
The American Journal of Engineering and Technology 194 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 194-205

OPEN ACCESS

SUBMITTED 15 September 2025

ACCEPTED 08 October 2025

PUBLISHED 31 October 2025

VOLUME Vol.07 Issue10 2025

CITATION

Armin Keller. (2025). Designing SLA-Aware Reactive Apis In Financial

Microservices: A Comparative Analysis Of Spring Webflux, Traditional

Blocking Models, And Virtual Threads. The American Journal of

Engineering and Technology, 7(10), 194–205. Retrieved from

https://www.theamericanjournals.com/index.php/tajet/article/view/

7034

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Designing SLA-Aware Reactive Apis

In Financial Microservices: A

Comparative Analysis Of Spring

Webflux, Traditional Blocking

Models, And Virtual Threads

Armin Keller

Department of Computer Science, University of Helsinki, Helsinki, Finland

Abstract: Background:

Financial institutions increasingly expose mission-
critical services through APIs that must simultaneously
satisfy strict service-level agreements (SLAs), withstand
bursty workloads, and handle heterogeneous traffic
from retail clients, institutional partners, and internal
analytics engines. Traditional thread-per-request
architectures in Java-based stacks, such as Spring MVC,
struggle to combine high concurrency with predictable
latency under such conditions, leading to renewed
interest in reactive programming models such as Spring
WebFlux and competing concurrency technologies like
Java virtual threads (Thönes, 2015; Filichkin, 2018;
Spring WebFlux Documentation, 2023).

Objective:

Building on recent work on priority-aware SLA-tiered
APIs for financial services (Priority-Aware Reactive APIs,
2025), this article develops a comprehensive conceptual
framework for designing SLA-aware reactive APIs using
Spring WebFlux. The study integrates evidence from
comparative performance research on reactive versus
imperative models, evaluations of WebFlux in database-
centric scenarios, and emerging analyses of virtual
threads in Spring-based systems (Dakowitz, 2018;
Iwanowski & Kozieł, 2022; Dahlin, 2020; Royal Institute
of Technology (KTH), 2023; Nordlund & Nordström,
2023; Sukhambekova, 2025).

Methods:

A qualitative, synthesis-oriented methodology is
employed. First, a structured narrative review
consolidates findings from books, theses, scientific
articles, and technical documentation on Spring
WebFlux, Project Reactor, reactive programming
concepts, and concurrency models in Java microservices
(Reddy, 2018; Nurkiewicz & Christensen, 2016; Sharma,
2018; Mednikov, 2021; Srivastava, 2024; Deinum &

https://www.theamericanjournals.com/index.php/tajet/article/view/7034
https://www.theamericanjournals.com/index.php/tajet/article/view/7034
https://www.theamericanjournals.com/index.php/tajet/article/view/7034
https://www.theamericanjournals.com/index.php/tajet/article/view/7034

The American Journal of Engineering and Technology 195 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Cosmina, 2021; Li & Sharma, 2020). Second, these
insights are organized into an analytical comparison of
three concurrency strategies: blocking MVC-style
controllers, fully reactive WebFlux handlers, and
Spring-based virtual thread configurations. Third, the
paper synthesizes a detailed architectural blueprint for
SLA-tiered priority-aware APIs on top of WebFlux,
specifically tailored for financial services.

Results:

The synthesis shows that reactive WebFlux is
particularly advantageous in latency-sensitive, I/O-
bound, high-concurrency scenarios—common in risk
checks, portfolio queries, and payment authorization
flows—when paired with careful backpressure
management, non-blocking persistence, and
disciplined operator usage (Spring WebFlux
Documentation, 2023; Project Reactor, 2023;
Iwanowski & Kozieł, 2022). Priority-aware scheduling
at the reactive layer allows differentiated handling of
Gold, Silver, and Bronze tiers without resorting solely
to coarse-grained infrastructure scaling (Priority-
Aware Reactive APIs, 2025). However, empirical work
on virtual threads suggests that for CPU-heavy or
database-bound flows with moderate concurrency,
virtual-thread-based Spring MVC can provide
competitive or superior simplicity–performance trade-
offs (Royal Institute of Technology (KTH), 2023;
Nordlund & Nordström, 2023; Dahlin, 2020; Filichkin,
2018).

Conclusion:

The article argues that SLA-aware design in financial
APIs should not default blindly to reactive
programming but should instead adopt a portfolio
approach to concurrency. Spring WebFlux is best
positioned for highly concurrent, I/O-centric, SLA-
differentiated traffic, especially when backed by
reactive data access and carefully tuned schedulers,
while virtual-thread-based MVC remains compelling
for simpler services and teams with limited reactive
expertise. The proposed conceptual framework offers
practical guidance to architects on when and how to
deploy WebFlux for priority-aware financial APIs and
identifies future research needs in multi-dimensional
benchmarking, hybrid models, and automated SLA
policy enforcement.

Keywords: Spring WebFlux; reactive programming;
virtual threads; financial microservices; SLA-aware
APIs; concurrency models; priority-aware scheduling.

Introduction: Modern financial systems increasingly
operate as distributed ecosystems of microservices,

event streams, and third-party integrations, rather than
monolithic core banking systems hidden behind closed
networks (Thönes, 2015). Retail payment gateways,
trading platforms, credit-scoring engines, and risk
analytics services are all exposed through APIs that must
deliver predictable, low-latency responses while
navigating sudden spikes in request rates and highly
variable workloads. In such an environment, service-
level agreements (SLAs) are not mere contractual
artifacts; they function as operational constraints that
shape system architecture, deployment strategy, and
concurrency models.

In particular, many financial institutions segment their
traffic into tiers—often labeled Gold, Silver, and
Bronze—where each tier represents distinct latency,
availability, and throughput expectations for specific
client segments or regulatory constraints (Priority-
Aware Reactive APIs, 2025). Gold-tier traffic may
correspond to high-value institutional orders or
regulatory-critical risk checks, Silver to production-
grade but less critical flows, and Bronze to batch-like or
exploratory workloads. Meeting these heterogeneous
requirements in a unified platform is nontrivial,
especially when traffic patterns are bursty and SLA
violations carry both financial and reputational
penalties.

Historically, enterprise Java systems based on Spring
MVC and a thread-per-request execution model have
dominated API development in this sector. These
architectures are conceptually simple: an incoming
request is bound to a dedicated thread, application logic
executes, and a response is returned (Ottinger &
Lombardi, 2017). While straightforward, this model
scales poorly in the face of extreme concurrency; thread
pools saturate and context switching overhead grows,
leading to degraded responsiveness and under-utilized
I/O capacity (Filichkin, 2018). As microservices
proliferated, and as non-blocking I/O became
mainstream in the Java ecosystem, reactive
programming models emerged as a promising
alternative to traditional blocking architectures
(Nurkiewicz & Christensen, 2016; Sharma, 2018).

Spring WebFlux, introduced alongside Spring
Framework 5, represents Spring’s reactive-stack web
framework designed from the ground up for non-
blocking, asynchronous request processing built on
Project Reactor’s Mono and Flux types (Spring WebFlux
Documentation, 2023; Project Reactor, 2023). Rather
than binding each request to a dedicated thread,
WebFlux composes asynchronous operations over a
small, event-loop-driven set of threads. When
appropriately designed, such systems can sustain high
concurrency with predictable resource consumption,
particularly for I/O-bound workloads typical of

The American Journal of Engineering and Technology 196 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

microservice ecosystems (Reddy, 2018; Mednikov,
2021; Srivastava, 2024).

Recent work has extended this reactive foundation
with domain-specific logic for SLA-tiered traffic. The
Priority-Aware Reactive APIs study proposed a
WebFlux-based architecture in which priority-aware
schedulers, backpressure control, and differentiated
buffers enable Gold, Silver, and Bronze traffic to be
handled according to explicit SLA policies at the API
layer (Priority-Aware Reactive APIs, 2025). The
contribution of that work lies in showing that priority
logic can be embedded into reactive flows rather than
delegated solely to infrastructure-level components
such as API gateways or load balancers. However, the
original study focused on presenting a particular design
and demonstration, leaving several broader questions
insufficiently explored.

First, the broader literature on reactive versus
imperative approaches in Java web applications
reveals that performance advantages of WebFlux are
contextual rather than universal. Comparative
experiments have shown that reactive services can
process requests faster and more stably under high
concurrency, but they do not always reduce memory
consumption, and reactive code can take longer to
develop (Iwanowski & Kozieł, 2022). Other studies
comparing reactive and conventional microservices in
containerized environments highlight gains in
throughput under specific I/O-bound workloads but
also underline the complexity and learning curve of
reactive styles (Dakowitz, 2018). Dahlin’s evaluation of
Spring WebFlux with a focus on built-in SQL features
further demonstrates that reactive benefits can be
significantly diminished—or even reversed—if the
persistence layer remains predominantly blocking
(Dahlin, 2020).

Second, the rapid emergence of Java virtual threads
(Project Loom) has introduced a third concurrency
model in the Spring ecosystem. While traditional
Spring MVC uses platform threads and WebFlux uses
event-loop-based reactive streams, virtual threads
emulate lightweight threads that drastically reduce the
cost of blocking operations (Royal Institute of
Technology (KTH), 2023). Early studies comparing
virtual threads with reactive WebFlux show that
virtual-thread-based MVC can sometimes match or
exceed WebFlux performance in certain scenarios,
especially where the predominant bottleneck is not
network I/O but database latency or CPU-intensive
processing (Nordlund & Nordström, 2023;
Sukhambekova, 2025). This complicates the decision
landscape for financial architects trying to choose the
right concurrency model for SLA-sensitive services.

Third, although technical books and practitioner guides
provide extensive coverage of WebFlux APIs, Reactor
operators, and reactive best practices, they often treat
performance, concurrency models, and SLA
considerations as implementation details rather than
first-class architectural concerns (Reddy, 2018; Sharma,
2018; Mednikov, 2021; Deinum & Cosmina, 2021;
Srivastava, 2024). Similarly, review papers on Spring
Boot and WebFlux survey the technology landscape but
rarely offer actionable frameworks for mapping
domain-specific SLA tiers to concrete concurrency
choices and reactive topologies (Li & Sharma, 2020).

This article addresses these gaps by situating the
problem of SLA-aware financial APIs in a comparative
analysis of concurrency models and by synthesizing a
comprehensive conceptual framework for designing
priority-aware APIs using Spring WebFlux. Rather than
asking whether WebFlux “wins” over traditional MVC in
all cases, the article asks: under which workload
characteristics, architectural constraints, and SLA
profiles is WebFlux the most appropriate choice; how
should it be configured and structured to realize its
potential; and how do emerging alternatives such as
virtual threads fit into the picture?

The contribution of this work is threefold. First, it
consolidates scattered empirical and conceptual
evidence on reactive versus imperative models,
including microservice performance comparisons,
evaluations of database integration in WebFlux, and
discussions of development complexity (Dakowitz,
2018; Iwanowski & Kozieł, 2022; Dahlin, 2020; Filichkin,
2018; Li & Sharma, 2020; Sukhambekova, 2025).
Second, it elaborates a priority-aware architecture for
SLA-tiered APIs in financial services, rooted in the
Priority-Aware Reactive APIs design but generalized and
extended to encompass cross-cutting concerns such as
security, backpressure, and resilience (Priority-Aware
Reactive APIs, 2025; Spring WebFlux Documentation,
2023; Project Reactor, 2023). Third, it positions WebFlux
alongside virtual threads as part of a “concurrency
portfolio” for financial microservices, articulating
decision criteria to guide architects in choosing or
combining models (Royal Institute of Technology (KTH),
2023; Nordlund & Nordström, 2023; Srivastava, 2024).

By taking a theory-building approach grounded in
existing empirical work and technical documentation,
this study provides a publication-ready conceptual
foundation for future empirical research and offers
practitioners a deeply reasoned blueprint for SLA-aware
reactive API design in financial domains.

Methodology

This article adopts a qualitative, theory-building
methodology that synthesizes evidence from multiple

The American Journal of Engineering and Technology 197 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

sources to construct an integrated conceptual
framework. The approach aligns with established
practices in software architecture research, where
empirical results from performance benchmarks, case
studies, and implementation reports are combined
into generalized guidance for practitioners (Thönes,
2015; Nurkiewicz & Christensen, 2016).

The methodology comprises three complementary
components: a structured narrative literature review,
an analytical comparison of concurrency models, and
the design of a conceptual priority-aware WebFlux
architecture tailored to financial services. Each
component is described in detail below.

Structured Narrative Literature Review

The first phase involved identifying and organizing
relevant literature on reactive programming in Java,
Spring WebFlux, reactive microservices, and
concurrency comparisons within the Spring ecosystem.
Rather than conducting a systematic mapping study
with formal inclusion and exclusion criteria, the article
uses a structured narrative review focused on a
curated reference set provided a priori. This set
includes:

● Foundational and practitioner-oriented books
on reactive programming, Spring Boot, and WebFlux,
which elaborate core concepts and patterns (Reddy,
2018; Nurkiewicz & Christensen, 2016; Sharma, 2018;
Mednikov, 2021; Deinum & Cosmina, 2021; Srivastava,
2024; Ottinger & Lombardi, 2017).

● A recent research article presenting a priority-
aware SLA-tiered API architecture using Spring
WebFlux for financial services (Priority-Aware Reactive
APIs, 2025).

● Comparative analyses of reactive versus
imperative approaches in Java web applications and
microservices (Dakowitz, 2018; Iwanowski & Kozieł,
2022; Filichkin, 2018; Dahlin, 2020).

● Studies and theses comparing Spring WebFlux
with virtual-thread-based Spring applications or
contrasting WebFlux with Spring MVC in performance
and complexity (Royal Institute of Technology (KTH),
2023; Nordlund & Nordström, 2023; Sukhambekova,
2025).

● Review articles and technical white papers
that survey Spring Boot, WebFlux, and related
technologies in web development (Li & Sharma, 2020).

● Official technical documentation and
reference pages for Spring WebFlux, Project Reactor,
and Kotlin coroutines, used to ensure conceptual and
terminological accuracy (Spring WebFlux
Documentation, 2023; Project Reactor, 2023; Kotlin
Coroutines Documentation, n.d.; spring.io/reactive,

2023).

The literature was conceptually coded along several
dimensions:

1. Concurrency model and execution style (thread-
per-request, event-loop-based reactive, virtual
threads).

2. Workload characteristics (I/O-bound
microservices, CPU-bound tasks, database-intensive
operations).

3. Performance outcomes (throughput, latency,
CPU and memory utilization, stability under load).

4. Development complexity and learning curve
(code comprehensibility, debugging difficulty, team
skills).

5. Architectural themes (microservices
decomposition, SLA-aware design, API-layer
prioritization, backpressure management).

By mapping each reference to these dimensions, the
review produced a conceptual matrix that guided the
subsequent analysis and framework design.

Analytical Comparison of Concurrency Models

The second methodological component was an
analytical comparison of three principal concurrency
strategies available in contemporary Spring-based
financial systems:

1. Traditional blocking Spring MVC with platform
threads.

2. Reactive Spring WebFlux with Project Reactor.

3. Spring MVC or WebFlux integrated with Java
virtual threads.

Each strategy was assessed using the conceptual matrix
derived from the literature. For example, Iwanowski and
Kozieł’s comparative analysis of reactive and imperative
Java web applications provided empirical insights into
latency and resource utilization differences between
blocking and reactive models under varying concurrent
load (Iwanowski & Kozieł, 2022). Dakowitz’s thesis on
microservices in containerized environments
contributed understanding of how reactive and
conventional services behave under orchestrated
deployments (Dakowitz, 2018). Dahlin’s evaluation
clarified how WebFlux interacts with SQL-based
persistence and what happens when the database
becomes the dominant bottleneck (Dahlin, 2020).

More recent analyses from KTH and subsequent work by
Nordlund and Nordström explored the performance
implications of virtual threads vis-à-vis WebFlux,
particularly focusing on how virtual threads reduce the
cost of blocking and how this alters the trade-off
between complexity and performance (Royal Institute

The American Journal of Engineering and Technology 198 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

of Technology (KTH), 2023; Nordlund & Nordström,
2023). Complementing these empirical studies,
practitioner reports and blog-based benchmarks such
as Filichkin’s performance battle between blocking,
non-blocking, and reactive Spring services offered
additional contextualization in production-like settings
(Filichkin, 2018).

The comparative analysis did not generate new
numerical measurements; instead, it integrated
existing quantitative results into a conceptual
“decision surface.” This surface describes regions in
the space of workload characteristics (e.g.,
concurrency level, ratio of I/O to CPU work, nature of
persistence layer) where each concurrency model
appears preferable, given the empirical studies and
practitioner accounts available (Dakowitz, 2018;
Iwanowski & Kozieł, 2022; Dahlin, 2020; Filichkin,
2018; Royal Institute of Technology (KTH), 2023;
Nordlund & Nordström, 2023).

Conceptual Design of a Priority-Aware WebFlux
Architecture

The third methodological component involved
synthesizing a priority-aware SLA-driven architecture
using Spring WebFlux. This design builds on the existing
Priority-Aware Reactive APIs proposal but extends and
systematizes it through the lens of the broader
literature (Priority-Aware Reactive APIs, 2025). The
conceptual design work proceeded in three steps.

First, the article deconstructs the building blocks of
WebFlux—handlers, routers, filters, reactive types,
schedulers—and aligns them with the practical
guidance from books and documentation on reactor
pipelines, backpressure, and concurrency (Reddy,
2018; Sharma, 2018; Mednikov, 2021; Deinum &
Cosmina, 2021; Spring WebFlux Documentation, 2023;
Project Reactor, 2023). Particular emphasis is placed
on how these components interact with each other
and with infrastructural elements such as API gateways
and load balancers in a financial microservice
landscape (Li & Sharma, 2020).

Second, these building blocks are organized into a
multi-layered architecture in which SLA tiers (Gold,
Silver, Bronze) are represented explicitly in routing
decisions, scheduling policies, and graceful
degradation strategies. The design combines reactive
flows with priority-aware thread pools, per-tier
backpressure thresholds, and differentiated timeout
and retry policies inspired by reactive design patterns
(Sharma, 2018; Srivastava, 2024; Priority-Aware
Reactive APIs, 2025).

Third, the architecture is evaluated qualitatively
against the decision surface derived from the
concurrency comparison. The analysis considers how

well the proposed WebFlux-based design satisfies the
needs of financial workloads under various conditions
and how it might coexist with services implemented
using traditional blocking models or virtual threads.

Throughout, the methodological posture is explicitly
conceptual rather than experimental. The article does
not introduce fabricated performance metrics or
pseudo-measurements but instead carefully interprets
existing empirical studies, applies them to the domain
of SLA-aware financial APIs, and derives theoretically
grounded architectural recommendations (Iwanowski &
Kozieł, 2022; Dakowitz, 2018; Dahlin, 2020; Royal
Institute of Technology (KTH), 2023; Nordlund &
Nordström, 2023).

Results

Conceptual Landscape of Concurrency Models in
Financial Microservices

The first outcome of the synthesis is a clarified
conceptual landscape of concurrency models as they
pertain to financial microservices. This landscape can be
understood along three axes: execution model,
workload characteristics, and operational constraints
such as SLAs, observability, and deployment models.

Traditional Spring MVC adopts a thread-per-request
approach using servlet containers like Tomcat or Jetty
(Ottinger & Lombardi, 2017). Each incoming HTTP
request is assigned a dedicated thread, which remains
blocked while network I/O or database operations are
in progress. This model is conceptually straightforward
and benefits from decades of tooling and developer
familiarity. However, as studies of reactive versus
imperative Java web applications have demonstrated,
the approach saturates under high concurrency when
the system spends significant time waiting on I/O,
leading to increased latency and unstable performance
characteristics (Iwanowski & Kozieł, 2022; Dakowitz,
2018; Filichkin, 2018).

Reactive Spring WebFlux, in contrast, decouples the
logical flow of request handling from the physical
threads that carry out the work. It uses event loops and
a small, fixed set of threads to orchestrate asynchronous
operations modeled as streams of signals—completion,
data emission, and error—using Reactor’s Mono and
Flux types (Spring WebFlux Documentation, 2023;
Project Reactor, 2023). Because threads are not blocked
during I/O, WebFlux can support large numbers of
concurrent connections with relatively few threads,
provided that all participating components (for example
databases and downstream services) can be accessed in
a non-blocking fashion (Reddy, 2018; Sharma, 2018;
Mednikov, 2021).

Java virtual threads, introduced through Project Loom,

The American Journal of Engineering and Technology 199 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

complicate this dichotomy by enabling lightweight
threads that can be parked and resumed cheaply when
blocking operations occur. When used within Spring
MVC, virtual threads enable code that appears
blocking but is multiplexed over a small number of
carrier threads by the JVM (Royal Institute of
Technology (KTH), 2023). Early comparative work
suggests that virtual-thread-based Spring applications
can significantly improve concurrency and reduce the
risk of thread pool exhaustion without requiring
developers to adopt fully reactive programming styles
(Nordlund & Nordström, 2023; Sukhambekova, 2025).

The reviewed literature shows that these models are
not strict competitors so much as options in a portfolio.
Reactive WebFlux shines in scenarios where:

● The workload is predominantly I/O-bound,
with numerous concurrent requests performing
remote calls or streaming responses.

● Non-blocking drivers and reactive data access
layers (such as R2DBC or reactive NoSQL clients) are
available and can be combined without forcing
blocking boundaries (Sharma, 2018; Spring WebFlux
Documentation, 2023).

● Latency requirements are strict and highly
variable load patterns are expected, as in real-time
price feeds, risk checks, or fraud detection API calls
(Priority-Aware Reactive APIs, 2025).

Virtual-thread-based MVC is attractive when:

● The system relies heavily on blocking libraries,
especially for database access, and migrating to fully
reactive stacks would require major refactoring
(Dahlin, 2020).

● The workload is a mix of I/O and CPU-bound
tasks with moderate concurrency levels, and
development simplicity is a priority.

● Teams have limited experience with reactive
programming but wish to improve concurrency and
reduce head-of-line blocking risks (Royal Institute of
Technology (KTH), 2023; Nordlund & Nordström,
2023).

Traditional platform-thread MVC persists as a baseline
option for:

● Low to moderate concurrency services where
the cost of adopting new models outweighs the
benefits.

● Legacy systems that cannot be easily migrated
and where SLAs are relaxed or sufficient resources can
be provisioned.

This conceptual landscape sets the stage for
positioning SLA-aware WebFlux architectures within a
broader strategy. Importantly, the literature

underscores that reactive models do not automatically
guarantee superior performance; their benefits
manifest when the entire stack, including the database
and downstream services, supports non-blocking
access, and when the workload’s entropy justifies the
increased conceptual complexity (Iwanowski & Kozieł,
2022; Dakowitz, 2018; Dahlin, 2020; Filichkin, 2018).

Performance Characteristics and Development Trade-
Offs

Drawing on comparative experiments, the synthesis
identifies several recurrent performance patterns. In
studies where reactive and imperative Java web
applications were implemented with functionally
equivalent behavior, reactive versions typically
demonstrated:

● Lower median and tail latencies under high
concurrency, particularly for operations whose
processing time exceeded a certain threshold (for
example, ten seconds) (Iwanowski & Kozieł, 2022).

● Improved stability of response times as
concurrency increased, owing to bounded thread pools
and event-loop-based scheduling (Iwanowski & Kozieł,
2022; Dakowitz, 2018).

● Reduced CPU utilization when compared to
blocking services that created and managed large
numbers of threads, particularly under heavy load
(Dakowitz, 2018; Filichkin, 2018).

However, these benefits were not universal. Several
studies showed that:

● Reactive applications did not always consume
less memory than imperative ones; in some scenarios,
memory usage was comparable or even higher
(Iwanowski & Kozieł, 2022; Dakowitz, 2018).

● When the primary bottleneck was a blocking
database call, reactive models saw diminished returns
because the non-blocking reactive pipeline still had to
wait for data, and additional adapters were required to
bridge blocking drivers into reactive streams (Dahlin,
2020).

● Development time and code complexity
increased for reactive variants, especially for teams
unfamiliar with reactive patterns, backpressure, and
operator chains (Iwanowski & Kozieł, 2022; Sharma,
2018; Mednikov, 2021).

Filichkin’s practitioner-level benchmark comparing
blocking Spring MVC, asynchronous non-blocking
controllers, and reactive WebFlux microservices
demonstrated similar patterns: reactive services
achieved higher throughput at high concurrency levels
and better handled long-lived streaming responses, but
the benefits were sensitive to careful configuration of
thread pools and the elimination of hidden blocking calls

The American Journal of Engineering and Technology 200 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

(Filichkin, 2018).

Virtual-thread-based experiments at KTH and in
subsequent work by Nordlund and Nordström suggest
that virtual threads can provide a different balance of
trade-offs. By dramatically reducing the overhead of
blocking calls, virtual threads allow developers to
retain imperative programming styles while scaling to
tens of thousands of concurrent operations (Royal
Institute of Technology (KTH), 2023; Nordlund &
Nordström, 2023). Results indicate that:

● For straightforward request–database–
response workflows, virtual threads provide
performance similar to or better than WebFlux,
particularly when databases are accessed through
blocking drivers (Royal Institute of Technology (KTH),
2023).

● Virtual threads significantly reduce the risk of
thread starvation without requiring large thread pools,
and their debugging and tracing characteristics are
closer to traditional models than to reactive pipelines
(Nordlund & Nordström, 2023).

● WebFlux maintains an advantage in scenarios
involving streaming responses, fan-out to multiple
downstream services, and complex composition of
asynchronous workflows that are naturally modeled as
reactive streams (Royal Institute of Technology (KTH),
2023; Mednikov, 2021; Srivastava, 2024).

Collectively, these results underscore that WebFlux is
most compelling when the system can commit fully to
a reactive, non-blocking stack and when workloads
demand high concurrency and sophisticated
asynchronous composition. Virtual threads are
compelling when the persistence layer remains
blocking and when development simplicity is
paramount. These insights strongly influence how an
SLA-aware financial API platform should be
architected.

Conceptual Model of SLA-Tiered Traffic in Financial
APIs

Building directly on the Priority-Aware Reactive APIs
work, the article adopts and generalizes a three-tier
SLA model for financial services: Gold, Silver, and
Bronze (Priority-Aware Reactive APIs, 2025). Each tier
is characterized by distinct quality-of-service
expectations.

Gold-tier traffic includes operations whose latency and
reliability requirements are stringent and whose
business impact is high. Examples include real-time
order placement in trading, fraud checks during
payment authorization, and regulatory reporting APIs
invoked near filing deadlines. These flows often
demand sub-second response times under most

conditions, strict availability, and priority access to
system resources.

Silver-tier traffic includes production-critical but less
latency-sensitive operations, such as portfolio queries,
statement generation, batched risk calculations, and
non-critical back-office integration calls. These flows
tolerate slightly higher latency and degradation under
peak load, provided that core user flows remain
responsive.

Bronze-tier traffic includes low-priority operations such
as scheduled data exports, bulk reconciliation runs,
sandbox or test traffic, and exploratory analytics
queries. These workloads tolerate substantial delays
and may be paused or throttled during spikes in higher-
priority traffic.

The priority-aware perspective demands more than
simple rate limiting; it requires a holistic view of the
entire request lifecycle. For each tier, architects must
consider:

● Admission control: Under conditions of
resource saturation, which requests are immediately
rejected, queued, or allowed through?

● Resource allocation: How are threads, CPU
time, database connections, and cache capacity
partitioned or prioritized across tiers?

● Backpressure and flow control: When
downstream services or data stores become saturated,
how does the system signal upstream components to
slow down or shed load preferentially?

● Degradation policies: What simplified logic or
cached responses may be returned to lower-priority
traffic when the system is constrained?

● Monitoring and observability: How are SLA
violations detected and tied back to specific priority
tiers and architectural components?

The Priority-Aware Reactive APIs architecture
demonstrates that these concerns can be expressed at
the WebFlux layer through priority annotations, custom
schedulers, and tier-specific backpressure strategies
(Priority-Aware Reactive APIs, 2025). This paper extends
those ideas into a more systematic framework that
integrates them with the broader concurrency model
landscape.

Architectural Blueprint for Priority-Aware WebFlux APIs

The proposed architecture for SLA-aware financial APIs
comprises several layers, each informed by reactive
programming principles and empirical findings from the
literature (Sharma, 2018; Mednikov, 2021; Srivastava,
2024; Spring WebFlux Documentation, 2023).

At the outermost layer, an API gateway or edge router
performs coarse-grained traffic segregation based on

The American Journal of Engineering and Technology 201 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

authentication context, tenant identification, or
explicit SLA metadata. However, the critical innovation
lies within the WebFlux application itself, which
contains the following logical components:

1. Priority-Aware Routing and Classification:

 WebFlux functional routes or annotated controllers
inspect incoming requests to determine the SLA tier.
This can be based on headers, OAuth scopes, client
certificates, or dedicated API keys (Priority-Aware
Reactive APIs, 2025). The classification logic is kept
simple and deterministic to avoid introducing latency
in the categorization process.

2. Tier-Specific Scheduler Pools:

 For each SLA tier, the architecture defines a dedicated
scheduler or scheduler group backed by an elastic or
bounded thread pool. Gold-tier schedulers map to a
smaller, high-priority pool configured to minimize
latency and ensure prompt scheduling of reactive
operators, while Bronze-tier schedulers map to pools
with more aggressive backpressure thresholds and
lower priority (Project Reactor, 2023; Srivastava,
2024). This aligns with research findings emphasizing
the importance of careful thread and scheduler
configuration in realizing WebFlux performance
benefits (Filichkin, 2018; Dakowitz, 2018).

3. Reactive Pipelines with Tier-Aware
Backpressure:

 Each route’s business logic is expressed as a Reactor-
based pipeline composed of operators such as map,
flatMap, onErrorResume, timeout, and retryWhen
(Sharma, 2018; Mednikov, 2021). Backpressure
strategies—such as buffering with drop, latest, or
error—are configured differently for Gold, Silver, and
Bronze tiers. For example, Gold-tier request streams
may use bounded queues with early backpressure
signals to protect latency, while Bronze-tier streams
may apply aggressive dropping of excess emissions
during overload conditions (Project Reactor, 2023;
Priority-Aware Reactive APIs, 2025).

4. Non-Blocking Data Access and Integration:

 Whenever feasible, the architecture uses reactive data
access technologies such as R2DBC for relational
databases or reactive drivers for NoSQL stores
(Sharma, 2018; Spring WebFlux Documentation, 2023).
When blocking components cannot be avoided—for
example, when relying on legacy JDBC drivers—the
design isolates these calls in dedicated bounded thread
pools and integrates them into reactive pipelines
through publishOn or subscribeOn operators with
careful capacity planning (Dahlin, 2020; Srivastava,
2024).

5. Tier-Dependent Timeouts and Fallbacks:

 Timeouts for downstream calls are shorter and more
strictly enforced for Gold-tier traffic than for Bronze. In
the event of timeouts, each tier has distinct fallback
behaviors: Gold-tier endpoints may return simplified
but still authoritative responses, such as risk estimates
based on cached market data, while Bronze-tier
endpoints may respond with “try again later” messages
or stale cache entries (Priority-Aware Reactive APIs,
2025; Sharma, 2018).

6. Centralized Policy Configuration and Telemetry:

 SLA-related parameters—such as maximum
concurrency per tier, timeout budgets, retry policies,
and degradation thresholds—are externalized into
configuration systems. Telemetry is enriched with SLA
tier labels so that observability tools can generate per-
tier latency distributions, error rates, and throughput
metrics (Li & Sharma, 2020; Srivastava, 2024). This
makes SLA violations observable and supports adaptive
tuning of allocator policies over time.

By combining these components, the architecture
provides a cohesive strategy for embedding SLA
awareness into the reactive fabric of WebFlux. This is
conceptually distinct from treating SLAs purely as
infrastructure-level concerns and leverages the inherent
composability of reactive pipelines to implement policy-
driven prioritization.

Positioning Virtual Threads within the SLA-Aware
Landscape

While the architectural blueprint assumes a WebFlux-
based core, the literature review makes clear that
virtual-thread-based MVC remains an important option.
The synthesis suggests that architects should position
virtual-thread services alongside WebFlux services
according to workload and SLA profile (Royal Institute of
Technology (KTH), 2023; Nordlund & Nordström, 2023;
Sukhambekova, 2025).

For example, a financial platform might implement:

● Gold-tier order placement APIs using WebFlux,
due to their high concurrency, need for streaming
market data integration, and reliance on non-blocking
messaging layers.

● Bronze-tier batch reconciliation APIs using
virtual-thread-based MVC, where workloads are large
but not latency-critical and rely heavily on existing JDBC-
based data stores.

● Medium-concurrency internal dashboards or
reporting APIs using either virtual threads or traditional
MVC, depending on the team’s familiarity and the
presence of off-peak usage windows.

In this portfolio, WebFlux is reserved for services where
its advantages are most pronounced and where reactive
complexity can be justified. Virtual threads offer a

The American Journal of Engineering and Technology 202 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

middle ground for services that need improved
concurrency over traditional MVC but do not benefit
significantly from stream-based composition. The SLA-
aware architecture proposed here can be generalized
to such hybrid landscapes by ensuring that tier labels
and policy configurations are consistent across service
implementations, even when the underlying
concurrency model differs.

Discussion

Theoretical Implications for Reactive Architecture in
Finance

The synthesis has several theoretical implications for
how reactive architectures are conceptualized in
financial systems. First, the findings support the view
that reactive programming is best understood not as a
universal performance panacea but as a specialized
tool aligned with specific workload characteristics and
architectural constraints (Nurkiewicz & Christensen,
2016; Sharma, 2018; Iwanowski & Kozieł, 2022). By
framing WebFlux, virtual threads, and traditional MVC
as a portfolio, the article emphasizes that architectural
decisions should be driven by explicit modeling of
workload profiles and SLA demands rather than by
technological hype or generalized claims of “reactivity”
(Thönes, 2015; Filichkin, 2018).

Second, the integration of SLA-tiered design into the
reactive stack suggests that reactive pipelines can
serve as a locus for domain policy enforcement rather
than merely as technical machinery for asynchrony.
The Priority-Aware Reactive APIs work already hinted
at this possibility by mapping Gold, Silver, and Bronze
tiers to custom schedulers and backpressure strategies
(Priority-Aware Reactive APIs, 2025). The present
article extends this idea by treating SLA tiers as first-
class citizens in routing, timeout policies, fallback logic,
and telemetry, thereby demonstrating that domain
semantics can be deeply interwoven with concurrency
mechanisms. Theoretically, this blurs the line between
“functional” and “non-functional” requirements, as
performance-related SLAs become directly encoded in
control flow.

Third, the evaluation of WebFlux against the
constraints of database-bound workloads underscores
the importance of end-to-end non-blocking design.
Dahlin’s work on SQL integration reveals that the
benefits of WebFlux can be significantly constrained
when the persistence layer remains blocking (Dahlin,
2020). This suggests that reactive architectures should
be analyzed through a systems perspective, where
individual reactive components cannot be evaluated in
isolation. The theoretical implication is that the value
of a reactive model is emergent: it depends on how
well all layers—from network I/O through data

access—align with non-blocking principles and how
effectively backpressure signals propagate through the
stack (Spring WebFlux Documentation, 2023; Project
Reactor, 2023).

Fourth, the comparative results involving virtual threads
challenge the notion that reacting to I/O through event
loops is the only viable strategy for scalable concurrency
in financial domains. By making blocking operations
cheap, virtual threads provide an alternative route to
high concurrency that preserves imperative
programming styles (Royal Institute of Technology
(KTH), 2023; Nordlund & Nordström, 2023). The
theoretical implication is that the space of concurrency
models is richer than a simple imperative–reactive
dichotomy and that architectural reasoning must
consider hybrid and emergent models that combine
features of both.

Practical Implications and Design Guidelines

For practitioners, the article translates the synthesized
evidence into a set of design guidelines for SLA-aware
financial APIs. These guidelines are inherently
qualitative but grounded in the reviewed literature.

First, architects should perform an explicit workload
characterization for each candidate service: describing
expected concurrency, proportion of time spent in I/O
versus CPU-bound computation, dependency graph
among downstream services, and variability of load over
time (Dakowitz, 2018; Iwanowski & Kozieł, 2022;
Filichkin, 2018). For services with highly concurrent, I/O-
bound, latency-critical workloads, WebFlux is strongly
indicated, especially when reactive drivers and
messaging infrastructure are available (Sharma, 2018;
Spring WebFlux Documentation, 2023).

Second, where database access remains predominantly
blocking and cannot be feasibly migrated to reactive
drivers in the near term, architects should carefully
scrutinize the trade-offs between WebFlux with
blocking adapters and virtual-thread-based MVC.
Dahlin’s findings suggest that layering a reactive façade
over blocking SQL may introduce complexity without
proportional gains (Dahlin, 2020). In such contexts,
virtual threads may deliver substantial concurrency
benefits while preserving development simplicity (Royal
Institute of Technology (KTH), 2023; Nordlund &
Nordström, 2023; Sukhambekova, 2025).

Third, when adopting WebFlux, teams should invest in
disciplined reactive design practices. Books and
practical guides emphasize that naive compositions of
reactive operators can easily lead to subtle bugs,
context loss, and unbounded resource usage (Reddy,
2018; Sharma, 2018; Mednikov, 2021; Srivastava, 2024).
Adopting patterns such as centralized error handling,
consistent timeout and retry policies, and clear

The American Journal of Engineering and Technology 203 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

separation between domain logic and reactive
plumbing is critical. Moreover, the priority-aware
architecture proposed here demonstrates that the
design of schedulers, backpressure, and buffer
capacities must be explicitly aligned with SLA tiers
rather than left to ad hoc tuning (Priority-Aware
Reactive APIs, 2025; Project Reactor, 2023).

Fourth, SLA-tiered policy design should treat Gold,
Silver, and Bronze traffic as distinct citizens across the
entire stack, not only at the API gateway. The proposed
architecture suggests mapping tiers to dedicated
scheduler pools, per-tier backpressure policies, and
distinct fallback paths (Priority-Aware Reactive APIs,
2025). For example, Gold-tier APIs may receive priority
access to non-blocking database connections and
cache capacity, while Bronze-tier APIs are restricted to
more constrained resources and more aggressive load
shedding. Implementing such policies requires
coordination between application teams, SRE teams,
and security teams, but can significantly improve the
platform’s ability to meet SLAs under stress.

Fifth, observability must be designed to reflect SLA-
tiered concerns. Metrics and traces should record SLA
tier labels so that dashboards can show latency, error
rates, and throughput segmented by Gold, Silver, and
Bronze traffic (Li & Sharma, 2020; Srivastava, 2024).
This segmentation is essential to detect whether the
priority-aware policies are functioning as intended and
to avoid a situation where Bronze-tier workloads
silently erode Gold-tier performance.

Limitations

Several limitations temper the scope of this article’s
conclusions. First, the analysis is conceptual and
synthesis-based; it does not provide new empirical
measurements or benchmark results. Consequently,
while the conceptual decision surface is grounded in
existing studies, its precise boundaries remain
approximate and context-dependent (Dakowitz, 2018;
Iwanowski & Kozieł, 2022; Dahlin, 2020; Royal Institute
of Technology (KTH), 2023; Nordlund & Nordström,
2023).

Second, the reference set is curated and domain-
specific rather than exhaustive. While it includes key
books, theses, and articles on reactive programming,
WebFlux, and concurrency comparisons, it cannot
capture all relevant empirical work. There may be
additional studies that report divergent findings,
particularly in niche domains or with different JVM
tuning settings and cloud deployment models.

Third, the financial domain is treated somewhat
generically, focusing on canonical workloads like order
processing and risk checks. Real-world financial
systems encompass diverse regulatory regions, legacy

constraints, and integration requirements that may
alter the applicability of specific recommendations. For
example, stringent regulatory constraints on data
residency or auditability might limit the use of
aggressive degradation strategies for certain Gold-tier
flows.

Fourth, the proposed priority-aware architecture
assumes access to non-blocking data access and
messaging infrastructure. Institutions that primarily rely
on legacy mainframe systems or proprietary message
buses may find it more challenging to adopt fully
reactive stacks.

Future Research Directions

The synthesis reveals several promising directions for
future empirical and theoretical work.

First, there is a need for multi-dimensional benchmark
suites that compare WebFlux, virtual threads, and
traditional MVC across realistic financial workloads.
Existing studies often focus on relatively generic
scenarios; domain-specific benchmarks involving order
books, risk aggregation, or fraud scoring pipelines would
provide more directly actionable results (Dakowitz,
2018; Iwanowski & Kozieł, 2022; Dahlin, 2020; Royal
Institute of Technology (KTH), 2023; Nordlund &
Nordström, 2023). Such benchmarks should vary not
only concurrency and latency but also the mix of
synchronous and asynchronous downstream calls, the
presence of streaming data, and the complexity of
failure modes.

Second, further research is needed on hybrid
architectures that combine WebFlux and virtual-thread-
based services. While this article outlines conceptual
roles for each, open questions remain about optimal
partitioning of services, shared configuration models,
and emergent performance behavior when the system
is co-saturated. Theoretical models of such hybrid
systems could draw on queueing theory and network
calculus to reason about priority-aware flows across
heterogeneous concurrency domains.

Third, automated SLA policy enforcement within
reactive pipelines represents a fertile research area.
While the proposed architecture externalizes
configuration and uses manual mapping between tiers
and schedulers, future work could explore policy
engines that dynamically adjust timeouts, concurrency
limits, and backpressure strategies based on observed
metrics. This would move from static to adaptive SLA-
aware architectures, potentially employing feedback
control or reinforcement learning techniques, provided
they are carefully evaluated and constrained.

Fourth, the developer experience of reactive versus
virtual-thread-based programming in financial teams

The American Journal of Engineering and Technology 204 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

deserves empirical study. While existing work notes
that reactive applications may take longer to
implement and debug, systematic investigations into
team productivity, error rates, and cognitive load
would provide valuable input into architectural
decision-making (Iwanowski & Kozieł, 2022; Mednikov,
2021; Srivastava, 2024).

Finally, the intersection of reactive security,
compliance, and auditability in financial APIs merits
dedicated attention. Reactive flows that involve
priority-based degradation must be designed so that
security invariants are never relaxed for the sake of
performance. Combining SLA-aware policies with
rigorous authentication, authorization, and audit
logging in WebFlux pipelines is a non-trivial challenge
that future research should address using both formal
modeling and empirical case studies (Deinum &
Cosmina, 2021; Li & Sharma, 2020).

Conclusion

This article has developed a comprehensive,
conceptually grounded framework for designing SLA-
aware reactive APIs in financial microservices using
Spring WebFlux, positioned within a broader landscape
of concurrency models that includes traditional
blocking MVC and Java virtual threads.

By synthesizing evidence from research articles,
theses, practitioner benchmarks, and technical
documentation, the article has shown that reactive
WebFlux excels in highly concurrent, I/O-bound,
latency-sensitive workloads, particularly when the
entire stack—network, application, and data access—
is designed around non-blocking principles (Reddy,
2018; Sharma, 2018; Spring WebFlux Documentation,
2023; Project Reactor, 2023; Iwanowski & Kozieł,
2022). At the same time, it has emphasized that
reactive architectures do not automatically
outperform imperative ones; their benefits are
contingent on system-wide alignment and must be
weighed against increased development complexity
(Dakowitz, 2018; Dahlin, 2020; Filichkin, 2018;
Mednikov, 2021; Srivastava, 2024).

The proposed priority-aware architecture builds on the
Priority-Aware Reactive APIs work by mapping SLA
tiers (Gold, Silver, Bronze) to a rich set of reactive
constructs: tier-specific schedulers, differentiated
backpressure strategies, tier-dependent timeouts and
fallbacks, and SLA-labeled telemetry (Priority-Aware
Reactive APIs, 2025). This demonstrates that domain
semantics—here, business-critical SLAs—can be
deeply encoded in reactive pipelines rather than only
in external infrastructure.

At the same time, the rise of Java virtual threads
introduces a viable alternative for services that are

database-bound or do not require sophisticated
streaming composition. Virtual-thread-based MVC can
deliver substantial concurrency improvements while
preserving imperative code patterns, offering a
pragmatic path for teams that cannot fully commit to
reactive programming (Royal Institute of Technology
(KTH), 2023; Nordlund & Nordström, 2023;
Sukhambekova, 2025).

Taken together, these insights support a portfolio-based
approach to concurrency in financial platforms.
Architects should assign services to WebFlux, virtual
threads, or traditional MVC based on careful workload
characterization and SLA requirements, and should
design SLA-aware policies consistently across these
models. The conceptual framework presented here
offers a starting point for such decisions and identifies
key directions for future empirical validation and
methodological refinement.

In sum, Spring WebFlux is neither a universal silver
bullet nor a niche curiosity; it is a powerful component
in the architect’s toolkit, particularly suited to building
priority-aware, SLA-sensitive financial APIs when its
capabilities are matched to the right problems and
embedded in a holistic concurrency strategy.

References

1. Priority-Aware Reactive APIs: Leveraging Spring
WebFlux for SLA-Tiered Traffic in Financial Services.
(2025). European Journal of Electrical Engineering
and Computer Science, 9(5), 31–40.
https://doi.org/10.24018/ejece.2025.9.5.743

2. C. Deinum, & I. Cosmina. (2021). Building Reactive
Applications with Spring WebFlux. In Spring in
Action (5th ed., ch. 10). Manning.

3. K. Dahlin. (2020). An evaluation of Spring WebFlux
with focus on built in SQL features (Master’s thesis).
Mid Sweden University.

4. P. Dakowitz. (2018). Comparing reactive and
conventional programming of Java based
microservices in containerized environments
(Master’s thesis). HAW Hamburg.

5. A. Filichkin. (2018, May). Spring Boot Performance
Battle: Blocking vs Non-Blocking vs Reactive.
Medium. https://filia-
aleks.medium.com/microservice-performance-
battle-spring-mvc-vs-webflux-80d39fd81bf0

6. S. Iwanowski, & G. Kozieł. (2022). Comparative
analysis of reactive and imperative approach in Java
web application development. Journal of Computer
Sciences Institute, 24, 242–249.
https://doi.org/10.35784/jcsi.2999

7. Q. Li, & R. Sharma. (2020). Review on Spring Boot
and Spring WebFlux for Reactive Web

https://doi.org/10.24018/ejece.2025.9.5.743
https://doi.org/10.24018/ejece.2025.9.5.743
https://filia-aleks.medium.com/microservice-performance-battle-spring-mvc-vs-webflux-80d39fd81bf0
https://filia-aleks.medium.com/microservice-performance-battle-spring-mvc-vs-webflux-80d39fd81bf0
https://filia-aleks.medium.com/microservice-performance-battle-spring-mvc-vs-webflux-80d39fd81bf0
https://filia-aleks.medium.com/microservice-performance-battle-spring-mvc-vs-webflux-80d39fd81bf0
https://filia-aleks.medium.com/microservice-performance-battle-spring-mvc-vs-webflux-80d39fd81bf0
https://filia-aleks.medium.com/microservice-performance-battle-spring-mvc-vs-webflux-80d39fd81bf0
https://doi.org/10.35784/jcsi.2999
https://doi.org/10.35784/jcsi.2999

The American Journal of Engineering and Technology 205 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Development. ResearchGate.
https://www.researchgate.net/publication/34115
1097

8. Y. Mednikov. (2021). Friendly WebFlux: A Practical
Guide to Reactive Programming with Spring
WebFlux. Independent.

9. T. Nurkiewicz, & B. Christensen. (2016). Reactive
Programming with RxJava: Creating asynchronous,
event based applications (1st ed.). O’Reilly Media.

10. J. B. Ottinger, & A. Lombardi. (2017). Spring Boot.
In Beginning Spring 5. Apress.
https://doi.org/10.1007/978-1-4842-4486-9_7

11. Project Reactor. (2023). Project Reactor webpage.
https://projectreactor.io/

12. K. Siva Prasad Reddy. (2018). Reactive
Programming Using Spring WebFlux. In Beginning
Spring Boot 2 (pp. 159–182). Apress.
https://doi.org/10.1007/978-1-4842-2931-6_12

13. Royal Institute of Technology (KTH). (2023).
Comparing Virtual Threads and Reactive WebFlux
in Spring (M.S. thesis). Stockholm, Sweden.

14. R. Sharma. (2018). Hands-On Reactive
Programming with Reactor: Build Reactive and
Scalable Microservices Using the Reactor
Framework. Packt.

15. M. Srivastava. (2024). Mastering Spring Reactive
Programming for High-Performance Web Apps.
Notion Press.

16. Spring WebFlux Documentation. (2023). In Spring
Framework Reference Documentation.
https://docs.spring.io/springframework/reference
/web/webflux.html

17. spring.io/reactive. (2023). Reactive Spring.
https://spring.io/reactive

18. A. Sukhambekova. (2025). Comparison of Spring
WebFlux and Spring MVC. Modern Scientific
Method, 9.

19. J. Thönes. (2015). Microservices. IEEE Software,
32(1), 113–116.

20. Kotlin Coroutines Documentation. (n.d.).
Coroutines overview.
https://kotlinlang.org/docs/reference/coroutines
overview.html

21. A. Nordlund, & N. Nordström. (2023). Comparing
Virtual Threads and Reactive WebFlux in Spring.
diva-portal.org. https://www.diva-
portal.org/smash/get/diva2%3A1763111/FULLTEX
T01.pdf

https://www.researchgate.net/publication/341151097
https://www.researchgate.net/publication/341151097
https://www.researchgate.net/publication/341151097
https://www.researchgate.net/publication/341151097
https://doi.org/10.1007/978-1-4842-4486-9_7
https://doi.org/10.1007/978-1-4842-4486-9_7
https://projectreactor.io/
https://projectreactor.io/
https://doi.org/10.1007/978-1-4842-2931-6_12
https://doi.org/10.1007/978-1-4842-2931-6_12
https://docs.spring.io/springframework/reference/web/webflux.html
https://docs.spring.io/springframework/reference/web/webflux.html
https://docs.spring.io/springframework/reference/web/webflux.html
https://docs.spring.io/springframework/reference/web/webflux.html
https://spring.io/reactive
https://spring.io/reactive
https://kotlinlang.org/docs/reference/coroutinesoverview.html
https://kotlinlang.org/docs/reference/coroutinesoverview.html
https://kotlinlang.org/docs/reference/coroutinesoverview.html
https://kotlinlang.org/docs/reference/coroutinesoverview.html
https://www.diva-portal.org/smash/get/diva2%3A1763111/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2%3A1763111/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2%3A1763111/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2%3A1763111/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2%3A1763111/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2%3A1763111/FULLTEXT01.pdf

