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Abstract

Explainable Al (XAl) is critical in domains like credit scoring where model decisions must be transparent and accountable.
This survey paper compares three local explanation techniques—SHAP, LIME, and ensemble Hybrid approach that
integrates both. We evaluate these methods on consistency, variability, and suitability for regulatory environments.
Emphasis is placed on use in credit risk modeling, with insights drawn from both literature and practical evaluation.
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1. Introduction

Although black-box models dominate machine learning challenges in regulated and ethically sensitive

applications in finance, their lack of interpretability limits
their suitability for deployment. XAl methods help address
this challenge. This paper surveys two prominent local
explanation methods SHAP and LIME, and a hybrid
technique combining them. Our focus is on their
comparative performance in terms of explanation quality,
stability, and repeatability in high-stakes environments.

2. Background And Motivation

Modern financial institutions increasingly adopt black-
box machine learning models like Random Forests,
Gradient Boosting Machines and Neural Nets for tasks
such as credit scoring. While these models offer high
predictive accuracy, they lack transparency, posing
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environments. Regulatory frameworks like GDPR and
Fair Lending laws require decisions to be explainable,
particularly when they impact individuals’ financial
access. Interpretability is therefore essential not only
for compliance but also to foster trust and detect potential
biases. To address this, local explanation methods are
widely used to interpret individual model predictions. Two
prominent techniques are:

- LIME (Local Interpretable Model-agnostic
Explanations): Constructs a local surrogate model by
perturbing input features around a data instance and
fitting a simple model (e.g., linear regression) to
approximate the complex decision boundary. While
efficient and intuitive, LIME suffers from sensitivity to
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randomness, often  resulting in  inconsistent
explanations.
- SHAP (SHapley Additive exPlanations):

Computes feature contributions based on Shapley
values from co- operative game theory, ensuring
consistency and globalinterpretability. However,
SHAP can be computationally expensive and may
make simplifying assumptions, such as feature
independence.

Given their complementary properties LIME’s local
adaptability and SHAP’s theoretical rigor, hybrid
methods that combine both have emerged as promising
solutions. This paper explores and evaluates such a
hybrid approach in addition to the individual
techniques.

3. Literature Review

Ribeiro et al. [1] introduced LIME as a local surrogate-
based method that uses random perturbations to
generate explanations, though it suffers from
explanation variability. Lundberg et al. [2] proposed
SHAP, using Shapley values from cooperative game
theory to ensure consistent feature attribution. Recent
work by Slack et al. [3] and Alvarez et al. [4]
demonstrated adversarial vulnerabilities in both LIME
and SHAP. Krishna et al. [5] studied disagreement
among local methods across real-world applications.
Carta et al. [6] and Vilone et al. [7] conducted broader
reviews highlighting the strengths and deployment
challenges of XAl in finance. Bhatt et al. [8] discussed
practical  hurdles in  operationalizing XAl
Counterfactual approaches by Mothilal et al. [9] were
also proposed to improve fairness in ML models. Our
work synthesizes this literature and adds empirical
evaluation of a hybrid SHAP-LIME framework which
is an ensemble of both that can be used for credit
scoring scenarios.

4. Methodology

To comprehensively evaluate the interpretability
methods—SHAP, LIME, and a Hybrid SHAP-LIME
ensemble, we designed a systematic experimental
framework. Our method- ology centers on consistent
modeling, controlled perturbation, and rigorous
evaluation metrics across original and noisy datasets.

4.1 Dataset and Preprocessing
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We utilize the publicly available LendingClub dataset
[10], which contains loan application records from
2007 to 2020. After filtering to include only loans
labeled “Fully Paid” or ”Charged Off,” we created a
binary classification target. Preprocessing steps
included handling missing values with mean
imputation, one-hot encoding for categorical
variablesand standardizing continuous variables using
z-score normalization. This preprocessing ensures
model robustness and fair comparison across
explanation techniques.

4.2 Model Training

We trained a Random Forest classifier using an 80-20
train-test split. Hyperparameters were selected through
cross- validation. The classifier serves as the consistent
black-box model whose predictions are explained using
SHAP, LIME, and the Hybrid method.

4.3 Explanation Frameworks

Each explanation method was applied to the same set of

test instances under two controlled conditions:

1) Original Data: Baseline condition with unaltered test
data.

2) Noisy Data: Gaussian noise (u = 0, ¢ = 0.1) was
added to randomly selected columns in each iteration
to emulate real-world perturbations and test
explanation robustness.

Each method was executed over 10 independent iterations
per test instance to adequately capture variability and
facilitate statistical analysis.

4.4 Explanation Methods

- LIME: [1] Local surrogate models were fitted using
perturbed samples and weighted linear regression. It is
model-agnostic and fast but known for unstable
explanations.

- SHAP: [2] Kernel SHAP was utilized to estimate
feature contributions for each instance. Although Kernel
SHAP provides theoretical guarantees of consistency
and local accuracy, it is computationally intensive,
especially in high-dimensional settings or when
applied to large datasets. For tree-based models, more
efficient alternatives such as Tree SHAP can
significantly reduce computational overhead by
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leveraging the structure of decision trees. Nonetheless,
Kernel SHAP was selected in this study to preserve
model-agnostic compatibility across all explanation
methods.

Hybrid SHAP-LIME: The Hybrid methodology
integrates the complementary advantages of SHAP and
LIME through a two-phase process. Initially, SHAP is
employed to rank and select the top-/ most influential
features for a given instance, leveraging its game-
theoretic foundation to ensure global attribution
consistency. Subsequently, LIME is applied to construct
a sparse, locally faithful surrogate model, constrained to
this SHAP-informed feature subset. From this local
model, a refined selection of the top-K features (K < J)
are extracted to produce the final explanation. This
hierarchical approach enhances interpretability by
anchoring local explanations in globally sound feature
importance, while also improving explanation stability
through reduced perturbation variability.

4.5 Evaluation Metrics

We assessed the stability and consistency of the
explanations using the following metrics:
- Spearman Rank Correlation (p): Measures rank-

order correlation between feature importances
across runs. Higher values indicate greater stability.

- Standard Deviation of Weights: Captures the
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variability in feature attribution weights across

iterations. Lower values suggest consistent
explanations.
- Jaccard Stability Index: Quantifies the

intersection- over-union (IoU) of top-K feature sets
across runs. This reflects the reproducibility of
important features.

- Kendall Tau (7): Evaluates ordinal correlation
between ranked lists of features. It complements
Spearman by emphasizing
consistency.

order-preserving

All metrics were averaged over all samples and runs
for both original and noisy datasets to ensure statistical
robustness. This evaluation framework allows us to
distinguish methods based on consistency, resilience to
noise, and suitability for sensitive domains like
finance.

5. Comparative Evaluation

We report the performance of SHAP, LIME, and
Hybrid SHAP-LIME explanations across two settings:
on original test data and on data with Gaussian noise
added to simulate real- world variability. Each method
was run for 10 iterations per example, and the
following metrics were averaged across runs:
Spearman rank correlation, weight standard deviation,
Jaccard stability, and Kendall Tau.

TABLE I PERFORMANCE ON ORIGINAL TEST DATA. HIGHER VALUES OF SPEARMAN, JACCARD, AND KENDALL
INDICATE BETTER STABILITY; LOWER STANDARD DEVIATION IS PREFERRED.

Method Spearman Weight Std Dev Jaccard Stability Kendall Tau
SHAP 0.902 0.001 0.681 0.855
LIME 0.673 0.003 0.503 0.600
Hybrid 0.860 0.001 0.631 0.793

TABLE II PERFORMANCE ON NOISY DATA (STD =(.1 NOISE ADDED TO RANDOM FEATURES).

Method Spearman Weight Std Dev Jaccard Stability Kendall Tau
SHAP 0.813 0.001 0.869 0.723
LIME 0.673 0.003 0.503 0.600
Hybrid 0.898 0.002 0.656 0.843
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In the clean dataset, SHAP outperforms all methods
in cooperative game theory, which ensures additive
consistency and robust global-local alignment.
SHAP’s  kernel explainer approximates the
contribution of each feature based on marginal
expectations, which works especially well when the
feature space is not distorted by noise. This leads
to high Spearman and Kendall rank correlations,
extremely lowvariability in feature attributions, and
consistent identification of top features.

However, SHAP’s performance deteriorates when
Gaussian noise is introduced. The reason lies in its
assumption of feature independence and reliance on global
sampling distributions. When irrelevant noise enters the
data, SHAP can over-attribute importance to perturbed
dimensions, reducing fidelity to local model behavior.

LIME, on the other hand, remains relatively unaffected
in score by the presence of noise because it always
relies on localized sampling and surrogate modeling.
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across the board. This is largely due to its foundation
However, this comes at the cost of high variability and low
reproducibility even on clean data. Its inherently stochastic
perturbation and sampling make it sensitive to
initialization, which translates into low Spearman/Kendall
correlations and inconsistent top feature rankings across
runs.

The Hybrid SHAP-LIME method shows a compelling
trade-off. While it does not surpass SHAP on clean data,
it is far more resilient to noise. By leveraging SHAP for
top-J feature selection and constraining LIME’s
perturbation to only relevant dimensions, it limits the
influence of irrelevant or noisy features. The addition of
Lasso regularization in the local model further enforces
sparsity, yielding higher attribution stability and rank
agreement. This design enables Hybrid to outperform both

SHAP and LIME under
near-competitive

maintaining
environments.

TABLE III COMPARISON OF SHAP, LIME, AND HYBRID APPROACH

results

Method Strengths Limitations Best Applied
When
LIME Model-agnostic; High variability in Local feature
intuitive and fast; explanations; influence matters;
localized sensitive to data distribution is
approximation perturbations and | stable; explanation
of decision initialization; speed is crucial
boundary unstable across runs
SHAP Theoretically Computationally Interpretability
sound; ensures intensive; assumes | demands are
consistency and feature high; reliable
additivity; robust independence; attribution needed
on clean data susceptible to noise in low-noise
in input space environments
Hybrid Balances local Requires careful | Data contains noise
and global tuning of feature or feature
interpretability; count and correlation;
improves stability | surrogate model; trade-off between
via SHAP-filtered | added complexity fidelity and
LIME; effective in design stability is desired
under noisy
conditions

6. Discussion
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Performance varied across instances; SHAP performed

noisy conditions while
cleaner
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especially well in settings with sparse features and low
multi-  collinearity, where global attribution
assumptions held more robustly. Hybrid showed the
best consistency when noise or feature interaction
complexity increased. Method selection should be
context-specific and guided by use-case priorities.

7. Challenges And Future Directions

While local explanation methods such as SHAP,
LIME, and hybrid approaches have demonstrated
considerable promise, several critical challenges
remain. A foremost limitation of this study is that the
evaluation was conducted solely on the LendingClub
dataset. This restricts the generalizability of the
findings to other domains or data distributions. Future
work should extend the empirical analysis to a broader
range of datasets varying in size, dimensionality, and
application domain, to rigorously assess the robustness
and adaptability of these explanation techniques.
Moreover, existing evaluation metrics focus primarily
on algorithmic consistency and stability, often
neglecting the human-centric  dimension of
interpretability. Incorporating user trust assessments,
domain expert validation, and qualitative feedback can
offer deeper insights into the real-world usability of
explanations. Additionally, advancing explanation
frameworks through the integration of causal inference
and counterfactual reasoning may improve the
actionability and accountability of model insights.
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