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Abstract 

Explainable AI (XAI) is critical in domains like credit scoring where model decisions must be transparent and accountable. 

This survey paper compares three local explanation techniques—SHAP, LIME, and ensemble Hybrid approach that 

integrates both. We evaluate these methods on consistency, variability, and suitability for regulatory environments. 

Emphasis is placed on use in credit risk modeling, with insights drawn from both literature and practical evaluation. 

Keywords: Explainable AI (XAI), SHAP, LIME, Local interpretability, Hybrid model explanations, Credit Risk 

Modeling. 

© 2025 Sai Prashanth Pathi, Jahnavi Swetha Pothineni. This work is licensed under a Creative Commons Attribution 4.0 

International License (CC BY 4.0). The authors retain copyright and allow others to share, adapt, or redistribute the work 

with proper attribution. 

Cite This Article: Pathi, S. P., & Pothineni, J. S. (2025). Interpretable AI in credit scoring: A comparative survey of SHAP, 

LIME, and hybrid approaches. The American Journal of Engineering and Technology, 7(11), 151–155. 

https://doi.org/10.37547/tajet/v7i11-304.

1. Introduction 

Although black-box models dominate machine learning 

applications in finance, their lack of interpretability limits 

their suitability for deployment. XAI methods help address 

this challenge. This paper surveys two prominent local 

explanation methods SHAP and LIME, and a hybrid 

technique combining them. Our focus is on their 

comparative performance in terms of explanation quality, 

stability, and repeatability in high-stakes environments. 

2. Background And Motivation 

Modern financial institutions increasingly adopt black-

box machine learning models like Random Forests, 

Gradient Boosting Machines and Neural Nets for tasks 

such as credit scoring. While these models offer high 

predictive accuracy, they lack transparency, posing 

challenges in regulated and ethically sensitive 

environments. Regulatory frameworks like GDPR and 

Fair Lending laws require decisions to be explainable, 

particularly when they impact individuals’ financial 

access. Interpretability is therefore essential not only 

for compliance but also to foster trust and detect potential 

biases. To address this, local explanation methods are 

widely used to interpret individual model predictions. Two 

prominent techniques are: 

 

• LIME (Local Interpretable Model-agnostic 

Explanations): Constructs a local surrogate model by 

perturbing input features around a data instance and 

fitting a simple model (e.g., linear regression) to 

approximate the complex decision boundary. While 

efficient and intuitive, LIME suffers from sensitivity to 
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randomness, often resulting in inconsistent 

explanations. 

• SHAP (SHapley Additive exPlanations): 

Computes feature contributions based on Shapley 

values from co- operative game theory, ensuring 

consistency and globalinterpretability. However, 

SHAP can be computationally expensive and may 

make simplifying assumptions, such as feature 

independence. 

 

Given their complementary properties LIME’s local 

adaptability and SHAP’s theoretical rigor, hybrid 

methods that combine both have emerged as promising 

solutions. This paper explores and evaluates such a 

hybrid approach in addition to the individual 

techniques. 

3. Literature Review 

Ribeiro et al. [1] introduced LIME as a local surrogate- 

based method that uses random perturbations to 

generate explanations, though it suffers from 

explanation variability. Lundberg et al. [2] proposed 

SHAP, using Shapley values from cooperative game 

theory to ensure consistent feature attribution. Recent 

work by Slack et al. [3] and Alvarez et al. [4] 

demonstrated adversarial vulnerabilities in both LIME 

and SHAP. Krishna et al. [5] studied disagreement 

among local methods across real-world applications. 

Carta et al. [6] and Vilone et al. [7] conducted broader 

reviews highlighting the strengths and deployment 

challenges of XAI in finance. Bhatt et al. [8] discussed 

practical hurdles in operationalizing XAI. 

Counterfactual approaches by Mothilal et al. [9] were 

also proposed to improve fairness in ML models. Our 

work synthesizes this literature and adds empirical 

evaluation of a hybrid SHAP-LIME framework which 

is an ensemble of both that can be used for credit 

scoring scenarios. 

4. Methodology 

To comprehensively evaluate the interpretability 

methods—SHAP, LIME, and a Hybrid SHAP-LIME 

ensemble, we designed a systematic experimental 

framework. Our method- ology centers on consistent 

modeling, controlled perturbation, and rigorous 

evaluation metrics across original and noisy datasets. 

4.1 Dataset and Preprocessing 

We utilize the publicly available LendingClub dataset 

[10], which contains loan application records from 

2007 to 2020. After filtering to include only loans 

labeled ”Fully Paid” or ”Charged Off,” we created a 

binary classification target. Preprocessing steps 

included handling missing values with mean 

imputation, one-hot encoding for categorical 

variablesand standardizing continuous variables using 

z-score normalization. This preprocessing ensures 

model robustness and fair comparison across 

explanation techniques. 

 

4.2 Model Training 

We trained a Random Forest classifier using an 80-20 

train-test split. Hyperparameters were selected through 

cross- validation. The classifier serves as the consistent 

black-box model whose predictions are explained using 

SHAP, LIME, and the Hybrid method. 

 

4.3 Explanation Frameworks 

Each explanation method was applied to the same set of 

test instances under two controlled conditions: 

1) Original Data: Baseline condition with unaltered test 

data. 

2) Noisy Data: Gaussian noise (µ = 0, σ = 0.1) was 

added to randomly selected columns in each iteration 

to emulate real-world perturbations and test 

explanation robustness. 

 

Each method was executed over 10 independent iterations 

per test instance to adequately capture variability and 

facilitate statistical analysis. 

 

4.4 Explanation Methods 

• LIME: [1] Local surrogate models were fitted using 

perturbed samples and weighted linear regression. It is 

model-agnostic and fast but known for unstable 

explanations. 

• SHAP: [2] Kernel SHAP was utilized to estimate 

feature contributions for each instance. Although Kernel 

SHAP provides theoretical guarantees of consistency 

and local accuracy, it is computationally intensive, 

especially in high-dimensional settings or when 

applied to large datasets. For tree-based models, more 

efficient alternatives such as Tree SHAP can 

significantly reduce computational overhead by 
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leveraging the structure of decision trees. Nonetheless, 

Kernel SHAP was selected in this study to preserve 

model-agnostic compatibility across all explanation 

methods. 

• Hybrid SHAP-LIME: The Hybrid methodology 

integrates the complementary advantages of SHAP and 

LIME through a two-phase process. Initially, SHAP is 

employed to rank and select the top-J most influential 

features for a given instance, leveraging its game-

theoretic foundation to ensure global attribution 

consistency. Subsequently, LIME is applied to construct 

a sparse, locally faithful surrogate model, constrained to 

this SHAP-informed feature subset. From this local 

model, a refined selection of the top-K features (K < J) 

are extracted to produce the final explanation. This 

hierarchical approach enhances interpretability by 

anchoring local explanations in globally sound feature 

importance, while also improving explanation stability 

through reduced perturbation variability. 

 

4.5 Evaluation Metrics 

We assessed the stability and consistency of the 

explanations using the following metrics: 

• Spearman Rank Correlation (ρ): Measures rank-

order correlation between feature importances 

across runs. Higher values indicate greater stability. 

• Standard Deviation of Weights: Captures the 

variability in feature attribution weights across 

iterations. Lower values suggest consistent 

explanations. 

• Jaccard Stability Index: Quantifies the 

intersection- over-union (IoU) of top-K feature sets 

across runs. This reflects the reproducibility of 

important features. 

• Kendall Tau (τ): Evaluates ordinal correlation 

between ranked lists of features. It complements 

Spearman by emphasizing order-preserving 

consistency. 

 

All metrics were averaged over all samples and runs 

for both original and noisy datasets to ensure statistical 

robustness. This evaluation framework allows us to 

distinguish methods based on consistency, resilience to 

noise, and suitability for sensitive domains like 

finance. 

5. Comparative Evaluation 

We report the performance of SHAP, LIME, and 

Hybrid SHAP-LIME explanations across two settings: 

on original test data and on data with Gaussian noise 

added to simulate real- world variability. Each method 

was run for 10 iterations per example, and the 

following metrics were averaged across runs: 

Spearman rank correlation, weight standard deviation, 

Jaccard stability, and Kendall Tau.

  

TABLE I PERFORMANCE ON ORIGINAL TEST DATA. HIGHER VALUES OF SPEARMAN, JACCARD, AND KENDALL 

INDICATE BETTER STABILITY; LOWER STANDARD DEVIATION IS PREFERRED. 

 

Method Spearman Weight Std Dev Jaccard Stability Kendall Tau 

SHAP 0.902 0.001 0.681 0.855 

LIME 0.673 0.003 0.503 0.600 

Hybrid 0.860 0.001 0.631 0.793 

 

 

TABLE II PERFORMANCE ON NOISY DATA (STD = 0.1 NOISE ADDED TO RANDOM FEATURES). 

 

Method Spearman Weight Std Dev Jaccard Stability Kendall Tau 

SHAP 0.813 0.001 0.869 0.723 

LIME 0.673 0.003 0.503 0.600 

Hybrid 0.898 0.002 0.656 0.843 
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In the clean dataset, SHAP outperforms all methods across the board. This is largely due to its foundation 

in cooperative game theory, which ensures additive 

consistency and robust global-local alignment. 

SHAP’s kernel explainer approximates the 

contribution of each feature based on marginal 

expectations, which works especially well when the 

feature space is not distorted by noise. This leads 

to high Spearman and Kendall rank correlations, 

extremely lowvariability in feature attributions, and 

consistent identification of top features. 

 

However, SHAP’s performance deteriorates when 

Gaussian noise is introduced. The reason lies in its 

assumption of feature independence and reliance on global 

sampling distributions. When irrelevant noise enters the 

data, SHAP can over-attribute importance to perturbed 

dimensions, reducing fidelity to local model behavior. 

 

LIME, on the other hand, remains relatively unaffected 

in score by the presence of noise because it always 

relies on localized sampling and surrogate modeling. 

However, this comes at the cost of high variability and low 

reproducibility even on clean data. Its inherently stochastic 

perturbation and sampling make it sensitive to 

initialization, which translates into low Spearman/Kendall 

correlations and inconsistent top feature rankings across 

runs. 

 

The Hybrid SHAP-LIME method shows a compelling 

trade-off. While it does not surpass SHAP on clean data, 

it is far more resilient to noise. By leveraging SHAP for 

top-J feature selection and constraining LIME’s 

perturbation to only relevant dimensions, it limits the 

influence of irrelevant or noisy features. The addition of 

Lasso regularization in the local model further enforces 

sparsity, yielding higher attribution stability and rank 

agreement. This design enables Hybrid to outperform both 

SHAP and LIME under noisy conditions while 

maintaining near-competitive results in cleaner 

environments.

  

TABLE III COMPARISON OF SHAP, LIME, AND HYBRID APPROACH 

 

Method Strengths Limitations Best Applied 

When 

LIME Model-agnostic; 

intuitive and fast; 

localized 

approximation 

of decision 

boundary 

High variability in 

explanations; 

sensitive to 

perturbations and 

initialization; 

unstable across runs 

Local feature 

influence matters; 

data distribution is 

stable; explanation 

speed is crucial 

SHAP Theoretically 

sound; ensures 

consistency and 

additivity; robust 

on clean data 

Computationally 

intensive; assumes 

feature 

independence; 

susceptible to noise 

in input space 

Interpretability 

demands are 

high; reliable 

attribution needed 

in low-noise 

environments 

Hybrid Balances local 

and global 

interpretability; 

improves stability 

via SHAP-filtered 

LIME; effective 

under noisy 

conditions 

 

Requires careful 

tuning of feature 

count and 

surrogate model; 

added complexity 

in design 

Data contains noise 

or feature 

correlation; 

trade-off between 

fidelity and 

stability is desired 

6. Discussion Performance varied across instances; SHAP performed 
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especially well in settings with sparse features and low 

multi- collinearity, where global attribution 

assumptions held more robustly. Hybrid showed the 

best consistency when noise or feature interaction 

complexity increased. Method selection should be 

context-specific and guided by use-case priorities. 

7. Challenges And Future Directions 

While local explanation methods such as SHAP, 

LIME, and hybrid approaches have demonstrated 

considerable promise, several critical challenges 

remain. A foremost limitation of this study is that the 

evaluation was conducted solely on the LendingClub 

dataset. This restricts the generalizability of the 

findings to other domains or data distributions. Future 

work should extend the empirical analysis to a broader 

range of datasets varying in size, dimensionality, and 

application domain, to rigorously assess the robustness 

and adaptability of these explanation techniques. 

Moreover, existing evaluation metrics focus primarily 

on algorithmic consistency and stability, often 

neglecting the human-centric dimension of 

interpretability. Incorporating user trust assessments, 

domain expert validation, and qualitative feedback can 

offer deeper insights into the real-world usability of 

explanations. Additionally, advancing explanation 

frameworks through the integration of causal inference 

and counterfactual reasoning may improve the 

actionability and accountability of model insights. 

Another key challenge lies in the practical deployment 

of explanation methods. Computationally intensive 

techniques like Kernel SHAP may not be suitable for 

real-time applications or resource-constrained 

environments. Developing efficient approximations 

and stream-compatible interpretability tools will be 

essential for enabling scalable, interpretable AI 

systems in production-grade settings. 

8. Conclusion 

We presented a comparative survey of SHAP, LIME, and 

Hybrid local interpretability methods for credit scoring. 

Our results show the hybrid approach offers a compelling 

balance between SHAP’s stability and LIME’s local 

modeling. Performance varies by context, and practitioners 

should align method choice with data properties and 

regulatory demands.  
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