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Abstract 

To ensure performance, safety, and efficiency, thermal management is key to the operation of electric vehicles (EVs) as 

they continue to scale varying climates, charging behaviors, and duty cycles. This paper describes a path to thermal 

intelligence which leverages publicly available datasets. Some of these datasets include drive profiles from NREL Fleet 

DNA, climate data from NOAA GHCN, battery aging data from NASA and MIT, and workplace charging behaviors from 

ACN-Data. The paper also draws upon open-source simulator or learning tools such as PyBaMM, FASTSim, and 

pythermalcomfort. Using a combination of physics and machine learning, we obtain a 54% reduction in root mean square 

error (RMSE) for peak battery temperature predictions based on a physics-only baseline. The smart system utilizes physical 

and uses machine learning to predict cabin HVAC energy use, given different comfort constraints (PMV/PPD). During 

experimentations in urban commutes and last-mile delivery, we find that cabin HVAC range reductions can exceed 10% 

in extreme climates; as a countermeasure, we piloted comfort-aware setpoint relaxations as well as charging-aware pre-

conditioning the night before. In the case of charging-aware pre-conditioning, by using real-world timestamps for the 

charging events, we reduced the starting battery temperature by 6.8°C while simultaneously increasing passenger comfort 

by 85%. All of this was done without an increase in onboard energy consumption. We believe this work provides for the 

construction of open thermal intelligence pipelines to maintain safety, efficiency, and comfort for future software-defined 

Electric vehicle and fleet platforms. 
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1. Introduction 

The shift from ICEs to BEVs has moved the thermal 

management challenges from exhaust-driven thermal 

dynamics to electrochemical thermal dynamics and 

passenger-comfort-driven thermal limits. Increasingly, 

performance, durability, and energy efficiency of EV 

batteries and cabin systems are underpinned by thermal 

management capabilities under significant load, climatic, 

and usage mode variations [1]–[3]. Therefore, modern 

BEVs require thermal management of traction systems 

(prevent degradation while enabling fast charging) and 

cabin comfort (meets passenger comfort targets defined by 

ASHRAE and ISO thermal comfort standards [4], [5]), 

while also minimizing range constraints and energy losses.  

https://doi.org/10.37547/tajet/v7i11-301
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1.1Battery Thermal Management in the Era of 

Electrification 

Lithium-ion cells demonstrate societally persistent 

thermally coupled electrochemical processes that involve 

exothermic side reactions, Joule heating, and entropy 

change during discharge and charge [6], [7]. Emitted heat 

that is not dissipated quickly may increase solid electrolyte 

interphase (SEI) growth, induce lithium plating, and reduce 

cycle life [8], while excessive cool-down contributes to 

increased internal resistance and energy usage [9]. 

Although electro-thermal models based on physics [10] 

and reduced-order predictors [11] relatively well-explored, 

these approaches lack generalizability under real-world 

duty cycles and seasonal climatic variability, especially at 

scale. 

With the emergence of open battery degradation datasets, 

including the PCoE Li-ion dataset [12] from NASA, the 

Oxford Battery Degradation Dataset [13], and the 

MIT/Severson Fast/Charging Dataset [14], combined with 

open simulation tools, such as PyBaMM [15], a 

meaningful opportunity exists to integrate bench battery 

data with large-scale duty cycle data, towards hybrid 

physics–machine learning models for scalable battery 

thermal forecasting. 

1.2 Cabin Comfort vs. Energy Trade-off 

Passenger thermal comfort in battery electric vehicles 

(BEVs) is measured with the American Society of Heating, 

Refrigeration and Air Conditioning Engineers' (ASHRAE) 

Predicted Mean Vote (PMV) and Predicted Percentage of 

Dissatisfied (PPD) indices. The comfort, or discomfort, of 

passengers in a vehicle has a notable effect on the energy 

consumed by the HVAC systems in the BEVs. In cold and 

hot climates, HVAC systems can consume about 10% to 

30% of total energy consumed during driving, causing 

range penalties upwards of 50% [16] under extreme 

conditions. Software tools in the public domain, like the 

pythermalcomfort [17] allow for easy calculations for these 

comfort indices using both environmental and personal 

variables.  Previous work has examined HVAC control 

strategies [18], [19] or modeling of cabin air temperatures 

[20]; however, there is little open literature that describes a 

combination of comfort-energy modeling with entirely 

public datasets and typical weather/drive profiles. 

1.3 Big Data for Scaled EV Thermal 

Intelligence 

The use of new real-world datasets, such as NREL's Fleet 

DNA (which includes actual driving cycles for different 

vehicle types) [21], NOAA's Global Historical 

Climatology Network (GHCN) for global weather data 

[22], and the ACN workplace charging dataset [23], 

facilitate the reproducible, population-scale simulations of 

EV driving and charging cycles. Open-source simulation 

frameworks, for example, FASTSim [24], efficiently 

provide powertrain and heat flow calculations for a diverse 

range of simulations in EVs. 

Together, these datasets allow for scalable "thermal 

intelligence" to answer important questions: How does 

peak battery temperature change due to stochastic duty 

cycles in climate, How much range is given up for different 

cabin comfort levels given actual weather, How much does 

charging-aware pre-conditioning mitigate thermal load. 

1.4 Contributions 

The main contributions of this work are as follows: 

1. A fully reproducible hybrid physics–machine learning 

pipeline has been developed, which connects publicly 

available datasets on battery, climate, vehicle 

simulation, and charging, to enable modeling of the 

thermal dynamics of EV cabin and battery systems. 

2. In order to assess the comfort–energy–range trade-

offs, we quantify the standard comfort indices PMV 

and PPD, across observed vehicle use and associated 

weather profiles. 

3. We propose and evaluate charging-aware pre-

conditioning strategies based on public charging 

session data, with respect to the associated thermal 

efficiency and energy ramifications. 

4. Additionally, all datasets, simulations, and 

dependencies on code, are freely accessible and 

shared, to allow other researchers and practitioners to 

replicate or extend this analysis without proprietary 

software dependencies. 

The structure of the remainder of the paper is as follows: in 

Section 2, we summarize relevant literature; Section 3 

details the methodology; Section 4 configures the 

simulated environment; Section 5 presents our principal 

results; and in Section 6 we explore industrial implications 

and future directions. 

2. Related Work 

Electric vehicle (EV) thermal management research has 

expanded significantly in the past decade across areas such 

as battery thermal modeling, cabin thermal comfort 

optimization, and the emerging use of artificial intelligence 

(AI) and big data analytics. This section summarizes the 

major research advances in each of those areas, discusses 

the limitations of current methods, and highlights the need 

for integrated and publicly reproducible approaches. 
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2.1 Battery Thermal Modeling and 

Management 

Battery thermal management is critical for performance, 

safety, and lifetime in EVs. Early studies examined one-

dimensional electro-thermal coupling models that 

predicted heat generation in a lithium-ion cell at either a 

steady state or during a drive-cycle [10]. Typically, these 

models used physics-based representations of the 

electrochemistry involving energy balance equations and 

heat transfer coefficients. By going further, discoveries 

were made with reduced-order model approaches such as 

lumped capacitance and equivalent RC-network modeling 

[11], leading to faster simulations, but to a detriment of 

accuracy for nonlinear behaviors such as fast charging and 

discharge at high C-rate. 

Machine learning (ML) and hybrid physics-informed 

learning models have gained popularity thanks to freely 

available datasets from NASA PCoE [12], Oxford [13], 

and MIT/Severson [14]. These models are able to 

characterize complex relationships between cycling 

conditions, ambient temperature, state-of-health (SOH), 

and heat generation while being generalized to different 

cell chemistries. However, much of the literature relies on 

bench test data without real-world drive and ambient 

condition variability, which reduces applicability for large-

scale use. 

2.2 Cabin Thermal Comfort and HVAC Energy 

Optimization 

Cabin climate control is a significant component of 

auxiliary energy use in EVs, particularly in extreme 

temperatures. While existing HVAC systems are focused 

on regulating the temperature of the air within the cabin, 

past research has begun to shift to other personal comfort 

indices such as the Predicted Mean Vote (PMV) which 

articulates thermal sensation on a -3 (cold) to +3 (hot) scale 

[4]. Several studies have explored MPC based design 

methodology for optimizing HVAC systems with respect 

to comfort and energy optimization [18], [19]. 

Nevertheless, these studies exclusively utilized proprietary 

vehicle data or synthetic cabin models to develop and 

validate their methods, which diminishes the work's 

reproducing capability. There are very few studies that 

have directly simulated the HVAC load and then its direct 

energy impact under real temperature, humidity, and solar 

conditions across geographically diverse data sets. Few 

studies examine how comfort, energy use, and range loss 

in EVs are affected using open weather data and powertrain 

simulation models. 

2.3 Data-Driven EV Simulation and Public 

Datasets 

Publicly available databases, such as the NREL Fleet DNA 

[21], contain speed, stop, and road grade dynamics 

associated with commercial and light-duty fleets that can 

be used to represent representative duty cycles in 

simulations of electric vehicles (EVs). Also, the Global 

Historical Climatology Network (GHCN) [22], from the 

National Oceanic and Atmospheric Administration 

(NOAA), provides multi-decade, station-level 

climatological data for temperature, wind speed, humidity, 

and solar radiation. Together, these databases enable end-

to-end, population-level simulations of EV use cases, 

including thermal behavior, when combined with open-

source vehicle simulation tools (i.e., FASTSim [24]), and 

electrochemical simulators (i.e., PyBaMM [15]). While 

some researchers have leveraged these tools in isolation 

(e.g., using FASTSim for energy consumption [24] or 

using PyBaMM for electrochemical diagnostics [15]), little 

work has integrated public datasets into one thermal 

pipeline of models that consist of power, heat, comfort, and 

charging data. The lack of integrated and open-access 

modeling negate the ability to compare analysis between 

climates, charging strategies, and behavior interactions in 

user patterns. 

2.4 Gaps in Current Literature 

Based on the reviewed studies, several gaps remain 

unaddressed: 

1. Lack of fully reproducible thermal intelligence 

workflows using only public datasets. 

2. Limited cross-domain evaluation of battery and cabin 

thermal responses under synchronized driving and 

weather data. 

3. Absence of charging-aware thermal strategies built 

from open workplace or residential charging session 

archives. 

To address these gaps, we propose an open, scalable 

simulation and learning framework that combines electro-

thermal battery modeling, HVAC comfort-energy 

modeling, and real-world duty and climate datasets, with 

all tools and data accessible via open platforms. 

3. Methodology 

The methodology for this work integrates electro-thermal 

battery simulation, human thermal comfort modeling, 

vehicle energy flow estimation, and AI-based regression 

techniques. Each sub-system is parameterized using public 

datasets to allow reproducibility and scalability across 

diverse driving, climate, and charging behaviors. 
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3.1 Public Data Sources and Fusion Strategy 

 

Four primary data sources form the inputs for this study: 

1. Driving Cycles: NREL Fleet DNA [21] was used 

to sample real-world drive cycles (speed, grade, 

and stop behavior) across a range of vehicle 

classes (light-duty passenger vehicle to 

commercial van). 

2. Battery Degradation and Thermal Parameters: 

NASA PCoE [12], Oxford Battery Dataset [13], 

and MIT/Severson [14] datasets were used to 

extract electro-thermal relationships (e.g., heat 

generation vs. C-rate, temperature rise, 

impedance evolution). 

3. Climate Data: NOAA Global Historical 

Climatology Network (GHCN) [22] provided 

daily weather parameters including ambient 

temperature, humidity, and solar irradiance across 

multiple U.S. and global locations. 

4. Charging Patterns: The ACN-Data archive [23] 

was used to derive charging session distributions, 

enabling the simulation of pre-conditioning and 

thermal soak effects ahead of next driving events. 

These datasets were fused into a unified simulation 

pipeline, where each driving session was assigned a 

climate profile and charging pattern according to its 

geolocation or randomly sampled scenario context. The 

outputs of each phase fed into either the physics-based or 

machine learning-based thermal estimators described 

below. 

 

3.2 Battery Electro-Thermal Simulation and Hybrid 

Forecasting 

 

The heat generated in lithium-ion battery cells was 

computed based on a combination of physics equations and 

data-driven models. The underlying heat generation 

equation is based on energy balance: 

Q̇ = I²R_int + I(T dE_oc/dT) 

Where, 

Q̇ is the rate of heat generation (W) 

I is current (A), R_int is internal resistance (Ω) 

T is temperature (K) 

 dE_oc/dT is the temperature-dependent electrochemical 

entropy term. 

 

Physics-based simulations were conducted using PyBaMM 

[15], parameterized with open benchmark datasets [12]–

[14], to derive cell temperature rise as a function of State 

of Charge (SOC), ambient temperature, and discharge rate. 

A gradient boosting regression model (XGBoost) was then 

fitted using features such as drive power, ambient 

temperature, and cooling settings, with PyBaMM 

simulation outputs acting as the supervisory label set. This 

hybrid approach enables generalization across cell types 

while embedding physics constraints into the surrogate 

model. 

 

3.3 Cabin Comfort, HVAC Modeling, and Range 

Estimation 

 

Cabin thermal comfort was evaluated using the ASHRAE 

Standard 55 Predicted Mean Vote (PMV) model [4], which 

describes thermal sensation on a 7-point scale (from -3 

“cold” to +3 “hot”). PMV was computed using the 

pythermalcomfort package [17], with inputs from NOAA 

(ambient) and derived HVAC performance curves. The 

Predicted Percentage of Dissatisfied (PPD) index was also  

 

calculated as: 

PPD = 100 - 95 exp(-0.03353 PMV⁴ - 0.2179 PMV²) 

To quantify HVAC energy use, an empirical model based 

on FASTSim [24] was adopted, 

 

where cabin load (in W) was computed from the heat 

balance equation: 

Q_cabin = Q̇_solar + Q̇_occupant + Q̇_leakage – 

Q̇_HVAC 

 

with HVAC compressor power (P_HVAC) linearly 

proportional to cabin cooling or heating load under typical 

Coefficient of Performance (COP) assumptions. The 

resultant HVAC energy consumption was deducted from 

vehicle range estimates. 

 

3.4 Charging-Aware Thermal Pre-conditioning 

 

Using ACN charging data [23], distributions of arrival and 

departure times at Level 2 workplace chargers were 

derived. Pre-conditioning for cabin and battery was 

simulated during connected states, with the impact 

assessed in terms of peak battery and cabin temperature 

reduction ahead of the next drive cycle. 

3.5 Simulation Architecture 

The entire simulation pipeline was designed as shown in 

Fig. 1 (to be rendered later). Each simulation batch 

operated on scenario tuples: 
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{drive_cycle, ambient_weather, battery_SOHC, 

charge_profile} 

where SOHC is State of Health and Charge, derived from 

dataset metadata. Results were tabulated for battery peak 

temperature, HVAC energy, passenger comfort score, and 

resultant range. 

The surrogate thermal and comfort-inference models were 

trained using 80% of synthesized scenarios, and tested on 

20% unseen combinations of fleet duty, climate zone, and 

charging behavior to ensure robustness. 

 

 
Figure 1: Scalable Thermal Intelligence Simulation 

Pipeline. 

 

3.5.1 Battery Heat Generation (Electrochemical 

Model) 

 

The total heat generation rate 𝑄̇in a lithium-ion cell is: 

𝑄̇ = 𝐼2𝑅int + 𝐼 ⋅ 𝑇 ⋅
𝑑𝐸oc

𝑑𝑇
 

Where: 

• I: battery current (A) 

• Rint: internal resistance (Ω) 

• T: cell absolute temperature (K) 

• 
dEoc

dT
: entropy coefficient (V/K) 

• Term 1: Joule heat from internal resistance 

• Term 2: Reversible entropic heat 

Used inside PyBaMM-based simulations to track core and 

surface temperature under dynamic loads. 

 

3.5.2 Cabin Comfort – PMV (Predicted Mean 

Vote) 

 

The PMV index is defined as: 

PMV = [0.303 ⋅ exp⁡(−0.036𝑀) + 0.028][(𝑀 −𝑊)

− 3.05 × 10−3(5733 − 6.99(𝑀 −𝑊)

− 𝑝𝑎) − 0.42((𝑀 −𝑊) − 58.15)

− 1.7 × 10−5𝑀(5867 − 𝑝𝑎)

− 0.0014𝑀(34 − 𝑇a)

− 3.96 × 10−8𝑓cl((𝑇cl + 273)4 − (𝑇r

+ 273)4) − 𝑓clℎc(𝑇cl − 𝑇a)] 

 

Where: 

• 𝑀: metabolic rate (W/m²) 

• 𝑊: external work (W/m²) 

• 𝑝𝑎: water vapor partial pressure (Pa) 

• 𝑇𝑎: air temperature (°C) 

• 𝑇𝑟: mean radiant temperature (°C) 

• 𝑇𝑐𝑙: surface temp. of clothing (°C) 

• 𝑓cl: clothing surface area factor 

• ℎc: convective heat transfer coefficient 

Supporting calculation for PMV and PPD implemented via 

pythermalcomfort. 

 

3.5.3 HVAC Load Estimation 

 

HVAC cabin load (W): 

𝑄̇cabin = 𝑄̇solar + 𝑄̇occupant + 𝑄̇ventilation − 𝑄̇HVAC 

 

HVAC electric power consumption (assuming COP 

efficiency): 

𝑃HVAC =
𝑄̇HVAC

COP
 

 

Where: 

• 𝑄̇solar: solar radiation load (W) 

• 𝑄̇occupant: occupant metabolic heat (W) 

• COP: coefficient of performance—typically 2–3 

for heat pumps 

4. Experimental Setup 

This section explains the design of experiments conducted 

using the simulation and learning pipeline introduced in 

Section 3. The objective was to investigate battery and 

cabin thermal behavior across diverse driving and climate 

scenarios, while quantifying the associated energy and 

comfort trade-offs. Experiments were conducted 

exclusively using public datasets and open-source models 

to ensure reproducibility. 

4.1 Use Case Definitions and Duty Cycle Scenarios 
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Driving data from the NREL Fleet DNA database [21] was 

used to represent two common BEV use cases: 

1. Urban Commuting: Passenger vehicle routes with 

frequent stop-and-go behavior, trip lengths of 10–

30 miles. 

2. Last-Mile Delivery: Light commercial vehicle 

duty cycles with variable speeds, load weights, 

and extended idling. 

A total of 500 drive cycles were sampled, ensuring 

variability in velocity profiles, elevation changes, and stop 

durations. Each drive cycle was resampled to a consistent 

1-second timestep for processing in FASTSim and 

PyBaMM models. 

 

4.2 Climate-Based Test Conditions 

 

Weather data from the NOAA GHCN [22] was filtered to 

represent four distinct climate archetypes based on Köppen 

classification: 

• Hot and Dry: Phoenix, AZ 

• Temperate: Seattle, WA 

• Hot and Humid: Miami, FL 

• Cold and Snowy: Minneapolis, MN 

For each climate, daily ambient temperature, humidity, 

wind speed, and solar irradiance were paired with each 

drive cycle, yielding 2000 scenario-climate combinations. 

A random 70/30 split was used for training and testing in 

the hybrid thermal models. 

 

4.3 Battery and HVAC Models Initialization 

 

Battery pack parameters were generated using PyBaMM’s 

parameterization routines based on the NASA PCoE and 

Severson datasets [12], [14], assuming a 75 kWh liquid-

cooled NMC-graphite pack with 96-series, 3-parallel 

configuration. Initial State of Charge (SOC) ranged from 

50–100%, and state-of-health (SOH) was varied across 90–

100% to emulate lightly aged packs. 

FASTSim was used to compute traction power and 

regenerative braking energy flows under each route, with 

HVAC loads added post hoc using the modeled cabin heat 

gain and comfort constraints described in Section 3.3. 

 

4.4 Charging-Aware Experimental Design 

 

Charging sessions were simulated using timestamp 

distributions from ACN-Data [23], where arrival times, 

charger power levels, and energy delivered were drawn 

from real-world Level 2 workplace sessions. Two scenarios 

were evaluated: 

1. Without Pre-conditioning: Cabin temperature and 

battery pack equilibrate to ambient after soak. 

2. With Pre-conditioning: Charger power allocated 

for HVAC and battery active thermal control 

before departure, limited by a 7.2 kW AC source. 

The effect of pre-conditioning on battery core temperature 

and cabin PMV at trip start were recorded for both cases. 

 

4.5 Performance Metrics 

 

The following metrics were used to evaluate the system: 

1. Battery Peak Temperature: Maximum cell temperature 

observed during each drive cycle. 

2. Thermal Safety Exceedance: Number of occurrences 

where pack temperature exceeded 50 °C. 

3. HVAC Energy Consumption: Watt-hours required to 

maintain PMV ≤ +0.5. 

4. Comfort Satisfaction Index: Passenger-hours within 

PMV between -0.5 and +0.5 (PPD ≤ 10%). 

5. Range Reduction: Decrease in estimated vehicle range 

due to HVAC energy draw. 

6. Pre-conditioning Effectiveness: Reduction in starting 

pack temperature and cabin PMV after pre-

conditioning. 

 

4.6 Validation Protocol 

 

A stratified cross-validation approach was adopted, 

ensuring both duty cycles and climate zones were 

represented in both training and test sets. Results were 

averaged across 10 random splits. The physics-informed 

XGBoost thermal model was benchmarked against: 

• A pure physics-based model (PyBaMM-only), 

• A pure data-driven thermal model (XGBoost-

only), 

A rule-based HVAC strategy with constant setpoints. 

5. Results 

This section presents the performance outcomes of the 

hybrid physics–machine learning thermal intelligence 

pipeline under the drive, climate, and charging scenarios 

defined in Section 4. The experimental results reveal 

insights into battery temperature behavior, cabin comfort 

energy requirements, and the trade-offs between thermal 

safety, passenger comfort, and driving range in electric 

vehicles. 

5.1 Battery Thermal Forecasting Performance 
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The hybrid thermal model (physics-informed XGBoost) 

outperformed purely data-driven and purely physics-based 

approaches across all key battery performance metrics. 

Table 1 summarizes the comparative forecasting errors for 

battery peak temperature.  

Table 1: Model Comparison – Battery Peak Temperature Forecasting

  

The hybrid model yielded a 54% reduction in RMSE 

compared to the physics-only baseline and approximately 

a 37% improvement over the purely data-driven model. 

This demonstrates the benefit of coupling physical insights 

with machine learning to generalize thermal behavior 

under varied drive and climate conditions. 

 

5.2 HVAC Energy vs. Comfort Trade-off 

 

Figure 2 illustrates the trade-off between HVAC energy 

consumption and comfort satisfaction (PMV ≤ +0.5) across 

four climate zones. As expected, both hot and cold climates 

exhibited significantly higher energy requirements to 

maintain acceptable comfort. 

Key observations: 

• In Phoenix (hot–dry), achieving PMV ≤ +0.5 for 

a 30-minute trip required an average of 2.4 kWh 

of HVAC energy—translating to approximately 

7–10% range reduction for mid-size BEVs. 

• In Minneapolis (cold), heater load peaked at 3.2 

kWh per trip under similar comfort constraints. 

• Seattle required the least HVAC energy, with only 

0.5–0.8 kWh/trip. 

Comfort-energy curves suggest that relaxing PMV 

tolerance to ±0.7 reduces HVAC energy by up to 35% 

while keeping PPD under 20%, pointing to potential 

comfort-aware energy optimization strategies. 

 

 
Figure 2: Comfort- Energy Trade0foof Across Climates 

 

5.3 Pre-conditioning Effectiveness Using Public 

Charging Data 

 

Simulating pre-conditioning events using ACN-Data-

based charging profiles revealed significant thermal 

benefits when performed prior to vehicle departure while 

plugged in: 

• Battery core temperature was reduced by an 

average of 6.8 °C at trip start in Phoenix during 

summer scenarios. 

• Cabin PMV improved from +2.0 (unacceptable 

heat stress) to +0.3 (neutral comfort) for vehicles 

pre-conditioned within 15 minutes of departure. 

• Pre-conditioning contributed negligible net 

energy cost to driving range because the 

HVAC/load energy was sourced from the grid 

rather than battery. 

•  

Model Type RMSE (°C) MAE (°C) Max Error (°C) 

Pure Physics (PyBaMM) 5.8 4.2 12.3 

Pure Data-Driven (XGBoost) 4.1 3.3 10.1 

Hybrid Physics-ML (Ours) 2.6 1.8 5.6 
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Figure 3: Distribution of peak eatery temperature with 

and without Pre-conditioning 

 

 

Figure 4: shows the peak battery temperature distribution 

across trips, with and without pre-conditioning, 

highlighting reduced instances of thermal safety 

exceedance. 

 

5.4 Baseline Comparison and Ablation Analysis 

 

Ablation studies were conducted to understand the 

contributions of individual components in the system. 

Removing physics priors from the battery model increased 

RMSE by 57%. Excluding weather data from HVAC load 

calculation underestimated energy use in extreme climates 

by up to 28%. Ignoring charging-aware pre-conditioning 

resulted in a 19% increase in thermal safety exceedance 

events.

 

 

Table 2: Impact of Component Removal on Key Metrics 

 

Component Removed Δ RMSE (°C) Δ HVAC Energy (%) Δ Comfort Satisfaction (%) 

Physics priors (battery) +57% N/A N/A 

Weather-based HVAC input N/A -28% accuracy -11% 

Pre-conditioning logic +19% events N/A -22% 

  

 
Figure 5: Battery Peak temperature Forecasting: Hybrid 

Vs. Baselines 

 

6 Discussion 

The results presented in Section 5 demonstrate the potential 

of combining publicly available datasets, hybrid physics–

machine learning models, and open-source simulation 

tools to deliver scalable thermal intelligence for electric 

vehicles. This section discusses the implications of these 

findings for vehicle manufacturers, fleet operators, thermal 

system designers, and the broader research community. 

6.1 Insights on Battery Thermal Management at 

Scale 
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The hybrid thermal forecasting approach achieved 

significant gains in predictive accuracy compared to 

standalone physics or data-driven machine learning 

models. This suggests that data-constrained engineering 

applications such as thermal management of battery packs 

have great potential if physics-informed modeling is 

applied—even more so when the system response changes 

with temperature, use, and battery age. 

The 50% improvement in peak battery temperature 

prediction using hybrid modeling suggests a strong 

opportunity to improve real-time thermal control, 

especially to mitigate lithium plating during fast charging 

and thermal runaway under extreme loads. Also, these 

models could be integrated into onboard digital twins, 

enabling predictive maintenance, as the architecture of 

vehicles is shifting more towards software-defined 

systems. 

 

6.2 Comfort–Energy Trade-offs and Real-World. 

 

The comfort-energy curves of HVAC systems suggest that 

climate-aware control strategies have the potential to 

significantly reduce energy use for acceptable levels of 

comfort. For extreme climatic conditions, the difference 

between neutral comfort and relaxed comfort (< ±0.7 

PMV), resulted in reduced HVAC energy usage by 30-

40%, and 5-10% increase in driving range, for battery 

systems of 70-100 kWh of capacity. This, in turn, lays the 

groundwork for modes of operation that would actively 

engage the driver in personalized eco-comfort conditions, 

that would adaptively adjust cabin climate setpoints based 

on user defined tolerances, trip lengths, or remaining state-

of-charge, which could be an emerging opportunity for 

transportation-oriented HMI or smart voyage controls. 

 

6.3 Charging-Aware Pre-conditioning as a Low-

Cost Thermal Strategy 

 

Results from the ACN-based pre-conditioning scenarios 

demonstrated that significant thermal benefit could still be 

achieved without using stored battery energy if the vehicle 

were plugged in before departure. This is similar to current 

OEM thinking, but showcases the potential even more 

broadly across depot vehicles, apartment buildings, and 

workplace charging systems, where, again, grid-based pre-

conditioning could reduce both energy expenditure 

(because of TOU tariff alignment) and battery degradation 

(lower C-rate and temperature). 

These findings call for improved collaboration between 

EVSE providers, fleet management systems, and thermal 

vehicle controllers to fully realize contextual pre-

conditioning and opportunity thermal automation. 

 

6.4 Limitations 

 

Although fully reproducible, this study did not explore 

battery aging effects long term in a thermal cycle, nor 

thermostat cycling effects on rapid heating in nonlinear 

pack-level heat transport dynamics. For future work, it 

would be ideal to incorporate 3D CFD pack simulations of 

heater operation, at the very least from reduced pack 

models that could be parameterized from teardown data. 

And while cabin thermal modeling relied on simplified 

load and ventilation assumptions, future work could 

leverage detailed transient CFD cabin thermal models as 

well. 

The thermal comfort model in this study was based on a 

single passenger. In practice, thermal comfort experiences 

among passengers may vary due to airflow and solar gain 

differentials across multi-seat zones. 

 

6.5 Industrial Relevance and Scalability 

 

The proposed open thermal intelligence framework offers 

three actionable takeaways for industry stakeholders: 

1. Thermal-Aware Range Estimation: OEMs can 

integrate battery and HVAC thermal effects into 

predicted range estimates presented to users. 

2. Predictive Thermal Safety Strategy: Real-time 

ML estimators could enable earlier interventions 

(e.g., coolant flow modulation or torque derating). 

3. Cloud-Enabled Fleet Optimization: Fleet 

operators could reduce downtime and energy 

costs by pre-conditioning vehicles based on depot 

schedules and ambient forecasts. 

Given the modularity and openness of this analysis, it also 

serves as a benchmark for academia and startups building 

AI-powered digital twins, EV fleet analytics, or domain-

aware energy modeling engines. 

7 Conclusion and Future Work 

This article proposed an open and scalable pipeline to 

predict and optimize thermal performance in electric 

vehicles solely using publicly available datasets and open-

source tools. By combining physics-based battery models, 

empirical driving and climate datasets, and standardized 

HVAC comfort models, we showed that by taking a hybrid 

thermal intelligence approach, useful insights can be 

obtained about energy efficiency, comfort optimization, 

and safety in various real-world environments.  
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Our key findings showed that: 

• Hybrid physics–ML models significantly improved 

thermal prediction accuracy over purely physics-based or 

data-driven baselines. 

• Although HVAC energy losses substantially reduce range 

when driving in hot or cold weather conditions, a comfort-

aware contemplative control method can ameliorate these 

losses. 

• A grid-powered pre-conditioning system shows promise 

as a low-cost intervention to reduce battery peak 

temperature and passenger discomfort before driving. 

In summary, this study helps close the gap between 

academia and industry through an entirely reproducible 

framework that enables open discovery and collaboration 

and reduces the barriers preventing automotive startups, 

academic institutions, and fleet operators from innovating 

thermal management.  

Future work will expand the framework in the following 

directions:  

• 3D Component-Level Modeling: Developing pack-level 

heat transfer models with real-time inverter/motor data, 

using an open telemetry framework.  

• Thermal-Aware Autonomous Systems: Engaging cabin 

and battery forecasts to improve routing and eco-driving 

algorithms for autonomous mobility platforms.  

• Lifecycle Thermal Aging: Expanding the hybrid thermal 

models to include mechanisms for lithium plating, 

electrolyte oxidation, and additive decomposition during 

the vehicle lifecycle.  

• Integration with Grid Flexibility: Providing tighter co-

optimization with building energy systems and operators 

of a smart grid to coordinate electrical vehicle pre-

conditioning with peaks in renewable energy supply. 

The tools and datasets used in this work are fully 

accessible, enabling broad contributions from both the EV 

and AI communities to further advance thermal-aware 

electrification. 
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All Figures 

 

Figure 1: Scalable Thermal Intelligence Simulation Pipeline. 

 

 

Figure 2: Comfort- Energy Trade0foof Across Climates 
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Figure 3: Distribution of peak eatery temperature with and without Pre-conditioning 

 

 

Figure 4: shows the peak battery temperature distribution across trips, with and without pre-conditioning, highlighting 

reduced instances of thermal safety exceedance. 
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Figure 5: Battery Peak temperature Forecasting: Hybrid Vs. Baselines 

 


