined topic design, versioning strategies for 

topologies and state, and well-defined procedures for 

validating replay results before exposing them to end 

users. 

5. Conclusion 

The study demonstrates that the effective reprocessing of 

historical data in Kafka-centric real-time systems relies 

on treating the event log as the primary system of record 

and designing stateful processing around this 

assumption. When architectures follow Kappa 

principles, the replay of event logs, combined with strong 

exactly-once guarantees in Kafka Streams and Apache 

Flink, becomes the foundation for reconstructing 

application state without relying on separate batch 

stacks. 

Comparative analysis of local and external state stores 

indicates that embedded or disaggregated state backends 

favour high-throughput backfills and tight control over 

correctness. In contrast, external databases bring 

flexibility at the cost of more complex replay procedures. 

Systems that integrate Kafka with microservice patterns 

such as event sourcing and CQRS benefit from isolating 

backfill pipelines and using topic-level controls for 

cutover. 

The examined strategies—full log replay, snapshot-plus-

log reconstruction, isolated backfill pipelines and hybrid 

selective replay—provide a practical toolkit for 

engineering “time-travel” capabilities into existing 

Kafka-based infrastructures. Combining these patterns 

with rigorous topic design, disciplined state management 

and operational safeguards allows organisations to 

recompute years of history while keeping real-time 

services responsive, which makes such approaches 

especially suitable for streaming-heavy microservice 

ecosystems built on Kafka and Kappa architecture. 
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