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Abstract

To ensure performance, safety, and efficiency, thermal management is key to the operation of electric vehicles (EVs) as
they continue to scale varying climates, charging behaviors, and duty cycles. This paper describes a path to thermal
intelligence which leverages publicly available datasets. Some of these datasets include drive profiles from NREL Fleet
DNA, climate data from NOAA GHCN, battery aging data from NASA and MIT, and workplace charging behaviors from
ACN-Data. The paper also draws upon open-source simulator or learning tools such as PyBaMM, FASTSim, and
pythermalcomfort. Using a combination of physics and machine learning, we obtain a 54% reduction in root mean square
error (RMSE) for peak battery temperature predictions based on a physics-only baseline. The smart system utilizes physical
and uses machine learning to predict cabin HVAC energy use, given different comfort constraints (PMV/PPD). During
experimentations in urban commutes and last-mile delivery, we find that cabin HVAC range reductions can exceed 10%
in extreme climates; as a countermeasure, we piloted comfort-aware setpoint relaxations as well as charging-aware pre-
conditioning the night before. In the case of charging-aware pre-conditioning, by using real-world timestamps for the
charging events, we reduced the starting battery temperature by 6.8°C while simultaneously increasing passenger comfort
by 85%. All of this was done without an increase in onboard energy consumption. We believe this work provides for the
construction of open thermal intelligence pipelines to maintain safety, efficiency, and comfort for future software-defined
Electric vehicle and fleet platforms.
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1. Introduction

The shift from ICEs to BEVs has moved the thermal and usage mode variations [1]-[3]. Therefore, modern

management challenges from exhaust-driven thermal
dynamics to electrochemical thermal dynamics and
passenger-comfort-driven thermal limits. Increasingly,
performance, durability, and energy efficiency of EV
batteries and cabin systems are underpinned by thermal
management capabilities under significant load, climatic,
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BEVs require thermal management of traction systems
(prevent degradation while enabling fast charging) and
cabin comfort (meets passenger comfort targets defined by
ASHRAE and ISO thermal comfort standards [4], [5]),
while also minimizing range constraints and energy losses.
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1.1Battery Thermal Management in the Era of
Electrification

Lithium-ion cells demonstrate societally persistent
thermally coupled electrochemical processes that involve
exothermic side reactions, Joule heating, and entropy
change during discharge and charge [6], [7]. Emitted heat
that is not dissipated quickly may increase solid electrolyte
interphase (SEI) growth, induce lithium plating, and reduce
cycle life [8], while excessive cool-down contributes to
increased internal resistance and energy usage [9].
Although electro-thermal models based on physics [10]
and reduced-order predictors [11] relatively well-explored,
these approaches lack generalizability under real-world
duty cycles and seasonal climatic variability, especially at
scale.

With the emergence of open battery degradation datasets,
including the PCoE Li-ion dataset [12] from NASA, the
Oxford Battery Degradation Dataset [13], and the
MIT/Severson Fast/Charging Dataset [14], combined with
open simulation tools, such as PyBaMM [15], a
meaningful opportunity exists to integrate bench battery
data with large-scale duty cycle data, towards hybrid
physics—machine learning models for scalable battery
thermal forecasting.

1.2 Cabin Comfort vs. Energy Trade-off

Passenger thermal comfort in battery electric vehicles
(BEVSs) is measured with the American Society of Heating,
Refrigeration and Air Conditioning Engineers' (ASHRAE)
Predicted Mean Vote (PMV) and Predicted Percentage of
Dissatisfied (PPD) indices. The comfort, or discomfort, of
passengers in a vehicle has a notable effect on the energy
consumed by the HVAC systems in the BEVSs. In cold and
hot climates, HVAC systems can consume about 10% to
30% of total energy consumed during driving, causing
range penalties upwards of 50% [16] under extreme
conditions. Software tools in the public domain, like the
pythermalcomfort [17] allow for easy calculations for these
comfort indices using both environmental and personal
variables. Previous work has examined HVAC control
strategies [18], [19] or modeling of cabin air temperatures
[20]; however, there is little open literature that describes a
combination of comfort-energy modeling with entirely
public datasets and typical weather/drive profiles.

1.3 Big Data for Scaled EV Thermal
Intelligence

The use of new real-world datasets, such as NREL's Fleet
DNA (which includes actual driving cycles for different
vehicle types) [21], NOAA's Global Historical
Climatology Network (GHCN) for global weather data
[22], and the ACN workplace charging dataset [23],

The Am. J. Eng. Technol. 2025

Volume 07 - 2025

facilitate the reproducible, population-scale simulations of
EV driving and charging cycles. Open-source simulation
frameworks, for example, FASTSIim [24], efficiently
provide powertrain and heat flow calculations for a diverse
range of simulations in EVs.

Together, these datasets allow for scalable "thermal
intelligence™ to answer important questions: How does
peak battery temperature change due to stochastic duty
cycles in climate, How much range is given up for different
cabin comfort levels given actual weather, How much does
charging-aware pre-conditioning mitigate thermal load.

1.4 Contributions
The main contributions of this work are as follows:

1. Afully reproducible hybrid physics—machine learning
pipeline has been developed, which connects publicly
available datasets on battery, climate, vehicle
simulation, and charging, to enable modeling of the
thermal dynamics of EV cabin and battery systems.

2. In order to assess the comfort—energy—range trade-
offs, we quantify the standard comfort indices PMV
and PPD, across observed vehicle use and associated
weather profiles.

3. We propose and evaluate charging-aware pre-
conditioning strategies based on public charging
session data, with respect to the associated thermal
efficiency and energy ramifications.

4. Additionally, all datasets, simulations, and
dependencies on code, are freely accessible and
shared, to allow other researchers and practitioners to
replicate or extend this analysis without proprietary
software dependencies.

The structure of the remainder of the paper is as follows: in
Section 2, we summarize relevant literature; Section 3
details the methodology; Section 4 configures the
simulated environment; Section 5 presents our principal
results; and in Section 6 we explore industrial implications
and future directions.

2. Related Work

Electric vehicle (EV) thermal management research has
expanded significantly in the past decade across areas such
as battery thermal modeling, cabin thermal comfort
optimization, and the emerging use of artificial intelligence
(Al) and big data analytics. This section summarizes the
major research advances in each of those areas, discusses
the limitations of current methods, and highlights the need
for integrated and publicly reproducible approaches.
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2.1 Battery Thermal

Management

Modeling and

Battery thermal management is critical for performance,
safety, and lifetime in EVs. Early studies examined one-
dimensional electro-thermal coupling models that
predicted heat generation in a lithium-ion cell at either a
steady state or during a drive-cycle [10]. Typically, these
models used physics-based representations of the
electrochemistry involving energy balance equations and
heat transfer coefficients. By going further, discoveries
were made with reduced-order model approaches such as
lumped capacitance and equivalent RC-network modeling
[11], leading to faster simulations, but to a detriment of
accuracy for nonlinear behaviors such as fast charging and
discharge at high C-rate.

Machine learning (ML) and hybrid physics-informed
learning models have gained popularity thanks to freely
available datasets from NASA PCoE [12], Oxford [13],
and MIT/Severson [14]. These models are able to
characterize complex relationships between cycling
conditions, ambient temperature, state-of-health (SOH),
and heat generation while being generalized to different
cell chemistries. However, much of the literature relies on
bench test data without real-world drive and ambient
condition variability, which reduces applicability for large-
scale use.

2.2 Cabin Thermal Comfort and HVAC Energy
Optimization

Cabin climate control is a significant component of
auxiliary energy use in EVs, particularly in extreme
temperatures. While existing HVAC systems are focused
on regulating the temperature of the air within the cabin,
past research has begun to shift to other personal comfort
indices such as the Predicted Mean Vote (PMV) which
articulates thermal sensation on a -3 (cold) to +3 (hot) scale
[4]. Several studies have explored MPC based design
methodology for optimizing HVAC systems with respect
to comfort and energy optimization [18], [19].

Nevertheless, these studies exclusively utilized proprietary
vehicle data or synthetic cabin models to develop and
validate their methods, which diminishes the work's
reproducing capability. There are very few studies that
have directly simulated the HVAC load and then its direct
energy impact under real temperature, humidity, and solar
conditions across geographically diverse data sets. Few
studies examine how comfort, energy use, and range loss
in EVs are affected using open weather data and powertrain
simulation models.

2.3 Data-Driven EV Simulation and Public
Datasets
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Publicly available databases, such as the NREL Fleet DNA
[21], contain speed, stop, and road grade dynamics
associated with commercial and light-duty fleets that can
be used to represent representative duty cycles in
simulations of electric vehicles (EVs). Also, the Global
Historical Climatology Network (GHCN) [22], from the
National Oceanic and Atmospheric Administration
(NOAA), provides multi-decade, station-level
climatological data for temperature, wind speed, humidity,
and solar radiation. Together, these databases enable end-
to-end, population-level simulations of EV use cases,
including thermal behavior, when combined with open-
source vehicle simulation tools (i.e., FASTSim [24]), and
electrochemical simulators (i.e., PyBaMM [15]). While
some researchers have leveraged these tools in isolation
(e.g., using FASTSim for energy consumption [24] or
using PyBaMM for electrochemical diagnostics [15]), little
work has integrated public datasets into one thermal
pipeline of models that consist of power, heat, comfort, and
charging data. The lack of integrated and open-access
modeling negate the ability to compare analysis between
climates, charging strategies, and behavior interactions in
user patterns.

2.4 Gaps in Current Literature

Based on the reviewed studies, several gaps remain
unaddressed:

1. Lack of fully reproducible thermal intelligence
workflows using only public datasets.

2. Limited cross-domain evaluation of battery and cabin
thermal responses under synchronized driving and
weather data.

3. Absence of charging-aware thermal strategies built
from open workplace or residential charging session
archives.

To address these gaps, we propose an open, scalable
simulation and learning framework that combines electro-
thermal battery modeling, HVAC comfort-energy
modeling, and real-world duty and climate datasets, with
all tools and data accessible via open platforms.

3. Methodology

The methodology for this work integrates electro-thermal
battery simulation, human thermal comfort modeling,
vehicle energy flow estimation, and Al-based regression
techniques. Each sub-system is parameterized using public
datasets to allow reproducibility and scalability across
diverse driving, climate, and charging behaviors.
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3.1 Public Data Sources and Fusion Strategy

Four primary data sources form the inputs for this study:

1. Driving Cycles: NREL Fleet DNA [21] was used
to sample real-world drive cycles (speed, grade,
and stop behavior) across a range of vehicle
classes (light-duty passenger vehicle to
commercial van).

2. Battery Degradation and Thermal Parameters:
NASA PCoE [12], Oxford Battery Dataset [13],
and MIT/Severson [14] datasets were used to
extract electro-thermal relationships (e.g., heat
generation vs. C-rate, temperature rise,
impedance evolution).

3. Climate Data: NOAA Global Historical
Climatology Network (GHCN) [22] provided
daily weather parameters including ambient
temperature, humidity, and solar irradiance across
multiple U.S. and global locations.

4. Charging Patterns: The ACN-Data archive [23]
was used to derive charging session distributions,
enabling the simulation of pre-conditioning and
thermal soak effects ahead of next driving events.

These datasets were fused into a unified simulation
pipeline, where each driving session was assigned a
climate profile and charging pattern according to its
geolocation or randomly sampled scenario context. The
outputs of each phase fed into either the physics-based or
machine learning-based thermal estimators described
below.

3.2 Battery Electro-Thermal Simulation and Hybrid
Forecasting

The heat generated in lithium-ion battery cells was
computed based on a combination of physics equations and
data-driven models. The underlying heat generation
equation is based on energy balance:

Q =IR _int+ I(T dE_oc/dT)
Where,
O is the rate of heat generation (W)
1is current (A), R_int is internal resistance (Q)
T is temperature (K)
dE oc/dT is the temperature-dependent electrochemical
entropy term.

Physics-based simulations were conducted using PyBaMM
[15], parameterized with open benchmark datasets [12]—
[14], to derive cell temperature rise as a function of State
of Charge (SOC), ambient temperature, and discharge rate.
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A gradient boosting regression model (XGBoost) was then
fitted using features such as drive power, ambient
temperature, settings, with PyBaMM
simulation outputs acting as the supervisory label set. This

and cooling

hybrid approach enables generalization across cell types
while embedding physics constraints into the surrogate
model.

3.3 Cabin Comfort, HVAC Modeling, and Range
Estimation

Cabin thermal comfort was evaluated using the ASHRAE
Standard 55 Predicted Mean Vote (PMV) model [4], which
describes thermal sensation on a 7-point scale (from -3
“cold” to +3 “hot”). PMV was computed using the
pythermalcomfort package [17], with inputs from NOAA
(ambient) and derived HVAC performance curves. The
Predicted Percentage of Dissatisfied (PPD) index was also

calculated as:

PPD =100 - 95 exp(-0.03353 PMV*-0.2179 PMV?)
To quantify HVAC energy use, an empirical model based
on FASTSim [24] was adopted,

where cabin load (in W) was computed from the heat
balance equation:
Q cabin=Q solar + Q occupant + Q leakage —
Q HVAC

with  HVAC compressor power (P_HVAC) linearly
proportional to cabin cooling or heating load under typical
Coefficient of Performance (COP) assumptions. The
resultant HVAC energy consumption was deducted from
vehicle range estimates.

3.4 Charging-Aware Thermal Pre-conditioning

Using ACN charging data [23], distributions of arrival and
departure times at Level 2 workplace chargers were
derived. Pre-conditioning for cabin and battery was
simulated during connected states, with the impact
assessed in terms of peak battery and cabin temperature
reduction ahead of the next drive cycle.

3.5 Simulation Architecture

The entire simulation pipeline was designed as shown in
Fig. 1 (to be rendered later). Each simulation batch
operated on scenario tuples:
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{drive_cycle,

charge profile}
where SOHC is State of Health and Charge, derived from
dataset metadata. Results were tabulated for battery peak

ambient weather, battery SOHC,

temperature, HVAC energy, passenger comfort score, and
resultant range.

The surrogate thermal and comfort-inference models were
trained using 80% of synthesized scenarios, and tested on
20% unseen combinations of fleet duty, climate zone, and
charging behavior to ensure robustness.

# Public Data Sources
*NREL Fleet DNA
-SIA/Oxford/MIT Batteries
*NOAA GHCN/ACN-Data

|

# Data Fusion

+ Simulation Layer
+Align drive, climate, *BaMM (electro-thermal)
battery params & *FASTSim (powertrain)

charging *PMV/PPD (comfort)

@ Learning Layer ® Qutputs & Insights
-Physics-informed -Peak battery temp
XGBoost *HVAC energy

-comfo;ijr};r;éghapping «PMV/PPD /Range impact

Figure 1: Scalable Thermal Intelligence Simulation
Pipeline.

3.5.1  Battery Heat Generation (Electrochemical

Model)

The total heat generation rate Qin a lithium-ion cell is:

dE,.

Q=1I*Ry +1-T- T

Where:

[: battery current (A)
e R,,: internal resistance (QQ)
e T: cell absolute temperature (K)

dE,¢

dT
e Term 1: Joule heat from internal resistance

: entropy coefficient (V/K)

e Term 2: Reversible entropic heat
Used inside PyBaMM-based simulations to track core and
surface temperature under dynamic loads.

3.5.2  Cabin Comfort — PMV (Predicted Mean

Vote)

The PMYV index is defined as:
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PMV = [0.303 - exp(—0.036M) + 0.028][(M — W)
—3.05 % 1073(5733 — 6.99(M — W)
—p,) — 0.42((M — W) — 58.15)
— 1.7 x 1075M (5867 — p,,)
—0.0014M(34 —T))
—3.96 x 1078£,((Ty + 273)* — (T,
+273)") = fuhe(Tq — T,)]

Where:
M metabolic rate (W/m?)
e W: external work (W/m?)
® p,: water vapor partial pressure (Pa)
e T,: air temperature (°C)
e T,: mean radiant temperature (°C)
T,;: surface temp. of clothing (°C)

~

e f: clothing surface area factor

e  h.: convective heat transfer coefficient
Supporting calculation for PMV and PPD implemented via
pythermalcomfort.

3.5.3 HVAC Load Estimation

HVAC cabin load (W):

Qcabin = Qsolar + rocupant + Qventilation - QHVAC

HVAC electric power consumption (assuming COP
efficiency):

_ QHVAC
Fivae ="Cop

Where:
e Qg solar radiation load (W)
. rocupam: occupant metabolic heat (W)
e COP: coefficient of performance—typically 2-3
for heat pumps

4. Experimental Setup

This section explains the design of experiments conducted
using the simulation and learning pipeline introduced in
Section 3. The objective was to investigate battery and
cabin thermal behavior across diverse driving and climate
scenarios, while quantifying the associated energy and
comfort trade-offs. Experiments were conducted
exclusively using public datasets and open-source models
to ensure reproducibility.

4.1 Use Case Definitions and Duty Cycle Scenarios
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Driving data from the NREL Fleet DNA database [21] was
used to represent two common BEV use cases:

1. Urban Commuting: Passenger vehicle routes with
frequent stop-and-go behavior, trip lengths of 10—
30 miles.

2. Last-Mile Delivery: Light commercial vehicle
duty cycles with variable speeds, load weights,
and extended idling.

A total of 500 drive cycles were sampled, ensuring
variability in velocity profiles, elevation changes, and stop
durations. Each drive cycle was resampled to a consistent
l-second timestep for processing in FASTSim and
PyBaMM models.

4.2 Climate-Based Test Conditions

Weather data from the NOAA GHCN [22] was filtered to
represent four distinct climate archetypes based on Képpen
classification:

e Hot and Dry: Phoenix, AZ

e Temperate: Seattle, WA

e Hot and Humid: Miami, FL

e Cold and Snowy: Minneapolis, MN
For each climate, daily ambient temperature, humidity,
wind speed, and solar irradiance were paired with each
drive cycle, yielding 2000 scenario-climate combinations.
A random 70/30 split was used for training and testing in
the hybrid thermal models.

4.3 Battery and HVAC Models Initialization

Battery pack parameters were generated using PyBaMM’s
parameterization routines based on the NASA PCoE and
Severson datasets [12], [14], assuming a 75 kWh liquid-
cooled NMC-graphite pack with 96-series, 3-parallel
configuration. Initial State of Charge (SOC) ranged from
50-100%, and state-of-health (SOH) was varied across 90—
100% to emulate lightly aged packs.

FASTSim was used to compute traction power and
regenerative braking energy flows under each route, with
HVAC loads added post hoc using the modeled cabin heat
gain and comfort constraints described in Section 3.3.

4.4 Charging-Aware Experimental Design

Charging sessions were simulated using timestamp
distributions from ACN-Data [23], where arrival times,
charger power levels, and energy delivered were drawn
from real-world Level 2 workplace sessions. Two scenarios
were evaluated:
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1. Without Pre-conditioning: Cabin temperature and
battery pack equilibrate to ambient after soak.

2. With Pre-conditioning: Charger power allocated
for HVAC and battery active thermal control
before departure, limited by a 7.2 kW AC source.

The effect of pre-conditioning on battery core temperature
and cabin PMYV at trip start were recorded for both cases.

4.5 Performance Metrics

The following metrics were used to evaluate the system:

1. Battery Peak Temperature: Maximum cell temperature
observed during each drive cycle.

2. Thermal Safety Exceedance: Number of occurrences
where pack temperature exceeded 50 °C.

3. HVAC Energy Consumption: Watt-hours required to
maintain PMV < +0.5.

4. Comfort Satisfaction Index: Passenger-hours within
PMYV between -0.5 and +0.5 (PPD < 10%).

5. Range Reduction: Decrease in estimated vehicle range
due to HVAC energy draw.

6. Pre-conditioning Effectiveness: Reduction in starting
pack temperature and cabin PMV after pre-
conditioning.

4.6 Validation Protocol

A stratified cross-validation approach was adopted,
ensuring both duty cycles and climate zones were
represented in both training and test sets. Results were
averaged across 10 random splits. The physics-informed
XGBoost thermal model was benchmarked against:

e A pure physics-based model (PyBaMM-only),

e A pure data-driven thermal model (XGBoost-

only),

A rule-based HVAC strategy with constant setpoints.

5. Results

This section presents the performance outcomes of the
hybrid physics—machine learning thermal intelligence
pipeline under the drive, climate, and charging scenarios
defined in Section 4. The experimental results reveal
insights into battery temperature behavior, cabin comfort
energy requirements, and the trade-offs between thermal
safety, passenger comfort, and driving range in electric
vehicles.

5.1 Battery Thermal Forecasting Performance
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The hybrid thermal model (physics-informed XGBoost)
outperformed purely data-driven and purely physics-based
approaches across all key battery performance metrics.

Volume 07 - 2025

Table 1 summarizes the comparative forecasting errors for
battery peak temperature.

Table 1: Model Comparison — Battery Peak Temperature Forecasting

Model Type RMSE (°C) MAE (°C) Max Error (°C)
Pure Physics (PyBaMM) 4.2 12.3
Pure Data-Driven (XGBoost) 33 10.1
Hybrid Physics-ML (Ours) 1.8 5.6

The hybrid model yielded a 54% reduction in RMSE
compared to the physics-only baseline and approximately
a 37% improvement over the purely data-driven model.
This demonstrates the benefit of coupling physical insights
with machine learning to generalize thermal behavior
under varied drive and climate conditions.

5.2 HVAC Energy vs. Comfort Trade-off

Figure 2 illustrates the trade-off between HVAC energy
consumption and comfort satisfaction (PMV <+0.5) across
four climate zones. As expected, both hot and cold climates
exhibited significantly higher energy requirements to
maintain acceptable comfort.
Key observations:
e In Phoenix (hot—dry), achieving PMV < +0.5 for
a 30-minute trip required an average of 2.4 kWh
of HVAC energy—translating to approximately
7-10% range reduction for mid-size BEVs.
e In Minneapolis (cold), heater load peaked at 3.2
kWh per trip under similar comfort constraints.
e  Seattle required the least HVAC energy, with only
0.5-0.8 kWh/trip.
Comfort-energy curves suggest that relaxing PMV
tolerance to +£0.7 reduces HVAC energy by up to 35%
while keeping PPD under 20%, pointing to potential
comfort-aware energy optimization strategies.
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Figure 2: Comfort- Energy TradeOfoof Across Climates

5.3 Pre-conditioning Effectiveness Using Public
Charging Data

Simulating pre-conditioning events using ACN-Data-
based charging profiles revealed significant thermal
benefits when performed prior to vehicle departure while
plugged in:

e Battery core temperature was reduced by an
average of 6.8 °C at trip start in Phoenix during
summer scenarios.

e Cabin PMV improved from +2.0 (unacceptable
heat stress) to +0.3 (neutral comfort) for vehicles
pre-conditioned within 15 minutes of departure.

e Pre-conditioning contributed negligible net
energy cost to driving range because the
HVAC/load energy was sourced from the grid
rather than battery.
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Figure 3: Distribution of peak eatery temperature with
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Figure 4: shows the peak battery temperature distribution
across trips, with and without pre-conditioning,
highlighting reduced instances of thermal safety

exceedance.

5.4 Baseline Comparison and Ablation Analysis

Ablation studies were conducted to understand the
contributions of individual components in the system.
Removing physics priors from the battery model increased
RMSE by 57%. Excluding weather data from HVAC load
calculation underestimated energy use in extreme climates
by up to 28%. Ignoring charging-aware pre-conditioning
resulted in a 19% increase in thermal safety exceedance
events.

Table 2: Impact of Component Removal on Key Metrics

Component Removed ARMSE (°C)
Physics priors (battery) +57%
Weather-based HVAC input N/A

Pre-conditioning logic +19% events

. RMSE (°C)
m— MAE (°C}

Error (°C)
w

Physics-only ML-only

Hybrid (Ours)

Figure 5: Battery Peak temperature Forecasting: Hybrid
Vs. Baselines
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A HVAC Energy (%)

A Comfort Satisfaction (%)

N/A N/A
-28% accuracy -11%
N/A -22%

6 Discussion

The results presented in Section 5 demonstrate the potential
of combining publicly available datasets, hybrid physics—
machine learning models, and open-source simulation
tools to deliver scalable thermal intelligence for electric
vehicles. This section discusses the implications of these
findings for vehicle manufacturers, fleet operators, thermal
system designers, and the broader research community.

6.1 Insights on Battery Thermal Management at
Scale
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The hybrid thermal forecasting approach achieved
significant gains in predictive accuracy compared to
standalone physics or data-driven machine learning
models. This suggests that data-constrained engineering
applications such as thermal management of battery packs
have great potential if physics-informed modeling is
applied—even more so when the system response changes
with temperature, use, and battery age.

The 50% improvement in peak battery temperature
prediction using hybrid modeling suggests a strong
opportunity to improve real-time thermal control,
especially to mitigate lithium plating during fast charging
and thermal runaway under extreme loads. Also, these
models could be integrated into onboard digital twins,
enabling predictive maintenance, as the architecture of
software-defined

vehicles is shifting more towards

systems.
6.2 Comfort—Energy Trade-offs and Real-World.

The comfort-energy curves of HVAC systems suggest that
climate-aware control strategies have the potential to
significantly reduce energy use for acceptable levels of
comfort. For extreme climatic conditions, the difference
between neutral comfort and relaxed comfort (< +0.7
PMYV), resulted in reduced HVAC energy usage by 30-
40%, and 5-10% increase in driving range, for battery
systems of 70-100 kWh of capacity. This, in turn, lays the
groundwork for modes of operation that would actively
engage the driver in personalized eco-comfort conditions,
that would adaptively adjust cabin climate setpoints based
on user defined tolerances, trip lengths, or remaining state-
of-charge, which could be an emerging opportunity for
transportation-oriented HMI or smart voyage controls.

6.3 Charging-Aware Pre-conditioning as a Low-
Cost Thermal Strategy

Results from the ACN-based pre-conditioning scenarios
demonstrated that significant thermal benefit could still be
achieved without using stored battery energy if the vehicle
were plugged in before departure. This is similar to current
OEM thinking, but showcases the potential even more
broadly across depot vehicles, apartment buildings, and
workplace charging systems, where, again, grid-based pre-
conditioning could reduce both energy expenditure
(because of TOU tariff alignment) and battery degradation
(lower C-rate and temperature).

These findings call for improved collaboration between
EVSE providers, fleet management systems, and thermal
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vehicle controllers to fully realize contextual pre-
conditioning and opportunity thermal automation.

6.4 Limitations

Although fully reproducible, this study did not explore
battery aging effects long term in a thermal cycle, nor
thermostat cycling effects on rapid heating in nonlinear
pack-level heat transport dynamics. For future work, it
would be ideal to incorporate 3D CFD pack simulations of
heater operation, at the very least from reduced pack
models that could be parameterized from teardown data.
And while cabin thermal modeling relied on simplified
load and ventilation assumptions, future work could
leverage detailed transient CFD cabin thermal models as
well.

The thermal comfort model in this study was based on a
single passenger. In practice, thermal comfort experiences
among passengers may vary due to airflow and solar gain
differentials across multi-seat zones.

6.5 Industrial Relevance and Scalability

The proposed open thermal intelligence framework offers
three actionable takeaways for industry stakeholders:

1. Thermal-Aware Range Estimation: OEMs can
integrate battery and HVAC thermal effects into
predicted range estimates presented to users.

2. Predictive Thermal Safety Strategy: Real-time
ML estimators could enable earlier interventions
(e.g., coolant flow modulation or torque derating).

3. Cloud-Enabled Fleet Optimization: Fleet
operators could reduce downtime and energy
costs by pre-conditioning vehicles based on depot
schedules and ambient forecasts.

Given the modularity and openness of this analysis, it also
serves as a benchmark for academia and startups building
Al-powered digital twins, EV fleet analytics, or domain-
aware energy modeling engines.

7 Conclusion and Future Work

This article proposed an open and scalable pipeline to
predict and optimize thermal performance in electric
vehicles solely using publicly available datasets and open-
source tools. By combining physics-based battery models,
empirical driving and climate datasets, and standardized
HVAC comfort models, we showed that by taking a hybrid
thermal intelligence approach, useful insights can be
obtained about energy efficiency, comfort optimization,
and safety in various real-world environments.
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Our key findings showed that:

» Hybrid physics-ML models significantly improved
thermal prediction accuracy over purely physics-based or
data-driven baselines.

« Although HVAC energy losses substantially reduce range
when driving in hot or cold weather conditions, a comfort-
aware contemplative control method can ameliorate these
losses.

* A grid-powered pre-conditioning system shows promise
as a low-cost intervention to reduce battery peak
temperature and passenger discomfort before driving.

In summary, this study helps close the gap between
academia and industry through an entirely reproducible
framework that enables open discovery and collaboration
and reduces the barriers preventing automotive startups,
academic institutions, and fleet operators from innovating
thermal management.

Future work will expand the framework in the following
directions:

+ 3D Component-Level Modeling: Developing pack-level
heat transfer models with real-time inverter/motor data,
using an open telemetry framework.
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Figure 4: shows the peak battery temperature distribution across trips, with and without pre-conditioning, highlighting
reduced instances of thermal safety exceedance.
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Figure 5: Battery Peak temperature Forecasting: Hybrid Vs. Baselines

The Am. J. Eng. Technol. 2025 142



