W
THE USA
!‘(')URNA'I.?

The American Journal of
Engineering and Technology

ISSN 2689-0984 | Open Access

M

Check for updates

OPEN ACCESS

11 October 2025
16 November 2025
26 November 2025
Vol.07 Issue 11 2025

Denis Saripov. (2025). Optimizing Web Interface Rendering for Mobile
Apps with High User Traffic. The American Journal of Engineering and
Technology, 7(11), 95-103.
https://doi.org/10.37547/tajet/VolumeO7Issuell-11

© 2025 Original content from this work may be used under the terms
of the creative common’s attributes 4.0 License.

The American Journal of Engineering and Technology

95

Original Research
95-103
10.37547/tajet/VolumeO7Issuell-11

Optimizing Web Interface Rendering
for Mobile Apps with High User
Traffic

Denis Saripov

Frontend Software Engineer Singapore

Abstract: This article focuses on optimizing web
interface rendering in large-scale mobile applications
that serve billions of users. The study aims to identify
how different architectural models—Native, Hybrid, and
WebView-based—influence the trade-off between
performance, user experience, and delivery agility. This
work set out to build a practical way of choosing and
improving mobile-app architectures, especially in
projects that need constant updates and quick
turnarounds, while still being able to scale globally—the
methodology of this study is analytical and comparative,
based on ten recent peer-reviewed research and
The

performance,

sources. analysis ascertained four themes:

user experience or “nativeness,”
maintenance work, and how quickly updates can
actually roll out. From what was observed, WebView
setups often make releases faster and cheaper, though
that gain usually costs a bit of raw speed. Hybrid
frameworks like React Native or Flutter, meanwhile,
come fairly close to native responsiveness and are not as
taxing on day-to-day developer effort. The paper also
highlights a few applied methods for boosting front-end
responsiveness, managing bundles more cleanly, and
strengthening offline reliability. The article will be useful
to assist engineers and product managers with making
releases more frequent while maintaining the same

level of polish and reliability for users.

Keywords: Mobile app architecture, WebView, Hybrid
framework, Over-the-air updates, Progressive Web
Apps (PWA), Flutter,
optimization, Cross-platform development, Continuous

React Native, Frontend

delivery.
Introduction

Mobile for i0S and Android offer

remarkably rich capabilities and user experiences. The

applications

difficulty comes when those same apps have to deliver

https://www.theamericanjournals.com/index.php/tajet

https://doi.org/10.37547/tajet/Volume07Issue11-11
https://doi.org/10.37547/tajet/Volume07Issue11-11

updates to millions — sometimes billions — of devices.
In the traditional native model, every code change must
pass through the Apple App Store or Google Play review
process and then wait for users to install it. Even a small
patch can take weeks to reach everyone. Major apps
might release new builds every few days, yet users
update on their own schedules. Some install them
almost immediately; others — the so-called Preservers
— stick with old versions for months [5]. The result is
predictable: even a simple bug fix can take much longer
than planned to reach everyone.

Store policies and release rules add a different kind of
slowdown. A multi-case study from industry pointed out
that app-store rules, the need to maintain several
codebases, and the rigid timing of release cycles often
cause as much trouble as the familiar performance or
testing hurdles [10]. In other words, the native delivery
pipeline is stable and trustworthy, yet hardly fast.
Updates move through it on the platform’s schedule
than the which
improvements rarely arrive exactly when they are

rather developer’s, means

needed.

To work around those delays, developers have turned
toward over-the-air (OTA) update systems and web-
based delivery. The solution is straightforward —
building parts of the app so they can update themselves
on the fly, avoiding the long approval and download
cycle. One approach embeds WebViews — essentially
web-based single-page interfaces that live inside a
native shell. The other uses hybrid frameworks such as
React Native. The goal isn’t only to compare speed, but
to see how each behaves in everyday use — how natural
it feels to the user, how demanding it is for developers,
and how easily it can adapt to frequent release cycles.

The discussion also touches on a few front-end practices
that tend to affect real-world performance. Among
them are first-paint timing, data prefetching, bundle
management, and keeping offline fallbacks working
reliably. These details may seem small, but they often
have the biggest impact on the overall feel of the app.

2. Methods and Materials

This study follows an analytical and comparative
methodology rather than an experimental one. Along
with the literature review, documentation from a few
widely used frameworks was studied — React Native,
Flutter, and Cordova/lonic— plus the official notes from
the Apple App Store and Google Play. Going through
these sources helped sketch out where the main

The American Journal of Engineering and Technology

96

technical limits still are and what kinds of policy rules
affect dynamic code delivery or over-the-air updates.

In a related discussion, Cherukuri (2021) looks at
Progressive Web Apps (PWAs) and points out that
modern web technologies can get surprisingly close to
the look and feel of native apps, mostly thanks to
caching, offline access, and responsive layouts [1].
Around the same topic, Horn and colleagues (2023) ran
a detailed comparison of native and web Android apps,
tracking energy use, CPU load, and runtime behavior to
see what the actual trade-offs look like in practice [2]. In
the last few years, cross-platform development has
been studied from several angles, often with slightly
different priorities. Jagatha, Khamesipour, and Chung
compared Progressive Web Apps with React Native,
pointing out not just the technical contrasts but also
how developers feel about responsiveness and the
ongoing work of keeping apps stable [3]. Jost and
Taneski looked more at market behavior and suggested
that Flutter and React Native ended up leading mainly
because they manage to balance performance with the
time and effort developers can realistically spend [4].
User habits have also come into focus. Lin et al.
described three broad kinds of users—Immediate
Adopters, Regular Updaters, and Preservers—to show
why updates spread unevenly through large groups [5].

Lingolu and Dobbala, meanwhile, treated Progressive
Web Apps as a kind of midpoint between browser-based
and native systems, arguing that newer browser APIs
have made that connection stronger and a lot more
practical than it used to be [6]. Oliveira and colleagues
Flutter,
Native, and lonic, testing their CPU use, memory

provided empirical benchmarks for React
demand, and power consumption under controlled
conditions [7]. A complementary review by Stanojevic¢ et
al. mapped the architectural and community aspects of
these frameworks, paying attention to the specific
difficulties that emerge at enterprise scale [8]. Earlier
comparisons by You and Hu pointed to the trade-off
each framework makes between developer workload
and runtime efficiency [9]. Zohud and Zein finished the
picture with a few case studies from real companies
[10]. Their findings were fairly down-to-earth: team
experience, maintenance budgets, and even internal
politics often end up influencing framework choice more
than any set of technical benchmarks.

3. Results and Discussion

https://www.theamericanjournals.com/index.php/tajet

Writing an app completely in native code — Swift or
Objective-C on i0OS, Kotlin or Java on Android — still
gives the best runtime speed and unrestricted access to
every system APl. When developers work natively, they
get full control over performance and can tap into every
feature the device offers. The trade-off is time. Each
release slows things down — updates have to be
packaged, uploaded to the app store, and thensit in line
for review before anyone even sees them. On paper,
that review should take a day or two, but in reality, it
often drags out longer, and sometimes a build gets
rejected for small reasons, especially during busy release
periods. Even once an update is approved, deployment
depends on user behavior: some install it right away,
others wait days or weeks, and a few never update at all
[5]. Because of that uneven pattern, important fixes can
sit in limbo for quite a while, leaving parts of the user
base exposed to slowdowns or even security problems.

Frequent versioning adds friction, which pushes
developers to keep looking for ways — web-based or
hybrid — to move updates straight to users. One such
approach is the over-the-air (OTA) system, which lets
code or content updates reach devices without having
to go through a full store release. Instead of compiling
all functionality into the native binary, certain
components can be dynamically loaded from a server,
allowing updates to propagate immediately after

deployment:

1. WebView-Based Apps. A WebView acts like a
miniature browser embedded within a mobile app.
It shows the app’s interface using regular web code
— HTML, CSS, and JavaScript — which can either live
on the phone or be loaded from the internet when
needed. Because this part isn’t baked into the app
itself, developers can push changes remotely, and
users see the new version as soon as they reopen it.
In simple terms, it’s basically a way to bring the
flexibility of a website into a mobile wrapper. The
trade-off is that such apps often feel less “native”
and can be slightly slower to respond than fully

compiled ones.

The American Journal of Engineering and Technology

97

and Code Push. Hybrid
frameworks—like React Native or lonic—mix native

Hybrid Frameworks

and cross-platform layers. They run JavaScript
bundles inside a native wrapper, which means the
code can be replaced or patched dynamically. Many
teams use this to push updates directly to users
without waiting for app-store approval. Platform
rules still limit what can be changed this way: only
interface tweaks or small logic updates are allowed,
not new compiled modules or permission changes.
Even with those limits, over-the-air updates have
become a normal part of fast release cycles.

Both WebView and hybrid models make it possible to
deliver small improvements or A/B experiments almost
instantly. That fast release rhythm matters most when
an app reaches a huge audience or when the product
seems to change every few weeks. Still, it opens the door
to its own set of problems. Every update needs to clear
integrity and compatibility checks, and there has to be a
fallback plan — some way to roll things back — if a
deployment misbehaves in production.

Over-the-air update systems, whether they sit on a
WebView layer or a hybrid code-push setup, have
become the practical backbone of mobile delivery
today. They make constant iteration possible, though
only when teams take testing and rollback seriously.
They let teams move fast, though only if testing and
rollback routines are treated as non-negotiable. They
make frequent iteration possible, but only when
supported by disciplined testing and rollback routines.
They borrow the release agility of the web while keeping
much of the stability and performance expected from
native software. In real projects, this combination allows
teams to experiment quickly without constantly
resubmitting builds to the stores.

When a team decides to re-architect a mobile app for
faster deployment but consistent performance, three
broad patterns usually come under consideration
(Figure 1).

https://www.theamericanjournals.com/index.php/tajet

WebView

Web Server { CDN
_ﬁ (instant)
HTML / CSS / JS - Embef::r‘ii::’v'ew
\
Hybrid
ﬁ OTA Bundles (fast)
. 5 JS-Native Bridge (React
JavaScript / TypeScript % Native / Co?duva] \ 5
\ N Device APIs (Camera,
/5 GPS, Filesystem)
Native
App Store update
ﬁ (delayed)
<5
Complled Swift/Kotiin | —— OS;;;E?:‘X:;
\ J

Figure 1. Architectural options for mobile app development

Each architecture finds its own balance between speed,
user experience, and flexibility. When building natively,
developers usually write in Swift or Kotlin and rely on the
operating system’s own frameworks. It delivers
excellent responsiveness, though even small updates
have to pass through store approval, which tends to
slow releases a bit. Hybrid frameworks—for example,
React Native or Flutter—sit somewhere between the
two extremes. They connect JavaScript logic with native
components and can push small updates directly to
It's
convenient, although the configuration sometimes feels

users without resubmitting the entire build.

tricky or inconsistent across platforms.

At the lighter end, WebView-based apps display HTML,
CSS, and JavaScript inside an embedded browser.
Because the interface loads from a server or CDN, new
content appears almost immediately. Even so, scrolling
and gesture responses can sometimes feel a bit uneven,
hybrid
containers—lonic and others—try to narrow that gap.

especially on lower-end phones. Newer

Modern React Native uses its new architecture to bypass

The American Journal of Engineering and Technology

98

the old bridge issues and push performance much closer
to truly native apps, and Flutter compiles its Dart code
ahead of time. When it’s tuned properly — and after a
bit of the usual trial and error — both frameworks can
run surprisingly close to native speed while keeping
upkeep low enough to manage.

In day-to-day work, very few teams stick to only one
route. A WebView often ends up serving the pieces that
change every other week, while hybrid or native
sections take over the heavier jobs — the camers,
interactive feeds, anything that can break under latency.
It's a messy balance in practice, but that’s what tends to
work. It’s less a hard rule and more a habit that develops
from what works in practice. It’s not always a strict
either-or choice. Many groups settle on a blended
setup—WebView where flexibility matters, native
where speed matters—which, for most cases, turns out
to be the most workable middle ground. The
comparative criteria for selecting among them are
summarized in Figure 2: performance, UX nativeness,
maintenance cost, and delivery agility.

https://www.theamericanjournals.com/index.php/tajet

ARCHITECTURE ¢ Performance

@ UX / Nativeness

WebView *htkk . *ok ke
Hybrid Fdkdodkd - - Jr A
Native Khkkkk e - ok ek

‘; Maintenance Cost g Delivery Agility

- . Ak - Fodk ko -

- ek - ek [= -

- *kErdrdr ki €D

Figure 2. The comparative evaluation of mobile app architectures across key criteria

Figure 2 compares three app architectures—WebView,
Hybrid,
performance, user experience, maintenance cost, and

and Native—across four main criteria:
update speed. In the chart, green highlights areas of
relative strength, while red points out the trade-offs.
WebView apps update almost instantly and are
inexpensive to maintain, although they can feel a bit less
responsive and less aligned with each platform’s usual
behavior. Hybrid frameworks sit somewhere in
between. They offer near-native speed and experience,
but keeping them in good shape still takes a fair amount
of work. Fully native builds still come out ahead in raw
performance and polish, although that edge usually
brings slower release cycles and a bit more development

expense.

When you look closer, performance isn’t just a single
metric — it’s tied to how fast screens appear, how
smooth the animations feel, and how well the code
actually cooperates with the hardware. A few studies
have noted the same thing, though not always in
identical terms. Pure web layers, flexible as they are,
tend to draw more CPU and battery power — especially
on mid-range devices — because the browser engine
is fetched in the
background. And that, in practice, often matters more

keeps working even as data

than developers expect. Horn et al. (2023) reported that
native builds were the most efficient overall. Jost and
Taneski (2025) noted that newer hybrids like React
Native and Flutter now come close to native
performance—quite unlike older WebView stacks such
as Cordova. Oliveira et al. (2023) reported a comparable
trend. In graphics-intensive tests, lonic — a WebView-
based framework — showed weaker frame stability,
whereas Flutter and React Native managed hardware
resources far more effectively. Even so, with careful
tuning, WebView apps can still perform better than
many expect. Jagatha et al. (2023) even noted that, in
certain situations, a cached Progressive Web App loaded

faster than its React Native counterpart — a small but

The American Journal of Engineering and Technology

99

telling result that highlights how optimization can
sometimes overturn assumptions about speed. It's a
small but telling result, suggesting that, with enough
optimization, the performance gap may shrink more
than most developers would expect.

User experience—and what practitioners often call
nativeness—describes how comfortably an app sits
inside its host system. Because WebView screens are, at
their core, web pages, gestures and scrolling can
sometimes feel a bit off from what users expect.
Developers often end up spending extra time smoothing
out those little inconsistencies so the interface feels just
a bit closer to native. Hybrid frameworks work
rely on real native
iOS or EditText on

Android—so text input and motion usually come across

somewhat differently. They
components—UITextField on

as smoother and a little more consistent from one
device to another.

They also open access to a wider range of system APIs—
the camera, motion sensors, background processes, and
so on—while WebViews remain partly sandboxed,
which can occasionally limit what a developer can do
without custom bridging. Progressive Web Apps help
close that gap to some extent, yet on iOS, they still face
restrictions around gestures and hardware APIs. It's a
reminder that platform policies, not just code, continue
to define what “native” really means. In everyday work,
teams usually keep WebView screens for static or
content-heavy sections and use hybrid layers for the
more interactive parts.

From an engineering standpoint, both WebView and
hybrid setups reduce cost compared with fully native
work. A shared codebase means most logic and layout
can be reused across platforms. Jo$t and Taneski link the
rise of cross-platform tools to this efficiency, and You
and Hu mention the same decline in duplicated work [4;
9]. WebView deployment is easier—updates go live the
moment they’re pushed to the server—but that
simplicity hides its own maintenance burden: reliable

https://www.theamericanjournals.com/index.php/tajet

hosting, version control, and rollback systems are still
essential. Enterprises often find hybrid frameworks a
runtime

steadier compromise between reuse and

reliability.

Other factors also play into architectural choice:
security, how users perceive the app, and the team’s
own background. WebView layers make code exposure
a bit easier, so they need tighter integrity controls —
HTTPS everywhere, signed packages, maybe even some
obfuscation. Some users still think of WebView shells as
second-rate, though that bias is fading as mobile
browsers get faster. Team composition matters as well.
A group with a strong web background can usually move
faster using WebView or React Native, whereas
developers who have spent years inside native SDKs
tend to feel more at home with Flutter or fully native
stacks. Experience shapes preference more than theory
does.

In general, performance and that familiar sense of
nativeness still favor hybrid or native builds, while
delivery speed and lower cost tilt toward WebView. This
combination merges the deployment speed of web
delivery with the tactile quality of native rendering.

How the application code itself is delivered also affects
maintainability and security. WebView and hybrid
frameworks follow the same underlying principle of
secure, versioned delivery, but the mechanics differ. In
WebView architectures, the bundle usually consists of
static assets—HTML, CSS, JavaScript, and media—

The American Journal of Engineering and Technology

100

served over HTTPS and cached through a content-
delivery network (CDN). The native container usually
holds only a few lightweight assets — a splash screen,
maybe an offline placeholder — while the rest of the
interface loads from the network. For products that
operate globally, CDN integration is practically essential.
Distributed caching keeps latency low and helps balance
traffic, which in turn shortens load times and improves
bandwidth efficiency.

Hybrid frameworks such as React Native or lonic handle
this differently. They store their logic as versioned
JavaScript bundles inside the app’s sandbox. From time
to time, the runtime checks a deployment service like
Expo EAS Update (React Native) or Shorebird (Flutter)
for a newer bundle and, if one is found, installs it
automatically. Each package arrives with a cryptographic
signature and replaces the old one atomically to protect
integrity. Some platforms even send only what has
changed — a differential-update approach that saves
bandwidth and speeds up rollout.

Both WebView distribution and hybrid bundling rely on
disciplined signing, caching, and version tracking to keep
security and speed consistent across very large user
bases to prevent inconsistencies and ensure safe,
reliable updates. The next section will address how to
optimize these delivery models further—improving
rendering performance, minimizing bundle sizes, and
ensuring reliable fallback behavior across billions of
devices (Figure 3).

https://www.theamericanjournals.com/index.php/tajet

Origin Server

S5R . Compression - Bundle Minimization

CDN Cache

a WebView Runtime

Edge caching - Prefetch - HTTP/3

Lazy load - Code-splitting - Service Worker registration

. Rendered UI

Local Cache & Service Worker
Offline-first - Viersioned assets - Instant reload

2]
E

i

m

Skeleton Ul - Async hydration - Fast FCP

Figure 3. Optimization flow for WebView-based content delivery

Figure 3 illustrates the rendering and optimization flow
in a WebView-based system. Server-side rendering,
compression, and bundle minimization help cut down
the payload long before it’s sent to users.

How the application code actually reaches a device ends
up shaping performance, maintainability, and even
security. WebView and hybrid frameworks both chase
the goal of continuous updates, though they go about it
differently. WebView apps usually pull static HTML, CSS,
and JavaScript over HTTPS, often through a CDN to keep
latency low and response times steady worldwide.
Hybrid frameworks like React Native or lonic, by
contrast, bundle versioned JavaScript inside the app’s
sandbox. When a new version appears, the runtime
fetches it, verifies the signature, and swaps it in. That
process allows rollbacks and staged releases but gives up
a little immediacy in exchange for stronger version
control and better offline support.

The American Journal of Engineering and Technology

101

Hybrid “Last Known Good” Bundle: In hybrid OTA
updates, a robust strategy is to keep track of the last
working code bundle. If a new update is downloaded
and applied but causes a crash or major malfunction, the
app should automatically revert to the previous stable
bundle. Many frameworks support this logic: for
example, the CodePush SDK can be configured to not
mark an update as fully “accepted” until the app has run
for a certain period without crashing. If a crash occurs
on startup after an update, it rolls back to the older
bundle.

This is crucial in high-traffic apps because a bad update
could affect millions of users within minutes if not
managed properly. It’s akin to having a circuit breaker—
deliver updates fast, but be ready to undo them just as
fast. Developer experiences from Meteor (a framework
with hot code push) highlight this approach: it detects
faulty hot code and “reverts to the last known good
version” to keep the app functional. Implementing such

https://www.theamericanjournals.com/index.php/tajet

a safeguard is highly recommended when deploying OTA
updates in production.

When doing an update, ensure that the update is
applied completely or not at all. For web content, this
might mean versioning assets so that the HTML file
references a specific version of JS/CSS. If a user is online
during an update deployment, they shouldn’t load half
old, half new resources (which could be incompatible).
Techniques like serving an application manifest or
injecting a version stamp can help. Similarly, for code
bundles, download the whole bundle to a temp location,
verify it, then switch the app to use it, rather than
replacing things in pieces.

Although not exactly a “fallback,” it's a related safety
strategy. Even with OTA, you need not deploy to
everyone at once. You could release new web content
or bundles to a small percentage of users (or only to
internal users for testing), monitor for errors or
performance issues (using analytics or error logging),
and then increase the rollout percentage. This limits the
blast radius of any bad update, and if something looks
wrong, you stop the rollout (or push a fix). High-traffic
apps often employ canary releases in their web
infrastructure — the same principle should be applied to
OTA mobile updates.

If WebView content updates in the background (e.g., a
new version of the app’s web code comes out while the
user is using the app), consider how to handle it. One
approach is to load the new code on the next launch
(simple and safe). Another is to live-reload some parts if
possible. But you don’t want to disrupt a user’s current
session abruptly. Many apps will show a non-intrusive
banner like “A new version is available — tap to refresh”
for web content, allowing the user to choose when to
reload (this is common in PWAs). This ensures users
don’t get confused by suddenly changing interfaces or
lose state unexpectedly.

If any aspect malfunctions, the app should have a
pathway to recover. For instance, catching failures in the
WebView and offering the user an option to reload or
reset the app’s cache might be necessary. In the worst
case, the native shell could detect an irrecoverable error
and present an apology screen with an option to clear
cached data (which would force a fresh download next
time). This is a last resort, but better than leaving the
user with a stuck app. Instrumentation can help detect
if many users are hitting such an issue.

The American Journal of Engineering and Technology

The overarching principle is resilience: design the OTA
system so that the app never becomes unusable. If
offline, it should degrade gracefully (show cached info or
an informative message). If an update is bad, it should
roll back. Testing failure cases is just as important as
checking normal functionality. In apps that handle huge
volumes of traffic, even a tiny 0.1% failure rate can mean
thousands of affected users.

For large-scale mobile products, a pragmatic approach
has to find a balance between quick release cycles and
stable, high-quality user experience. Real-time features
— things like live chat, navigation, or video calls — are
where WebViews tend to fall behind. Preloading
WebViews or matching the visual design across modules
often helps keep that seamless feel. In practice, teams

watch telemetry load time, crash frequency,
interaction depth — and combine it with user feedback
to decide when a WebView screen needs to be rebuilt as
hybrid or native. Because WebView content runs in a
sandbox, developers also have to keep a close eye on
latency and error reports. In most cases, that blend gives
the right trade-off between agility, maintainability, and

overall user experience.
4. Conclusion

High-traffic mobile applications have to combine rapid
iteration with a polished user experience, and keeping
both

development alone often struggles here because every

in balance isn’t easy. Traditional native
store submission and user download adds friction to the
release cycle. By blending WebView delivery and hybrid
frameworks with native components, however, teams
can reach a workable middle ground: web-level agility in

updates paired with near-native performance.

In practice, the most effective setup for large-scale
products tends to be a mixed one. WebViews —
together with over-the-air web updates — suit areas
that change constantly or require flexible layouts.
Heavier, more interactive features usually sit better in
hybrid or fully native code, where responsiveness and
the authentic platform “feel” matter most. Experience
from both research and production environments
supports this pattern.

Crucially, achieving this requires careful engineering —
performance optimizations for WebView content, solid
fallback mechanisms for OTA updates, and a coherent
user interface strategy across web and native
components. When done right, users should not be able

to tell (nor need to care) which parts of the app are web-

https://www.theamericanjournals.com/index.php/tajet

102

based and which are native. They simply get a smooth,
up-to-date experience. As mobile hardware continues to
the
performance gap will further close, making web/hybrid

get faster and web technology advances,
solutions even more attractive. In the future, the
distinction between a “web app” and a “native app” will
be minimal from both developer and user perspectives,
especially with concepts like Progressive Web Apps

erasing some boundaries.

For now, the recommendation to practitioners building
apps for millions of users is clear: embrace a hybrid
strategy that optimizes for both rapid delivery and
native-quality UX. Use the right tool for each job within
your app, and you’ll reap the benefits of both worlds. In
doing so, you can continuously improve your product at
a pace that matches user expectations and stay ahead in
the fast-moving mobile landscape.

References

1. Cherukuri, B. R. (2024). Progressive Web Apps
(PWAs): Enhancing User Experience through
Modern Web Development. International Journal
of Science and Research, 13(10), 1550-1560.
http://doi.org/10.21275/MS241022095359

2. Horn, R., Lahnaoui, A., Reinoso, E., Peng, S., Isakov,
V., Islam, T., & Malavolta, I. (2023, May). Native vs
web apps: Comparing the energy consumption and
performance of android apps and their web
counterparts. In 2023 IEEE/ACM 10th International
Conference on Mobile Software Engineering and
Systems (MOBILESoft) (pp. 44-54). IEEE.
https://doi.org/10.1109/MOBILSoft59058.2023.000
13

3. Jagatha, V., Khamesipour, A., & Chung, S. (2023).
Cross-Platform App Development: A Comparative
Study of PWAs and React Native Mobile Apps.
Proceedings of the ISCAP Conference, 9(5944), 1-
10.

4. Jost, G., & Taneski, V. (2025). State-of-the-Art
Cross-Platform Mobile Application Development

The American Journal of Engineering and Technology

10.

103

Frameworks: A Comparative Study of Market and
Developer Trends. Informatics, 12(2), 45. MDPI.
DOI: https://doi.org/10.3390/informatics12020045

Lin, F., Lu, X., Ai, W., Li, H., Ma, Y., & Liu, X. (2024).
Adoption of Recurrent Innovations: A Large-Scale
Case Study on Mobile App Updates. ACM
Transactions on the Web, 18(1), 1-16.
http://doi.org/10.1145/3626189

Lingolu, M. S. S., & Dobbala, M. K. (2022). A
Comprehensive Review of Progressive Web Apps:
Bridging the Gap Between Web and Native
Experiences. International Journal of Science and
Research, 11(2), 1326-1334.
https://dx.doi.org/10.21275/SR24517172948

Oliveira, W., Moraes, B., Castor, F., & Fernandes, J.
P. (2023). Analyzing the Resource Usage Overhead
of Mobile App Development Frameworks. In Proc.
of the 27th International Conference on Evaluation
and Assessment in Software Engineering (EASE '23)
(pp. 310-319). ACM.
https://doi.org/10.1145/3593434.3593487

Stanojevi¢, J., Sogevi¢, U., Minovi¢, M., &
Milovanovié¢, M. (2022). An Overview of Modern
Cross-platform Mobile Development Frameworks.
In Proc. of the 33rd Central European Conference
on Information and Intelligent Systems (CECIIS
2022) (pp. 489—-497). University of Zagreb.

You, D., & Hu, M. (2021). A Comparative Study of
Cross-platform Mobile Application Development. In
Proc. of CITRENZ 2021 (Computing and Information
Technology Research and Education New Zealand),
Wellington, NZ. (pp. 75-81).

Zohud, T., & Zein, S. (2021). Cross-Platform Mobile
App Development in Industry: A Multiple Case-
Study. International Journal of Computing, 20(1),
46-54. DOI:
https://doi.org/10.47839/ijc.20.1.2091.

https://www.theamericanjournals.com/index.php/tajet

http://doi.org/10.21275/MS241022095359
https://doi.org/10.1109/MOBILSoft59058.2023.00013
https://doi.org/10.1109/MOBILSoft59058.2023.00013
https://doi.org/10.3390/informatics12020045
http://doi.org/10.1145/3626189
https://dx.doi.org/10.21275/SR24517172948
https://doi.org/10.1145/3593434.3593487
https://doi.org/10.47839/ijc.20.1.2091

