
The American Journal of Engineering and Technology 95 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 95-103

DOI 10.37547/tajet/Volume07Issue11-11

OPEN ACCESS

SUBMITTED 11 October 2025

ACCEPTED 16 November 2025

PUBLISHED 26 November 2025

VOLUME Vol.07 Issue 11 2025

CITATION
Denis Saripov. (2025). Optimizing Web Interface Rendering for Mobile
Apps with High User Traffic. The American Journal of Engineering and
Technology, 7(11), 95–103.
https://doi.org/10.37547/tajet/Volume07Issue11-11

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

Optimizing Web Interface Rendering
for Mobile Apps with High User

Traffic

Denis Saripov
Frontend Software Engineer Singapore

Abstract: This article focuses on optimizing web

interface rendering in large-scale mobile applications

that serve billions of users. The study aims to identify

how different architectural models—Native, Hybrid, and

WebView-based—influence the trade-off between

performance, user experience, and delivery agility. This

work set out to build a practical way of choosing and

improving mobile-app architectures, especially in

projects that need constant updates and quick

turnarounds, while still being able to scale globally—the

methodology of this study is analytical and comparative,

based on ten recent peer-reviewed research and

sources. The analysis ascertained four themes:

performance, user experience or “nativeness,”

maintenance work, and how quickly updates can

actually roll out. From what was observed, WebView

setups often make releases faster and cheaper, though

that gain usually costs a bit of raw speed. Hybrid

frameworks like React Native or Flutter, meanwhile,

come fairly close to native responsiveness and are not as

taxing on day-to-day developer effort. The paper also

highlights a few applied methods for boosting front-end

responsiveness, managing bundles more cleanly, and

strengthening offline reliability. The article will be useful

to assist engineers and product managers with making

releases more frequent while maintaining the same

level of polish and reliability for users.

Keywords: Mobile app architecture, WebView, Hybrid

framework, Over-the-air updates, Progressive Web

Apps (PWA), React Native, Flutter, Frontend

optimization, Cross-platform development, Continuous

delivery.

Introduction

Mobile applications for iOS and Android offer

remarkably rich capabilities and user experiences. The

difficulty comes when those same apps have to deliver

https://doi.org/10.37547/tajet/Volume07Issue11-11
https://doi.org/10.37547/tajet/Volume07Issue11-11

The American Journal of Engineering and Technology 96 https://www.theamericanjournals.com/index.php/tajet

updates to millions — sometimes billions — of devices.

In the traditional native model, every code change must

pass through the Apple App Store or Google Play review

process and then wait for users to install it. Even a small

patch can take weeks to reach everyone. Major apps

might release new builds every few days, yet users

update on their own schedules. Some install them

almost immediately; others — the so-called Preservers

— stick with old versions for months [5]. The result is

predictable: even a simple bug fix can take much longer

than planned to reach everyone.

Store policies and release rules add a different kind of

slowdown. A multi-case study from industry pointed out

that app-store rules, the need to maintain several

codebases, and the rigid timing of release cycles often

cause as much trouble as the familiar performance or

testing hurdles [10]. In other words, the native delivery

pipeline is stable and trustworthy, yet hardly fast.

Updates move through it on the platform’s schedule

rather than the developer’s, which means

improvements rarely arrive exactly when they are

needed.

To work around those delays, developers have turned

toward over-the-air (OTA) update systems and web-

based delivery. The solution is straightforward —

building parts of the app so they can update themselves

on the fly, avoiding the long approval and download

cycle. One approach embeds WebViews — essentially

web-based single-page interfaces that live inside a

native shell. The other uses hybrid frameworks such as

React Native. The goal isn’t only to compare speed, but

to see how each behaves in everyday use — how natural

it feels to the user, how demanding it is for developers,

and how easily it can adapt to frequent release cycles.

The discussion also touches on a few front-end practices

that tend to affect real-world performance. Among

them are first-paint timing, data prefetching, bundle

management, and keeping offline fallbacks working

reliably. These details may seem small, but they often

have the biggest impact on the overall feel of the app.

2. Methods and Materials

This study follows an analytical and comparative

methodology rather than an experimental one. Along

with the literature review, documentation from a few

widely used frameworks was studied — React Native,

Flutter, and Cordova/Ionic— plus the official notes from

the Apple App Store and Google Play. Going through

these sources helped sketch out where the main

technical limits still are and what kinds of policy rules

affect dynamic code delivery or over-the-air updates.

In a related discussion, Cherukuri (2021) looks at

Progressive Web Apps (PWAs) and points out that

modern web technologies can get surprisingly close to

the look and feel of native apps, mostly thanks to

caching, offline access, and responsive layouts [1].

Around the same topic, Horn and colleagues (2023) ran

a detailed comparison of native and web Android apps,

tracking energy use, CPU load, and runtime behavior to

see what the actual trade-offs look like in practice [2]. In

the last few years, cross-platform development has

been studied from several angles, often with slightly

different priorities. Jagatha, Khamesipour, and Chung

compared Progressive Web Apps with React Native,

pointing out not just the technical contrasts but also

how developers feel about responsiveness and the

ongoing work of keeping apps stable [3]. Jošt and

Taneski looked more at market behavior and suggested

that Flutter and React Native ended up leading mainly

because they manage to balance performance with the

time and effort developers can realistically spend [4].

User habits have also come into focus. Lin et al.

described three broad kinds of users—Immediate

Adopters, Regular Updaters, and Preservers—to show

why updates spread unevenly through large groups [5].

Lingolu and Dobbala, meanwhile, treated Progressive

Web Apps as a kind of midpoint between browser-based

and native systems, arguing that newer browser APIs

have made that connection stronger and a lot more

practical than it used to be [6]. Oliveira and colleagues

provided empirical benchmarks for Flutter, React

Native, and Ionic, testing their CPU use, memory

demand, and power consumption under controlled

conditions [7]. A complementary review by Stanojević et

al. mapped the architectural and community aspects of

these frameworks, paying attention to the specific

difficulties that emerge at enterprise scale [8]. Earlier

comparisons by You and Hu pointed to the trade-off

each framework makes between developer workload

and runtime efficiency [9]. Zohud and Zein finished the

picture with a few case studies from real companies

[10]. Their findings were fairly down-to-earth: team

experience, maintenance budgets, and even internal

politics often end up influencing framework choice more

than any set of technical benchmarks.

3. Results and Discussion

The American Journal of Engineering and Technology 97 https://www.theamericanjournals.com/index.php/tajet

Writing an app completely in native code — Swift or

Objective-C on iOS, Kotlin or Java on Android — still

gives the best runtime speed and unrestricted access to

every system API. When developers work natively, they

get full control over performance and can tap into every

feature the device offers. The trade-off is time. Each

release slows things down — updates have to be

packaged, uploaded to the app store, and then sit in line

for review before anyone even sees them. On paper,

that review should take a day or two, but in reality, it

often drags out longer, and sometimes a build gets

rejected for small reasons, especially during busy release

periods. Even once an update is approved, deployment

depends on user behavior: some install it right away,

others wait days or weeks, and a few never update at all

[5]. Because of that uneven pattern, important fixes can

sit in limbo for quite a while, leaving parts of the user

base exposed to slowdowns or even security problems.

Frequent versioning adds friction, which pushes

developers to keep looking for ways — web-based or

hybrid — to move updates straight to users. One such

approach is the over-the-air (OTA) system, which lets

code or content updates reach devices without having

to go through a full store release. Instead of compiling

all functionality into the native binary, certain

components can be dynamically loaded from a server,

allowing updates to propagate immediately after

deployment:

1. WebView-Based Apps. A WebView acts like a

miniature browser embedded within a mobile app.

It shows the app’s interface using regular web code

— HTML, CSS, and JavaScript — which can either live

on the phone or be loaded from the internet when

needed. Because this part isn’t baked into the app

itself, developers can push changes remotely, and

users see the new version as soon as they reopen it.

In simple terms, it’s basically a way to bring the

flexibility of a website into a mobile wrapper. The

trade-off is that such apps often feel less “native”

and can be slightly slower to respond than fully

compiled ones.

2. Hybrid Frameworks and Code Push. Hybrid

frameworks—like React Native or Ionic—mix native

and cross-platform layers. They run JavaScript

bundles inside a native wrapper, which means the

code can be replaced or patched dynamically. Many

teams use this to push updates directly to users

without waiting for app-store approval. Platform

rules still limit what can be changed this way: only

interface tweaks or small logic updates are allowed,

not new compiled modules or permission changes.

Even with those limits, over-the-air updates have

become a normal part of fast release cycles.

Both WebView and hybrid models make it possible to

deliver small improvements or A/B experiments almost

instantly. That fast release rhythm matters most when

an app reaches a huge audience or when the product

seems to change every few weeks. Still, it opens the door

to its own set of problems. Every update needs to clear

integrity and compatibility checks, and there has to be a

fallback plan — some way to roll things back — if a

deployment misbehaves in production.

Over-the-air update systems, whether they sit on a

WebView layer or a hybrid code-push setup, have

become the practical backbone of mobile delivery

today. They make constant iteration possible, though

only when teams take testing and rollback seriously.

They let teams move fast, though only if testing and

rollback routines are treated as non-negotiable. They

make frequent iteration possible, but only when

supported by disciplined testing and rollback routines.

They borrow the release agility of the web while keeping

much of the stability and performance expected from

native software. In real projects, this combination allows

teams to experiment quickly without constantly

resubmitting builds to the stores.

When a team decides to re-architect a mobile app for

faster deployment but consistent performance, three

broad patterns usually come under consideration

(Figure 1).

The American Journal of Engineering and Technology 98 https://www.theamericanjournals.com/index.php/tajet

Figure 1. Architectural options for mobile app development

Each architecture finds its own balance between speed,

user experience, and flexibility. When building natively,

developers usually write in Swift or Kotlin and rely on the

operating system’s own frameworks. It delivers

excellent responsiveness, though even small updates

have to pass through store approval, which tends to

slow releases a bit. Hybrid frameworks—for example,

React Native or Flutter—sit somewhere between the

two extremes. They connect JavaScript logic with native

components and can push small updates directly to

users without resubmitting the entire build. It’s

convenient, although the configuration sometimes feels

tricky or inconsistent across platforms.

At the lighter end, WebView-based apps display HTML,

CSS, and JavaScript inside an embedded browser.

Because the interface loads from a server or CDN, new

content appears almost immediately. Even so, scrolling

and gesture responses can sometimes feel a bit uneven,

especially on lower-end phones. Newer hybrid

containers—Ionic and others—try to narrow that gap.

Modern React Native uses its new architecture to bypass

the old bridge issues and push performance much closer

to truly native apps, and Flutter compiles its Dart code

ahead of time. When it’s tuned properly — and after a

bit of the usual trial and error — both frameworks can

run surprisingly close to native speed while keeping

upkeep low enough to manage.

In day-to-day work, very few teams stick to only one

route. A WebView often ends up serving the pieces that

change every other week, while hybrid or native

sections take over the heavier jobs — the camera,

interactive feeds, anything that can break under latency.

It’s a messy balance in practice, but that’s what tends to

work. It’s less a hard rule and more a habit that develops

from what works in practice. It’s not always a strict

either-or choice. Many groups settle on a blended

setup—WebView where flexibility matters, native

where speed matters—which, for most cases, turns out

to be the most workable middle ground. The

comparative criteria for selecting among them are

summarized in Figure 2: performance, UX nativeness,

maintenance cost, and delivery agility.

The American Journal of Engineering and Technology 99 https://www.theamericanjournals.com/index.php/tajet

Figure 2. The comparative evaluation of mobile app architectures across key criteria

Figure 2 compares three app architectures—WebView,

Hybrid, and Native—across four main criteria:

performance, user experience, maintenance cost, and

update speed. In the chart, green highlights areas of

relative strength, while red points out the trade-offs.

WebView apps update almost instantly and are

inexpensive to maintain, although they can feel a bit less

responsive and less aligned with each platform’s usual

behavior. Hybrid frameworks sit somewhere in

between. They offer near-native speed and experience,

but keeping them in good shape still takes a fair amount

of work. Fully native builds still come out ahead in raw

performance and polish, although that edge usually

brings slower release cycles and a bit more development

expense.

When you look closer, performance isn’t just a single

metric — it’s tied to how fast screens appear, how

smooth the animations feel, and how well the code

actually cooperates with the hardware. A few studies

have noted the same thing, though not always in

identical terms. Pure web layers, flexible as they are,

tend to draw more CPU and battery power — especially

on mid-range devices — because the browser engine

keeps working even as data is fetched in the

background. And that, in practice, often matters more

than developers expect. Horn et al. (2023) reported that

native builds were the most efficient overall. Jošt and

Taneski (2025) noted that newer hybrids like React

Native and Flutter now come close to native

performance—quite unlike older WebView stacks such

as Cordova. Oliveira et al. (2023) reported a comparable

trend. In graphics-intensive tests, Ionic — a WebView-

based framework — showed weaker frame stability,

whereas Flutter and React Native managed hardware

resources far more effectively. Even so, with careful

tuning, WebView apps can still perform better than

many expect. Jagatha et al. (2023) even noted that, in

certain situations, a cached Progressive Web App loaded

faster than its React Native counterpart — a small but

telling result that highlights how optimization can

sometimes overturn assumptions about speed. It’s a

small but telling result, suggesting that, with enough

optimization, the performance gap may shrink more

than most developers would expect.

User experience—and what practitioners often call

nativeness—describes how comfortably an app sits

inside its host system. Because WebView screens are, at

their core, web pages, gestures and scrolling can

sometimes feel a bit off from what users expect.

Developers often end up spending extra time smoothing

out those little inconsistencies so the interface feels just

a bit closer to native. Hybrid frameworks work

somewhat differently. They rely on real native

components—UITextField on iOS or EditText on

Android—so text input and motion usually come across

as smoother and a little more consistent from one

device to another.

They also open access to a wider range of system APIs—

the camera, motion sensors, background processes, and

so on—while WebViews remain partly sandboxed,

which can occasionally limit what a developer can do

without custom bridging. Progressive Web Apps help

close that gap to some extent, yet on iOS, they still face

restrictions around gestures and hardware APIs. It’s a

reminder that platform policies, not just code, continue

to define what “native” really means. In everyday work,

teams usually keep WebView screens for static or

content-heavy sections and use hybrid layers for the

more interactive parts.

From an engineering standpoint, both WebView and

hybrid setups reduce cost compared with fully native

work. A shared codebase means most logic and layout

can be reused across platforms. Jošt and Taneski link the

rise of cross-platform tools to this efficiency, and You

and Hu mention the same decline in duplicated work [4;

9]. WebView deployment is easier—updates go live the

moment they’re pushed to the server—but that

simplicity hides its own maintenance burden: reliable

The American Journal of Engineering and Technology 100 https://www.theamericanjournals.com/index.php/tajet

hosting, version control, and rollback systems are still

essential. Enterprises often find hybrid frameworks a

steadier compromise between reuse and runtime

reliability.

Other factors also play into architectural choice:

security, how users perceive the app, and the team’s

own background. WebView layers make code exposure

a bit easier, so they need tighter integrity controls —

HTTPS everywhere, signed packages, maybe even some

obfuscation. Some users still think of WebView shells as

second-rate, though that bias is fading as mobile

browsers get faster. Team composition matters as well.

A group with a strong web background can usually move

faster using WebView or React Native, whereas

developers who have spent years inside native SDKs

tend to feel more at home with Flutter or fully native

stacks. Experience shapes preference more than theory

does.

In general, performance and that familiar sense of

nativeness still favor hybrid or native builds, while

delivery speed and lower cost tilt toward WebView. This

combination merges the deployment speed of web

delivery with the tactile quality of native rendering.

How the application code itself is delivered also affects

maintainability and security. WebView and hybrid

frameworks follow the same underlying principle of

secure, versioned delivery, but the mechanics differ. In

WebView architectures, the bundle usually consists of

static assets—HTML, CSS, JavaScript, and media—

served over HTTPS and cached through a content-

delivery network (CDN). The native container usually

holds only a few lightweight assets — a splash screen,

maybe an offline placeholder — while the rest of the

interface loads from the network. For products that

operate globally, CDN integration is practically essential.

Distributed caching keeps latency low and helps balance

traffic, which in turn shortens load times and improves

bandwidth efficiency.

Hybrid frameworks such as React Native or Ionic handle

this differently. They store their logic as versioned

JavaScript bundles inside the app’s sandbox. From time

to time, the runtime checks a deployment service like

Expo EAS Update (React Native) or Shorebird (Flutter)

for a newer bundle and, if one is found, installs it

automatically. Each package arrives with a cryptographic

signature and replaces the old one atomically to protect

integrity. Some platforms even send only what has

changed — a differential-update approach that saves

bandwidth and speeds up rollout.

Both WebView distribution and hybrid bundling rely on

disciplined signing, caching, and version tracking to keep

security and speed consistent across very large user

bases to prevent inconsistencies and ensure safe,

reliable updates. The next section will address how to

optimize these delivery models further—improving

rendering performance, minimizing bundle sizes, and

ensuring reliable fallback behavior across billions of

devices (Figure 3).

The American Journal of Engineering and Technology 101 https://www.theamericanjournals.com/index.php/tajet

Figure 3. Optimization flow for WebView-based content delivery

Figure 3 illustrates the rendering and optimization flow

in a WebView-based system. Server-side rendering,

compression, and bundle minimization help cut down

the payload long before it’s sent to users.

How the application code actually reaches a device ends

up shaping performance, maintainability, and even

security. WebView and hybrid frameworks both chase

the goal of continuous updates, though they go about it

differently. WebView apps usually pull static HTML, CSS,

and JavaScript over HTTPS, often through a CDN to keep

latency low and response times steady worldwide.

Hybrid frameworks like React Native or Ionic, by

contrast, bundle versioned JavaScript inside the app’s

sandbox. When a new version appears, the runtime

fetches it, verifies the signature, and swaps it in. That

process allows rollbacks and staged releases but gives up

a little immediacy in exchange for stronger version

control and better offline support.

Hybrid “Last Known Good” Bundle: In hybrid OTA

updates, a robust strategy is to keep track of the last

working code bundle. If a new update is downloaded

and applied but causes a crash or major malfunction, the

app should automatically revert to the previous stable

bundle. Many frameworks support this logic: for

example, the CodePush SDK can be configured to not

mark an update as fully “accepted” until the app has run

for a certain period without crashing. If a crash occurs

on startup after an update, it rolls back to the older

bundle.

This is crucial in high-traffic apps because a bad update

could affect millions of users within minutes if not

managed properly. It’s akin to having a circuit breaker—

deliver updates fast, but be ready to undo them just as

fast. Developer experiences from Meteor (a framework

with hot code push) highlight this approach: it detects

faulty hot code and “reverts to the last known good

version” to keep the app functional. Implementing such

The American Journal of Engineering and Technology 102 https://www.theamericanjournals.com/index.php/tajet

a safeguard is highly recommended when deploying OTA

updates in production.

When doing an update, ensure that the update is

applied completely or not at all. For web content, this

might mean versioning assets so that the HTML file

references a specific version of JS/CSS. If a user is online

during an update deployment, they shouldn’t load half

old, half new resources (which could be incompatible).

Techniques like serving an application manifest or

injecting a version stamp can help. Similarly, for code

bundles, download the whole bundle to a temp location,

verify it, then switch the app to use it, rather than

replacing things in pieces.

Although not exactly a “fallback,” it’s a related safety

strategy. Even with OTA, you need not deploy to

everyone at once. You could release new web content

or bundles to a small percentage of users (or only to

internal users for testing), monitor for errors or

performance issues (using analytics or error logging),

and then increase the rollout percentage. This limits the

blast radius of any bad update, and if something looks

wrong, you stop the rollout (or push a fix). High-traffic

apps often employ canary releases in their web

infrastructure – the same principle should be applied to

OTA mobile updates.

If WebView content updates in the background (e.g., a

new version of the app’s web code comes out while the

user is using the app), consider how to handle it. One

approach is to load the new code on the next launch

(simple and safe). Another is to live-reload some parts if

possible. But you don’t want to disrupt a user’s current

session abruptly. Many apps will show a non-intrusive

banner like “A new version is available – tap to refresh”

for web content, allowing the user to choose when to

reload (this is common in PWAs). This ensures users

don’t get confused by suddenly changing interfaces or

lose state unexpectedly.

If any aspect malfunctions, the app should have a

pathway to recover. For instance, catching failures in the

WebView and offering the user an option to reload or

reset the app’s cache might be necessary. In the worst

case, the native shell could detect an irrecoverable error

and present an apology screen with an option to clear

cached data (which would force a fresh download next

time). This is a last resort, but better than leaving the

user with a stuck app. Instrumentation can help detect

if many users are hitting such an issue.

The overarching principle is resilience: design the OTA

system so that the app never becomes unusable. If

offline, it should degrade gracefully (show cached info or

an informative message). If an update is bad, it should

roll back. Testing failure cases is just as important as

checking normal functionality. In apps that handle huge

volumes of traffic, even a tiny 0.1% failure rate can mean

thousands of affected users.

For large-scale mobile products, a pragmatic approach

has to find a balance between quick release cycles and

stable, high-quality user experience. Real-time features

— things like live chat, navigation, or video calls — are

where WebViews tend to fall behind. Preloading

WebViews or matching the visual design across modules

often helps keep that seamless feel. In practice, teams

watch telemetry — load time, crash frequency,

interaction depth — and combine it with user feedback

to decide when a WebView screen needs to be rebuilt as

hybrid or native. Because WebView content runs in a

sandbox, developers also have to keep a close eye on

latency and error reports. In most cases, that blend gives

the right trade-off between agility, maintainability, and

overall user experience.

4. Conclusion

High-traffic mobile applications have to combine rapid

iteration with a polished user experience, and keeping

both in balance isn’t easy. Traditional native

development alone often struggles here because every

store submission and user download adds friction to the

release cycle. By blending WebView delivery and hybrid

frameworks with native components, however, teams

can reach a workable middle ground: web-level agility in

updates paired with near-native performance.

In practice, the most effective setup for large-scale

products tends to be a mixed one. WebViews —

together with over-the-air web updates — suit areas

that change constantly or require flexible layouts.

Heavier, more interactive features usually sit better in

hybrid or fully native code, where responsiveness and

the authentic platform “feel” matter most. Experience

from both research and production environments

supports this pattern.

Crucially, achieving this requires careful engineering –

performance optimizations for WebView content, solid

fallback mechanisms for OTA updates, and a coherent

user interface strategy across web and native

components. When done right, users should not be able

to tell (nor need to care) which parts of the app are web-

The American Journal of Engineering and Technology 103 https://www.theamericanjournals.com/index.php/tajet

based and which are native. They simply get a smooth,

up-to-date experience. As mobile hardware continues to

get faster and web technology advances, the

performance gap will further close, making web/hybrid

solutions even more attractive. In the future, the

distinction between a “web app” and a “native app” will

be minimal from both developer and user perspectives,

especially with concepts like Progressive Web Apps

erasing some boundaries.

For now, the recommendation to practitioners building

apps for millions of users is clear: embrace a hybrid

strategy that optimizes for both rapid delivery and

native-quality UX. Use the right tool for each job within

your app, and you’ll reap the benefits of both worlds. In

doing so, you can continuously improve your product at

a pace that matches user expectations and stay ahead in

the fast-moving mobile landscape.

References

1. Cherukuri, B. R. (2024). Progressive Web Apps

(PWAs): Enhancing User Experience through

Modern Web Development. International Journal

of Science and Research, 13(10), 1550–1560.

http://doi.org/10.21275/MS241022095359

2. Horn, R., Lahnaoui, A., Reinoso, E., Peng, S., Isakov,

V., Islam, T., & Malavolta, I. (2023, May). Native vs

web apps: Comparing the energy consumption and

performance of android apps and their web

counterparts. In 2023 IEEE/ACM 10th International

Conference on Mobile Software Engineering and

Systems (MOBILESoft) (pp. 44-54). IEEE.

https://doi.org/10.1109/MOBILSoft59058.2023.000

13

3. Jagatha, V., Khamesipour, A., & Chung, S. (2023).

Cross-Platform App Development: A Comparative

Study of PWAs and React Native Mobile Apps.

Proceedings of the ISCAP Conference, 9(5944), 1–

10.

4. Jošt, G., & Taneski, V. (2025). State-of-the-Art

Cross-Platform Mobile Application Development

Frameworks: A Comparative Study of Market and

Developer Trends. Informatics, 12(2), 45. MDPI.

DOI: https://doi.org/10.3390/informatics12020045

5. Lin, F., Lu, X., Ai, W., Li, H., Ma, Y., & Liu, X. (2024).

Adoption of Recurrent Innovations: A Large-Scale

Case Study on Mobile App Updates. ACM

Transactions on the Web, 18(1), 1-16.

http://doi.org/10.1145/3626189

6. Lingolu, M. S. S., & Dobbala, M. K. (2022). A

Comprehensive Review of Progressive Web Apps:

Bridging the Gap Between Web and Native

Experiences. International Journal of Science and

Research, 11(2), 1326–1334.

https://dx.doi.org/10.21275/SR24517172948

7. Oliveira, W., Moraes, B., Castor, F., & Fernandes, J.

P. (2023). Analyzing the Resource Usage Overhead

of Mobile App Development Frameworks. In Proc.

of the 27th International Conference on Evaluation

and Assessment in Software Engineering (EASE '23)

(pp. 310–319). ACM.

https://doi.org/10.1145/3593434.3593487

8. Stanojević, J., Šošević, U., Minović, M., &

Milovanović, M. (2022). An Overview of Modern

Cross-platform Mobile Development Frameworks.

In Proc. of the 33rd Central European Conference

on Information and Intelligent Systems (CECIIS

2022) (pp. 489–497). University of Zagreb.

9. You, D., & Hu, M. (2021). A Comparative Study of

Cross-platform Mobile Application Development. In

Proc. of CITRENZ 2021 (Computing and Information

Technology Research and Education New Zealand),

Wellington, NZ. (pp. 75–81).

10. Zohud, T., & Zein, S. (2021). Cross-Platform Mobile

App Development in Industry: A Multiple Case-

Study. International Journal of Computing, 20(1),

46–54. DOI:

https://doi.org/10.47839/ijc.20.1.2091.

http://doi.org/10.21275/MS241022095359
https://doi.org/10.1109/MOBILSoft59058.2023.00013
https://doi.org/10.1109/MOBILSoft59058.2023.00013
https://doi.org/10.3390/informatics12020045
http://doi.org/10.1145/3626189
https://dx.doi.org/10.21275/SR24517172948
https://doi.org/10.1145/3593434.3593487
https://doi.org/10.47839/ijc.20.1.2091

