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Abstract: Background: 

Financial institutions increasingly expose mission-
critical services through APIs that must simultaneously 
satisfy strict service-level agreements (SLAs), withstand 
bursty workloads, and handle heterogeneous traffic 
from retail clients, institutional partners, and internal 
analytics engines. Traditional thread-per-request 
architectures in Java-based stacks, such as Spring MVC, 
struggle to combine high concurrency with predictable 
latency under such conditions, leading to renewed 
interest in reactive programming models such as Spring 
WebFlux and competing concurrency technologies like 
Java virtual threads (Thönes, 2015; Filichkin, 2018; 
Spring WebFlux Documentation, 2023). 

Objective: 

Building on recent work on priority-aware SLA-tiered 
APIs for financial services (Priority-Aware Reactive APIs, 
2025), this article develops a comprehensive conceptual 
framework for designing SLA-aware reactive APIs using 
Spring WebFlux. The study integrates evidence from 
comparative performance research on reactive versus 
imperative models, evaluations of WebFlux in database-
centric scenarios, and emerging analyses of virtual 
threads in Spring-based systems (Dakowitz, 2018; 
Iwanowski & Kozieł, 2022; Dahlin, 2020; Royal Institute 
of Technology (KTH), 2023; Nordlund & Nordström, 
2023; Sukhambekova, 2025). 

Methods: 

A qualitative, synthesis-oriented methodology is 
employed. First, a structured narrative review 
consolidates findings from books, theses, scientific 
articles, and technical documentation on Spring 
WebFlux, Project Reactor, reactive programming 
concepts, and concurrency models in Java microservices 
(Reddy, 2018; Nurkiewicz & Christensen, 2016; Sharma, 
2018; Mednikov, 2021; Srivastava, 2024; Deinum & 
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Cosmina, 2021; Li & Sharma, 2020). Second, these 
insights are organized into an analytical comparison of 
three concurrency strategies: blocking MVC-style 
controllers, fully reactive WebFlux handlers, and 
Spring-based virtual thread configurations. Third, the 
paper synthesizes a detailed architectural blueprint for 
SLA-tiered priority-aware APIs on top of WebFlux, 
specifically tailored for financial services. 

Results: 

The synthesis shows that reactive WebFlux is 
particularly advantageous in latency-sensitive, I/O-
bound, high-concurrency scenarios—common in risk 
checks, portfolio queries, and payment authorization 
flows—when paired with careful backpressure 
management, non-blocking persistence, and 
disciplined operator usage (Spring WebFlux 
Documentation, 2023; Project Reactor, 2023; 
Iwanowski & Kozieł, 2022). Priority-aware scheduling 
at the reactive layer allows differentiated handling of 
Gold, Silver, and Bronze tiers without resorting solely 
to coarse-grained infrastructure scaling (Priority-
Aware Reactive APIs, 2025). However, empirical work 
on virtual threads suggests that for CPU-heavy or 
database-bound flows with moderate concurrency, 
virtual-thread-based Spring MVC can provide 
competitive or superior simplicity–performance trade-
offs (Royal Institute of Technology (KTH), 2023; 
Nordlund & Nordström, 2023; Dahlin, 2020; Filichkin, 
2018). 

Conclusion: 

The article argues that SLA-aware design in financial 
APIs should not default blindly to reactive 
programming but should instead adopt a portfolio 
approach to concurrency. Spring WebFlux is best 
positioned for highly concurrent, I/O-centric, SLA-
differentiated traffic, especially when backed by 
reactive data access and carefully tuned schedulers, 
while virtual-thread-based MVC remains compelling 
for simpler services and teams with limited reactive 
expertise. The proposed conceptual framework offers 
practical guidance to architects on when and how to 
deploy WebFlux for priority-aware financial APIs and 
identifies future research needs in multi-dimensional 
benchmarking, hybrid models, and automated SLA 
policy enforcement. 

 

Keywords: Spring WebFlux; reactive programming; 
virtual threads; financial microservices; SLA-aware 
APIs; concurrency models; priority-aware scheduling. 

 

Introduction: Modern financial systems increasingly 
operate as distributed ecosystems of microservices, 

event streams, and third-party integrations, rather than 
monolithic core banking systems hidden behind closed 
networks (Thönes, 2015). Retail payment gateways, 
trading platforms, credit-scoring engines, and risk 
analytics services are all exposed through APIs that must 
deliver predictable, low-latency responses while 
navigating sudden spikes in request rates and highly 
variable workloads. In such an environment, service-
level agreements (SLAs) are not mere contractual 
artifacts; they function as operational constraints that 
shape system architecture, deployment strategy, and 
concurrency models. 

In particular, many financial institutions segment their 
traffic into tiers—often labeled Gold, Silver, and 
Bronze—where each tier represents distinct latency, 
availability, and throughput expectations for specific 
client segments or regulatory constraints (Priority-
Aware Reactive APIs, 2025). Gold-tier traffic may 
correspond to high-value institutional orders or 
regulatory-critical risk checks, Silver to production-
grade but less critical flows, and Bronze to batch-like or 
exploratory workloads. Meeting these heterogeneous 
requirements in a unified platform is nontrivial, 
especially when traffic patterns are bursty and SLA 
violations carry both financial and reputational 
penalties. 

Historically, enterprise Java systems based on Spring 
MVC and a thread-per-request execution model have 
dominated API development in this sector. These 
architectures are conceptually simple: an incoming 
request is bound to a dedicated thread, application logic 
executes, and a response is returned (Ottinger & 
Lombardi, 2017). While straightforward, this model 
scales poorly in the face of extreme concurrency; thread 
pools saturate and context switching overhead grows, 
leading to degraded responsiveness and under-utilized 
I/O capacity (Filichkin, 2018). As microservices 
proliferated, and as non-blocking I/O became 
mainstream in the Java ecosystem, reactive 
programming models emerged as a promising 
alternative to traditional blocking architectures 
(Nurkiewicz & Christensen, 2016; Sharma, 2018). 

Spring WebFlux, introduced alongside Spring 
Framework 5, represents Spring’s reactive-stack web 
framework designed from the ground up for non-
blocking, asynchronous request processing built on 
Project Reactor’s Mono and Flux types (Spring WebFlux 
Documentation, 2023; Project Reactor, 2023). Rather 
than binding each request to a dedicated thread, 
WebFlux composes asynchronous operations over a 
small, event-loop-driven set of threads. When 
appropriately designed, such systems can sustain high 
concurrency with predictable resource consumption, 
particularly for I/O-bound workloads typical of 
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microservice ecosystems (Reddy, 2018; Mednikov, 
2021; Srivastava, 2024). 

Recent work has extended this reactive foundation 
with domain-specific logic for SLA-tiered traffic. The 
Priority-Aware Reactive APIs study proposed a 
WebFlux-based architecture in which priority-aware 
schedulers, backpressure control, and differentiated 
buffers enable Gold, Silver, and Bronze traffic to be 
handled according to explicit SLA policies at the API 
layer (Priority-Aware Reactive APIs, 2025). The 
contribution of that work lies in showing that priority 
logic can be embedded into reactive flows rather than 
delegated solely to infrastructure-level components 
such as API gateways or load balancers. However, the 
original study focused on presenting a particular design 
and demonstration, leaving several broader questions 
insufficiently explored. 

First, the broader literature on reactive versus 
imperative approaches in Java web applications 
reveals that performance advantages of WebFlux are 
contextual rather than universal. Comparative 
experiments have shown that reactive services can 
process requests faster and more stably under high 
concurrency, but they do not always reduce memory 
consumption, and reactive code can take longer to 
develop (Iwanowski & Kozieł, 2022). Other studies 
comparing reactive and conventional microservices in 
containerized environments highlight gains in 
throughput under specific I/O-bound workloads but 
also underline the complexity and learning curve of 
reactive styles (Dakowitz, 2018). Dahlin’s evaluation of 
Spring WebFlux with a focus on built-in SQL features 
further demonstrates that reactive benefits can be 
significantly diminished—or even reversed—if the 
persistence layer remains predominantly blocking 
(Dahlin, 2020). 

Second, the rapid emergence of Java virtual threads 
(Project Loom) has introduced a third concurrency 
model in the Spring ecosystem. While traditional 
Spring MVC uses platform threads and WebFlux uses 
event-loop-based reactive streams, virtual threads 
emulate lightweight threads that drastically reduce the 
cost of blocking operations (Royal Institute of 
Technology (KTH), 2023). Early studies comparing 
virtual threads with reactive WebFlux show that 
virtual-thread-based MVC can sometimes match or 
exceed WebFlux performance in certain scenarios, 
especially where the predominant bottleneck is not 
network I/O but database latency or CPU-intensive 
processing (Nordlund & Nordström, 2023; 
Sukhambekova, 2025). This complicates the decision 
landscape for financial architects trying to choose the 
right concurrency model for SLA-sensitive services. 

Third, although technical books and practitioner guides 
provide extensive coverage of WebFlux APIs, Reactor 
operators, and reactive best practices, they often treat 
performance, concurrency models, and SLA 
considerations as implementation details rather than 
first-class architectural concerns (Reddy, 2018; Sharma, 
2018; Mednikov, 2021; Deinum & Cosmina, 2021; 
Srivastava, 2024). Similarly, review papers on Spring 
Boot and WebFlux survey the technology landscape but 
rarely offer actionable frameworks for mapping 
domain-specific SLA tiers to concrete concurrency 
choices and reactive topologies (Li & Sharma, 2020). 

This article addresses these gaps by situating the 
problem of SLA-aware financial APIs in a comparative 
analysis of concurrency models and by synthesizing a 
comprehensive conceptual framework for designing 
priority-aware APIs using Spring WebFlux. Rather than 
asking whether WebFlux “wins” over traditional MVC in 
all cases, the article asks: under which workload 
characteristics, architectural constraints, and SLA 
profiles is WebFlux the most appropriate choice; how 
should it be configured and structured to realize its 
potential; and how do emerging alternatives such as 
virtual threads fit into the picture? 

The contribution of this work is threefold. First, it 
consolidates scattered empirical and conceptual 
evidence on reactive versus imperative models, 
including microservice performance comparisons, 
evaluations of database integration in WebFlux, and 
discussions of development complexity (Dakowitz, 
2018; Iwanowski & Kozieł, 2022; Dahlin, 2020; Filichkin, 
2018; Li & Sharma, 2020; Sukhambekova, 2025). 
Second, it elaborates a priority-aware architecture for 
SLA-tiered APIs in financial services, rooted in the 
Priority-Aware Reactive APIs design but generalized and 
extended to encompass cross-cutting concerns such as 
security, backpressure, and resilience (Priority-Aware 
Reactive APIs, 2025; Spring WebFlux Documentation, 
2023; Project Reactor, 2023). Third, it positions WebFlux 
alongside virtual threads as part of a “concurrency 
portfolio” for financial microservices, articulating 
decision criteria to guide architects in choosing or 
combining models (Royal Institute of Technology (KTH), 
2023; Nordlund & Nordström, 2023; Srivastava, 2024). 

By taking a theory-building approach grounded in 
existing empirical work and technical documentation, 
this study provides a publication-ready conceptual 
foundation for future empirical research and offers 
practitioners a deeply reasoned blueprint for SLA-aware 
reactive API design in financial domains. 

Methodology 

This article adopts a qualitative, theory-building 
methodology that synthesizes evidence from multiple 
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sources to construct an integrated conceptual 
framework. The approach aligns with established 
practices in software architecture research, where 
empirical results from performance benchmarks, case 
studies, and implementation reports are combined 
into generalized guidance for practitioners (Thönes, 
2015; Nurkiewicz & Christensen, 2016). 

The methodology comprises three complementary 
components: a structured narrative literature review, 
an analytical comparison of concurrency models, and 
the design of a conceptual priority-aware WebFlux 
architecture tailored to financial services. Each 
component is described in detail below. 

Structured Narrative Literature Review 

The first phase involved identifying and organizing 
relevant literature on reactive programming in Java, 
Spring WebFlux, reactive microservices, and 
concurrency comparisons within the Spring ecosystem. 
Rather than conducting a systematic mapping study 
with formal inclusion and exclusion criteria, the article 
uses a structured narrative review focused on a 
curated reference set provided a priori. This set 
includes: 

● Foundational and practitioner-oriented books 
on reactive programming, Spring Boot, and WebFlux, 
which elaborate core concepts and patterns (Reddy, 
2018; Nurkiewicz & Christensen, 2016; Sharma, 2018; 
Mednikov, 2021; Deinum & Cosmina, 2021; Srivastava, 
2024; Ottinger & Lombardi, 2017). 

● A recent research article presenting a priority-
aware SLA-tiered API architecture using Spring 
WebFlux for financial services (Priority-Aware Reactive 
APIs, 2025). 

● Comparative analyses of reactive versus 
imperative approaches in Java web applications and 
microservices (Dakowitz, 2018; Iwanowski & Kozieł, 
2022; Filichkin, 2018; Dahlin, 2020). 

● Studies and theses comparing Spring WebFlux 
with virtual-thread-based Spring applications or 
contrasting WebFlux with Spring MVC in performance 
and complexity (Royal Institute of Technology (KTH), 
2023; Nordlund & Nordström, 2023; Sukhambekova, 
2025). 

● Review articles and technical white papers 
that survey Spring Boot, WebFlux, and related 
technologies in web development (Li & Sharma, 2020). 

● Official technical documentation and 
reference pages for Spring WebFlux, Project Reactor, 
and Kotlin coroutines, used to ensure conceptual and 
terminological accuracy (Spring WebFlux 
Documentation, 2023; Project Reactor, 2023; Kotlin 
Coroutines Documentation, n.d.; spring.io/reactive, 

2023). 

The literature was conceptually coded along several 
dimensions: 

1. Concurrency model and execution style (thread-
per-request, event-loop-based reactive, virtual 
threads). 

2. Workload characteristics (I/O-bound 
microservices, CPU-bound tasks, database-intensive 
operations). 

3. Performance outcomes (throughput, latency, 
CPU and memory utilization, stability under load). 

4. Development complexity and learning curve 
(code comprehensibility, debugging difficulty, team 
skills). 

5. Architectural themes (microservices 
decomposition, SLA-aware design, API-layer 
prioritization, backpressure management). 

By mapping each reference to these dimensions, the 
review produced a conceptual matrix that guided the 
subsequent analysis and framework design. 

Analytical Comparison of Concurrency Models 

The second methodological component was an 
analytical comparison of three principal concurrency 
strategies available in contemporary Spring-based 
financial systems: 

1. Traditional blocking Spring MVC with platform 
threads. 

2. Reactive Spring WebFlux with Project Reactor. 

3. Spring MVC or WebFlux integrated with Java 
virtual threads. 

Each strategy was assessed using the conceptual matrix 
derived from the literature. For example, Iwanowski and 
Kozieł’s comparative analysis of reactive and imperative 
Java web applications provided empirical insights into 
latency and resource utilization differences between 
blocking and reactive models under varying concurrent 
load (Iwanowski & Kozieł, 2022). Dakowitz’s thesis on 
microservices in containerized environments 
contributed understanding of how reactive and 
conventional services behave under orchestrated 
deployments (Dakowitz, 2018). Dahlin’s evaluation 
clarified how WebFlux interacts with SQL-based 
persistence and what happens when the database 
becomes the dominant bottleneck (Dahlin, 2020). 

More recent analyses from KTH and subsequent work by 
Nordlund and Nordström explored the performance 
implications of virtual threads vis-à-vis WebFlux, 
particularly focusing on how virtual threads reduce the 
cost of blocking and how this alters the trade-off 
between complexity and performance (Royal Institute 
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of Technology (KTH), 2023; Nordlund & Nordström, 
2023). Complementing these empirical studies, 
practitioner reports and blog-based benchmarks such 
as Filichkin’s performance battle between blocking, 
non-blocking, and reactive Spring services offered 
additional contextualization in production-like settings 
(Filichkin, 2018). 

The comparative analysis did not generate new 
numerical measurements; instead, it integrated 
existing quantitative results into a conceptual 
“decision surface.” This surface describes regions in 
the space of workload characteristics (e.g., 
concurrency level, ratio of I/O to CPU work, nature of 
persistence layer) where each concurrency model 
appears preferable, given the empirical studies and 
practitioner accounts available (Dakowitz, 2018; 
Iwanowski & Kozieł, 2022; Dahlin, 2020; Filichkin, 
2018; Royal Institute of Technology (KTH), 2023; 
Nordlund & Nordström, 2023). 

Conceptual Design of a Priority-Aware WebFlux 
Architecture 

The third methodological component involved 
synthesizing a priority-aware SLA-driven architecture 
using Spring WebFlux. This design builds on the existing 
Priority-Aware Reactive APIs proposal but extends and 
systematizes it through the lens of the broader 
literature (Priority-Aware Reactive APIs, 2025). The 
conceptual design work proceeded in three steps. 

First, the article deconstructs the building blocks of 
WebFlux—handlers, routers, filters, reactive types, 
schedulers—and aligns them with the practical 
guidance from books and documentation on reactor 
pipelines, backpressure, and concurrency (Reddy, 
2018; Sharma, 2018; Mednikov, 2021; Deinum & 
Cosmina, 2021; Spring WebFlux Documentation, 2023; 
Project Reactor, 2023). Particular emphasis is placed 
on how these components interact with each other 
and with infrastructural elements such as API gateways 
and load balancers in a financial microservice 
landscape (Li & Sharma, 2020). 

Second, these building blocks are organized into a 
multi-layered architecture in which SLA tiers (Gold, 
Silver, Bronze) are represented explicitly in routing 
decisions, scheduling policies, and graceful 
degradation strategies. The design combines reactive 
flows with priority-aware thread pools, per-tier 
backpressure thresholds, and differentiated timeout 
and retry policies inspired by reactive design patterns 
(Sharma, 2018; Srivastava, 2024; Priority-Aware 
Reactive APIs, 2025). 

Third, the architecture is evaluated qualitatively 
against the decision surface derived from the 
concurrency comparison. The analysis considers how 

well the proposed WebFlux-based design satisfies the 
needs of financial workloads under various conditions 
and how it might coexist with services implemented 
using traditional blocking models or virtual threads. 

Throughout, the methodological posture is explicitly 
conceptual rather than experimental. The article does 
not introduce fabricated performance metrics or 
pseudo-measurements but instead carefully interprets 
existing empirical studies, applies them to the domain 
of SLA-aware financial APIs, and derives theoretically 
grounded architectural recommendations (Iwanowski & 
Kozieł, 2022; Dakowitz, 2018; Dahlin, 2020; Royal 
Institute of Technology (KTH), 2023; Nordlund & 
Nordström, 2023). 

Results 

Conceptual Landscape of Concurrency Models in 
Financial Microservices 

The first outcome of the synthesis is a clarified 
conceptual landscape of concurrency models as they 
pertain to financial microservices. This landscape can be 
understood along three axes: execution model, 
workload characteristics, and operational constraints 
such as SLAs, observability, and deployment models. 

Traditional Spring MVC adopts a thread-per-request 
approach using servlet containers like Tomcat or Jetty 
(Ottinger & Lombardi, 2017). Each incoming HTTP 
request is assigned a dedicated thread, which remains 
blocked while network I/O or database operations are 
in progress. This model is conceptually straightforward 
and benefits from decades of tooling and developer 
familiarity. However, as studies of reactive versus 
imperative Java web applications have demonstrated, 
the approach saturates under high concurrency when 
the system spends significant time waiting on I/O, 
leading to increased latency and unstable performance 
characteristics (Iwanowski & Kozieł, 2022; Dakowitz, 
2018; Filichkin, 2018). 

Reactive Spring WebFlux, in contrast, decouples the 
logical flow of request handling from the physical 
threads that carry out the work. It uses event loops and 
a small, fixed set of threads to orchestrate asynchronous 
operations modeled as streams of signals—completion, 
data emission, and error—using Reactor’s Mono and 
Flux types (Spring WebFlux Documentation, 2023; 
Project Reactor, 2023). Because threads are not blocked 
during I/O, WebFlux can support large numbers of 
concurrent connections with relatively few threads, 
provided that all participating components (for example 
databases and downstream services) can be accessed in 
a non-blocking fashion (Reddy, 2018; Sharma, 2018; 
Mednikov, 2021). 

Java virtual threads, introduced through Project Loom, 
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complicate this dichotomy by enabling lightweight 
threads that can be parked and resumed cheaply when 
blocking operations occur. When used within Spring 
MVC, virtual threads enable code that appears 
blocking but is multiplexed over a small number of 
carrier threads by the JVM (Royal Institute of 
Technology (KTH), 2023). Early comparative work 
suggests that virtual-thread-based Spring applications 
can significantly improve concurrency and reduce the 
risk of thread pool exhaustion without requiring 
developers to adopt fully reactive programming styles 
(Nordlund & Nordström, 2023; Sukhambekova, 2025). 

The reviewed literature shows that these models are 
not strict competitors so much as options in a portfolio. 
Reactive WebFlux shines in scenarios where: 

● The workload is predominantly I/O-bound, 
with numerous concurrent requests performing 
remote calls or streaming responses. 

● Non-blocking drivers and reactive data access 
layers (such as R2DBC or reactive NoSQL clients) are 
available and can be combined without forcing 
blocking boundaries (Sharma, 2018; Spring WebFlux 
Documentation, 2023). 

● Latency requirements are strict and highly 
variable load patterns are expected, as in real-time 
price feeds, risk checks, or fraud detection API calls 
(Priority-Aware Reactive APIs, 2025). 

Virtual-thread-based MVC is attractive when: 

● The system relies heavily on blocking libraries, 
especially for database access, and migrating to fully 
reactive stacks would require major refactoring 
(Dahlin, 2020). 

● The workload is a mix of I/O and CPU-bound 
tasks with moderate concurrency levels, and 
development simplicity is a priority. 

● Teams have limited experience with reactive 
programming but wish to improve concurrency and 
reduce head-of-line blocking risks (Royal Institute of 
Technology (KTH), 2023; Nordlund & Nordström, 
2023). 

Traditional platform-thread MVC persists as a baseline 
option for: 

● Low to moderate concurrency services where 
the cost of adopting new models outweighs the 
benefits. 

● Legacy systems that cannot be easily migrated 
and where SLAs are relaxed or sufficient resources can 
be provisioned. 

This conceptual landscape sets the stage for 
positioning SLA-aware WebFlux architectures within a 
broader strategy. Importantly, the literature 

underscores that reactive models do not automatically 
guarantee superior performance; their benefits 
manifest when the entire stack, including the database 
and downstream services, supports non-blocking 
access, and when the workload’s entropy justifies the 
increased conceptual complexity (Iwanowski & Kozieł, 
2022; Dakowitz, 2018; Dahlin, 2020; Filichkin, 2018). 

Performance Characteristics and Development Trade-
Offs 

Drawing on comparative experiments, the synthesis 
identifies several recurrent performance patterns. In 
studies where reactive and imperative Java web 
applications were implemented with functionally 
equivalent behavior, reactive versions typically 
demonstrated: 

● Lower median and tail latencies under high 
concurrency, particularly for operations whose 
processing time exceeded a certain threshold (for 
example, ten seconds) (Iwanowski & Kozieł, 2022). 

● Improved stability of response times as 
concurrency increased, owing to bounded thread pools 
and event-loop-based scheduling (Iwanowski & Kozieł, 
2022; Dakowitz, 2018). 

● Reduced CPU utilization when compared to 
blocking services that created and managed large 
numbers of threads, particularly under heavy load 
(Dakowitz, 2018; Filichkin, 2018). 

However, these benefits were not universal. Several 
studies showed that: 

● Reactive applications did not always consume 
less memory than imperative ones; in some scenarios, 
memory usage was comparable or even higher 
(Iwanowski & Kozieł, 2022; Dakowitz, 2018). 

● When the primary bottleneck was a blocking 
database call, reactive models saw diminished returns 
because the non-blocking reactive pipeline still had to 
wait for data, and additional adapters were required to 
bridge blocking drivers into reactive streams (Dahlin, 
2020). 

● Development time and code complexity 
increased for reactive variants, especially for teams 
unfamiliar with reactive patterns, backpressure, and 
operator chains (Iwanowski & Kozieł, 2022; Sharma, 
2018; Mednikov, 2021). 

Filichkin’s practitioner-level benchmark comparing 
blocking Spring MVC, asynchronous non-blocking 
controllers, and reactive WebFlux microservices 
demonstrated similar patterns: reactive services 
achieved higher throughput at high concurrency levels 
and better handled long-lived streaming responses, but 
the benefits were sensitive to careful configuration of 
thread pools and the elimination of hidden blocking calls 
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(Filichkin, 2018). 

Virtual-thread-based experiments at KTH and in 
subsequent work by Nordlund and Nordström suggest 
that virtual threads can provide a different balance of 
trade-offs. By dramatically reducing the overhead of 
blocking calls, virtual threads allow developers to 
retain imperative programming styles while scaling to 
tens of thousands of concurrent operations (Royal 
Institute of Technology (KTH), 2023; Nordlund & 
Nordström, 2023). Results indicate that: 

● For straightforward request–database–
response workflows, virtual threads provide 
performance similar to or better than WebFlux, 
particularly when databases are accessed through 
blocking drivers (Royal Institute of Technology (KTH), 
2023). 

● Virtual threads significantly reduce the risk of 
thread starvation without requiring large thread pools, 
and their debugging and tracing characteristics are 
closer to traditional models than to reactive pipelines 
(Nordlund & Nordström, 2023). 

● WebFlux maintains an advantage in scenarios 
involving streaming responses, fan-out to multiple 
downstream services, and complex composition of 
asynchronous workflows that are naturally modeled as 
reactive streams (Royal Institute of Technology (KTH), 
2023; Mednikov, 2021; Srivastava, 2024). 

Collectively, these results underscore that WebFlux is 
most compelling when the system can commit fully to 
a reactive, non-blocking stack and when workloads 
demand high concurrency and sophisticated 
asynchronous composition. Virtual threads are 
compelling when the persistence layer remains 
blocking and when development simplicity is 
paramount. These insights strongly influence how an 
SLA-aware financial API platform should be 
architected. 

Conceptual Model of SLA-Tiered Traffic in Financial 
APIs 

Building directly on the Priority-Aware Reactive APIs 
work, the article adopts and generalizes a three-tier 
SLA model for financial services: Gold, Silver, and 
Bronze (Priority-Aware Reactive APIs, 2025). Each tier 
is characterized by distinct quality-of-service 
expectations. 

Gold-tier traffic includes operations whose latency and 
reliability requirements are stringent and whose 
business impact is high. Examples include real-time 
order placement in trading, fraud checks during 
payment authorization, and regulatory reporting APIs 
invoked near filing deadlines. These flows often 
demand sub-second response times under most 

conditions, strict availability, and priority access to 
system resources. 

Silver-tier traffic includes production-critical but less 
latency-sensitive operations, such as portfolio queries, 
statement generation, batched risk calculations, and 
non-critical back-office integration calls. These flows 
tolerate slightly higher latency and degradation under 
peak load, provided that core user flows remain 
responsive. 

Bronze-tier traffic includes low-priority operations such 
as scheduled data exports, bulk reconciliation runs, 
sandbox or test traffic, and exploratory analytics 
queries. These workloads tolerate substantial delays 
and may be paused or throttled during spikes in higher-
priority traffic. 

The priority-aware perspective demands more than 
simple rate limiting; it requires a holistic view of the 
entire request lifecycle. For each tier, architects must 
consider: 

● Admission control: Under conditions of 
resource saturation, which requests are immediately 
rejected, queued, or allowed through? 

● Resource allocation: How are threads, CPU 
time, database connections, and cache capacity 
partitioned or prioritized across tiers? 

● Backpressure and flow control: When 
downstream services or data stores become saturated, 
how does the system signal upstream components to 
slow down or shed load preferentially? 

● Degradation policies: What simplified logic or 
cached responses may be returned to lower-priority 
traffic when the system is constrained? 

● Monitoring and observability: How are SLA 
violations detected and tied back to specific priority 
tiers and architectural components? 

The Priority-Aware Reactive APIs architecture 
demonstrates that these concerns can be expressed at 
the WebFlux layer through priority annotations, custom 
schedulers, and tier-specific backpressure strategies 
(Priority-Aware Reactive APIs, 2025). This paper extends 
those ideas into a more systematic framework that 
integrates them with the broader concurrency model 
landscape. 

Architectural Blueprint for Priority-Aware WebFlux APIs 

The proposed architecture for SLA-aware financial APIs 
comprises several layers, each informed by reactive 
programming principles and empirical findings from the 
literature (Sharma, 2018; Mednikov, 2021; Srivastava, 
2024; Spring WebFlux Documentation, 2023). 

At the outermost layer, an API gateway or edge router 
performs coarse-grained traffic segregation based on 
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authentication context, tenant identification, or 
explicit SLA metadata. However, the critical innovation 
lies within the WebFlux application itself, which 
contains the following logical components: 

1. Priority-Aware Routing and Classification: 

 WebFlux functional routes or annotated controllers 
inspect incoming requests to determine the SLA tier. 
This can be based on headers, OAuth scopes, client 
certificates, or dedicated API keys (Priority-Aware 
Reactive APIs, 2025). The classification logic is kept 
simple and deterministic to avoid introducing latency 
in the categorization process. 

2. Tier-Specific Scheduler Pools: 

 For each SLA tier, the architecture defines a dedicated 
scheduler or scheduler group backed by an elastic or 
bounded thread pool. Gold-tier schedulers map to a 
smaller, high-priority pool configured to minimize 
latency and ensure prompt scheduling of reactive 
operators, while Bronze-tier schedulers map to pools 
with more aggressive backpressure thresholds and 
lower priority (Project Reactor, 2023; Srivastava, 
2024). This aligns with research findings emphasizing 
the importance of careful thread and scheduler 
configuration in realizing WebFlux performance 
benefits (Filichkin, 2018; Dakowitz, 2018). 

3. Reactive Pipelines with Tier-Aware 
Backpressure: 

 Each route’s business logic is expressed as a Reactor-
based pipeline composed of operators such as map, 
flatMap, onErrorResume, timeout, and retryWhen 
(Sharma, 2018; Mednikov, 2021). Backpressure 
strategies—such as buffering with drop, latest, or 
error—are configured differently for Gold, Silver, and 
Bronze tiers. For example, Gold-tier request streams 
may use bounded queues with early backpressure 
signals to protect latency, while Bronze-tier streams 
may apply aggressive dropping of excess emissions 
during overload conditions (Project Reactor, 2023; 
Priority-Aware Reactive APIs, 2025). 

4. Non-Blocking Data Access and Integration: 

 Whenever feasible, the architecture uses reactive data 
access technologies such as R2DBC for relational 
databases or reactive drivers for NoSQL stores 
(Sharma, 2018; Spring WebFlux Documentation, 2023). 
When blocking components cannot be avoided—for 
example, when relying on legacy JDBC drivers—the 
design isolates these calls in dedicated bounded thread 
pools and integrates them into reactive pipelines 
through publishOn or subscribeOn operators with 
careful capacity planning (Dahlin, 2020; Srivastava, 
2024). 

5. Tier-Dependent Timeouts and Fallbacks: 

 Timeouts for downstream calls are shorter and more 
strictly enforced for Gold-tier traffic than for Bronze. In 
the event of timeouts, each tier has distinct fallback 
behaviors: Gold-tier endpoints may return simplified 
but still authoritative responses, such as risk estimates 
based on cached market data, while Bronze-tier 
endpoints may respond with “try again later” messages 
or stale cache entries (Priority-Aware Reactive APIs, 
2025; Sharma, 2018). 

6. Centralized Policy Configuration and Telemetry: 

 SLA-related parameters—such as maximum 
concurrency per tier, timeout budgets, retry policies, 
and degradation thresholds—are externalized into 
configuration systems. Telemetry is enriched with SLA 
tier labels so that observability tools can generate per-
tier latency distributions, error rates, and throughput 
metrics (Li & Sharma, 2020; Srivastava, 2024). This 
makes SLA violations observable and supports adaptive 
tuning of allocator policies over time. 

By combining these components, the architecture 
provides a cohesive strategy for embedding SLA 
awareness into the reactive fabric of WebFlux. This is 
conceptually distinct from treating SLAs purely as 
infrastructure-level concerns and leverages the inherent 
composability of reactive pipelines to implement policy-
driven prioritization. 

Positioning Virtual Threads within the SLA-Aware 
Landscape 

While the architectural blueprint assumes a WebFlux-
based core, the literature review makes clear that 
virtual-thread-based MVC remains an important option. 
The synthesis suggests that architects should position 
virtual-thread services alongside WebFlux services 
according to workload and SLA profile (Royal Institute of 
Technology (KTH), 2023; Nordlund & Nordström, 2023; 
Sukhambekova, 2025). 

For example, a financial platform might implement: 

● Gold-tier order placement APIs using WebFlux, 
due to their high concurrency, need for streaming 
market data integration, and reliance on non-blocking 
messaging layers. 

● Bronze-tier batch reconciliation APIs using 
virtual-thread-based MVC, where workloads are large 
but not latency-critical and rely heavily on existing JDBC-
based data stores. 

● Medium-concurrency internal dashboards or 
reporting APIs using either virtual threads or traditional 
MVC, depending on the team’s familiarity and the 
presence of off-peak usage windows. 

In this portfolio, WebFlux is reserved for services where 
its advantages are most pronounced and where reactive 
complexity can be justified. Virtual threads offer a 
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middle ground for services that need improved 
concurrency over traditional MVC but do not benefit 
significantly from stream-based composition. The SLA-
aware architecture proposed here can be generalized 
to such hybrid landscapes by ensuring that tier labels 
and policy configurations are consistent across service 
implementations, even when the underlying 
concurrency model differs. 

Discussion 

Theoretical Implications for Reactive Architecture in 
Finance 

The synthesis has several theoretical implications for 
how reactive architectures are conceptualized in 
financial systems. First, the findings support the view 
that reactive programming is best understood not as a 
universal performance panacea but as a specialized 
tool aligned with specific workload characteristics and 
architectural constraints (Nurkiewicz & Christensen, 
2016; Sharma, 2018; Iwanowski & Kozieł, 2022). By 
framing WebFlux, virtual threads, and traditional MVC 
as a portfolio, the article emphasizes that architectural 
decisions should be driven by explicit modeling of 
workload profiles and SLA demands rather than by 
technological hype or generalized claims of “reactivity” 
(Thönes, 2015; Filichkin, 2018). 

Second, the integration of SLA-tiered design into the 
reactive stack suggests that reactive pipelines can 
serve as a locus for domain policy enforcement rather 
than merely as technical machinery for asynchrony. 
The Priority-Aware Reactive APIs work already hinted 
at this possibility by mapping Gold, Silver, and Bronze 
tiers to custom schedulers and backpressure strategies 
(Priority-Aware Reactive APIs, 2025). The present 
article extends this idea by treating SLA tiers as first-
class citizens in routing, timeout policies, fallback logic, 
and telemetry, thereby demonstrating that domain 
semantics can be deeply interwoven with concurrency 
mechanisms. Theoretically, this blurs the line between 
“functional” and “non-functional” requirements, as 
performance-related SLAs become directly encoded in 
control flow. 

Third, the evaluation of WebFlux against the 
constraints of database-bound workloads underscores 
the importance of end-to-end non-blocking design. 
Dahlin’s work on SQL integration reveals that the 
benefits of WebFlux can be significantly constrained 
when the persistence layer remains blocking (Dahlin, 
2020). This suggests that reactive architectures should 
be analyzed through a systems perspective, where 
individual reactive components cannot be evaluated in 
isolation. The theoretical implication is that the value 
of a reactive model is emergent: it depends on how 
well all layers—from network I/O through data 

access—align with non-blocking principles and how 
effectively backpressure signals propagate through the 
stack (Spring WebFlux Documentation, 2023; Project 
Reactor, 2023). 

Fourth, the comparative results involving virtual threads 
challenge the notion that reacting to I/O through event 
loops is the only viable strategy for scalable concurrency 
in financial domains. By making blocking operations 
cheap, virtual threads provide an alternative route to 
high concurrency that preserves imperative 
programming styles (Royal Institute of Technology 
(KTH), 2023; Nordlund & Nordström, 2023). The 
theoretical implication is that the space of concurrency 
models is richer than a simple imperative–reactive 
dichotomy and that architectural reasoning must 
consider hybrid and emergent models that combine 
features of both. 

Practical Implications and Design Guidelines 

For practitioners, the article translates the synthesized 
evidence into a set of design guidelines for SLA-aware 
financial APIs. These guidelines are inherently 
qualitative but grounded in the reviewed literature. 

First, architects should perform an explicit workload 
characterization for each candidate service: describing 
expected concurrency, proportion of time spent in I/O 
versus CPU-bound computation, dependency graph 
among downstream services, and variability of load over 
time (Dakowitz, 2018; Iwanowski & Kozieł, 2022; 
Filichkin, 2018). For services with highly concurrent, I/O-
bound, latency-critical workloads, WebFlux is strongly 
indicated, especially when reactive drivers and 
messaging infrastructure are available (Sharma, 2018; 
Spring WebFlux Documentation, 2023). 

Second, where database access remains predominantly 
blocking and cannot be feasibly migrated to reactive 
drivers in the near term, architects should carefully 
scrutinize the trade-offs between WebFlux with 
blocking adapters and virtual-thread-based MVC. 
Dahlin’s findings suggest that layering a reactive façade 
over blocking SQL may introduce complexity without 
proportional gains (Dahlin, 2020). In such contexts, 
virtual threads may deliver substantial concurrency 
benefits while preserving development simplicity (Royal 
Institute of Technology (KTH), 2023; Nordlund & 
Nordström, 2023; Sukhambekova, 2025). 

Third, when adopting WebFlux, teams should invest in 
disciplined reactive design practices. Books and 
practical guides emphasize that naive compositions of 
reactive operators can easily lead to subtle bugs, 
context loss, and unbounded resource usage (Reddy, 
2018; Sharma, 2018; Mednikov, 2021; Srivastava, 2024). 
Adopting patterns such as centralized error handling, 
consistent timeout and retry policies, and clear 
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separation between domain logic and reactive 
plumbing is critical. Moreover, the priority-aware 
architecture proposed here demonstrates that the 
design of schedulers, backpressure, and buffer 
capacities must be explicitly aligned with SLA tiers 
rather than left to ad hoc tuning (Priority-Aware 
Reactive APIs, 2025; Project Reactor, 2023). 

Fourth, SLA-tiered policy design should treat Gold, 
Silver, and Bronze traffic as distinct citizens across the 
entire stack, not only at the API gateway. The proposed 
architecture suggests mapping tiers to dedicated 
scheduler pools, per-tier backpressure policies, and 
distinct fallback paths (Priority-Aware Reactive APIs, 
2025). For example, Gold-tier APIs may receive priority 
access to non-blocking database connections and 
cache capacity, while Bronze-tier APIs are restricted to 
more constrained resources and more aggressive load 
shedding. Implementing such policies requires 
coordination between application teams, SRE teams, 
and security teams, but can significantly improve the 
platform’s ability to meet SLAs under stress. 

Fifth, observability must be designed to reflect SLA-
tiered concerns. Metrics and traces should record SLA 
tier labels so that dashboards can show latency, error 
rates, and throughput segmented by Gold, Silver, and 
Bronze traffic (Li & Sharma, 2020; Srivastava, 2024). 
This segmentation is essential to detect whether the 
priority-aware policies are functioning as intended and 
to avoid a situation where Bronze-tier workloads 
silently erode Gold-tier performance. 

Limitations 

Several limitations temper the scope of this article’s 
conclusions. First, the analysis is conceptual and 
synthesis-based; it does not provide new empirical 
measurements or benchmark results. Consequently, 
while the conceptual decision surface is grounded in 
existing studies, its precise boundaries remain 
approximate and context-dependent (Dakowitz, 2018; 
Iwanowski & Kozieł, 2022; Dahlin, 2020; Royal Institute 
of Technology (KTH), 2023; Nordlund & Nordström, 
2023). 

Second, the reference set is curated and domain-
specific rather than exhaustive. While it includes key 
books, theses, and articles on reactive programming, 
WebFlux, and concurrency comparisons, it cannot 
capture all relevant empirical work. There may be 
additional studies that report divergent findings, 
particularly in niche domains or with different JVM 
tuning settings and cloud deployment models. 

Third, the financial domain is treated somewhat 
generically, focusing on canonical workloads like order 
processing and risk checks. Real-world financial 
systems encompass diverse regulatory regions, legacy 

constraints, and integration requirements that may 
alter the applicability of specific recommendations. For 
example, stringent regulatory constraints on data 
residency or auditability might limit the use of 
aggressive degradation strategies for certain Gold-tier 
flows. 

Fourth, the proposed priority-aware architecture 
assumes access to non-blocking data access and 
messaging infrastructure. Institutions that primarily rely 
on legacy mainframe systems or proprietary message 
buses may find it more challenging to adopt fully 
reactive stacks. 

Future Research Directions 

The synthesis reveals several promising directions for 
future empirical and theoretical work. 

First, there is a need for multi-dimensional benchmark 
suites that compare WebFlux, virtual threads, and 
traditional MVC across realistic financial workloads. 
Existing studies often focus on relatively generic 
scenarios; domain-specific benchmarks involving order 
books, risk aggregation, or fraud scoring pipelines would 
provide more directly actionable results (Dakowitz, 
2018; Iwanowski & Kozieł, 2022; Dahlin, 2020; Royal 
Institute of Technology (KTH), 2023; Nordlund & 
Nordström, 2023). Such benchmarks should vary not 
only concurrency and latency but also the mix of 
synchronous and asynchronous downstream calls, the 
presence of streaming data, and the complexity of 
failure modes. 

Second, further research is needed on hybrid 
architectures that combine WebFlux and virtual-thread-
based services. While this article outlines conceptual 
roles for each, open questions remain about optimal 
partitioning of services, shared configuration models, 
and emergent performance behavior when the system 
is co-saturated. Theoretical models of such hybrid 
systems could draw on queueing theory and network 
calculus to reason about priority-aware flows across 
heterogeneous concurrency domains. 

Third, automated SLA policy enforcement within 
reactive pipelines represents a fertile research area. 
While the proposed architecture externalizes 
configuration and uses manual mapping between tiers 
and schedulers, future work could explore policy 
engines that dynamically adjust timeouts, concurrency 
limits, and backpressure strategies based on observed 
metrics. This would move from static to adaptive SLA-
aware architectures, potentially employing feedback 
control or reinforcement learning techniques, provided 
they are carefully evaluated and constrained. 

Fourth, the developer experience of reactive versus 
virtual-thread-based programming in financial teams 
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deserves empirical study. While existing work notes 
that reactive applications may take longer to 
implement and debug, systematic investigations into 
team productivity, error rates, and cognitive load 
would provide valuable input into architectural 
decision-making (Iwanowski & Kozieł, 2022; Mednikov, 
2021; Srivastava, 2024). 

Finally, the intersection of reactive security, 
compliance, and auditability in financial APIs merits 
dedicated attention. Reactive flows that involve 
priority-based degradation must be designed so that 
security invariants are never relaxed for the sake of 
performance. Combining SLA-aware policies with 
rigorous authentication, authorization, and audit 
logging in WebFlux pipelines is a non-trivial challenge 
that future research should address using both formal 
modeling and empirical case studies (Deinum & 
Cosmina, 2021; Li & Sharma, 2020). 

Conclusion 

This article has developed a comprehensive, 
conceptually grounded framework for designing SLA-
aware reactive APIs in financial microservices using 
Spring WebFlux, positioned within a broader landscape 
of concurrency models that includes traditional 
blocking MVC and Java virtual threads. 

By synthesizing evidence from research articles, 
theses, practitioner benchmarks, and technical 
documentation, the article has shown that reactive 
WebFlux excels in highly concurrent, I/O-bound, 
latency-sensitive workloads, particularly when the 
entire stack—network, application, and data access—
is designed around non-blocking principles (Reddy, 
2018; Sharma, 2018; Spring WebFlux Documentation, 
2023; Project Reactor, 2023; Iwanowski & Kozieł, 
2022). At the same time, it has emphasized that 
reactive architectures do not automatically 
outperform imperative ones; their benefits are 
contingent on system-wide alignment and must be 
weighed against increased development complexity 
(Dakowitz, 2018; Dahlin, 2020; Filichkin, 2018; 
Mednikov, 2021; Srivastava, 2024). 

The proposed priority-aware architecture builds on the 
Priority-Aware Reactive APIs work by mapping SLA 
tiers (Gold, Silver, Bronze) to a rich set of reactive 
constructs: tier-specific schedulers, differentiated 
backpressure strategies, tier-dependent timeouts and 
fallbacks, and SLA-labeled telemetry (Priority-Aware 
Reactive APIs, 2025). This demonstrates that domain 
semantics—here, business-critical SLAs—can be 
deeply encoded in reactive pipelines rather than only 
in external infrastructure. 

At the same time, the rise of Java virtual threads 
introduces a viable alternative for services that are 

database-bound or do not require sophisticated 
streaming composition. Virtual-thread-based MVC can 
deliver substantial concurrency improvements while 
preserving imperative code patterns, offering a 
pragmatic path for teams that cannot fully commit to 
reactive programming (Royal Institute of Technology 
(KTH), 2023; Nordlund & Nordström, 2023; 
Sukhambekova, 2025). 

Taken together, these insights support a portfolio-based 
approach to concurrency in financial platforms. 
Architects should assign services to WebFlux, virtual 
threads, or traditional MVC based on careful workload 
characterization and SLA requirements, and should 
design SLA-aware policies consistently across these 
models. The conceptual framework presented here 
offers a starting point for such decisions and identifies 
key directions for future empirical validation and 
methodological refinement. 

In sum, Spring WebFlux is neither a universal silver 
bullet nor a niche curiosity; it is a powerful component 
in the architect’s toolkit, particularly suited to building 
priority-aware, SLA-sensitive financial APIs when its 
capabilities are matched to the right problems and 
embedded in a holistic concurrency strategy. 
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