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Abstract: This article explores how distributed 

microservice systems in the cloud are scaled. The goal is 

to piece together, from scattered research, working 

solutions and what might still be experimental. The 

focus is on design and deployment strategies that aim 

for reliability, elasticity, and cost-effective growth. 

Open-access, peer-reviewed papers published since 

2021 were reviewed with a special emphasis placed on 

those with empirical tests, diagrams, or case studies to 

see how ideas play out in practice. Across the papers 

certain themes keep reappearing. Infrastructure work 

revolves around horizontal and vertical scaling, while 

orchestration and autoscaling — Kubernetes HPA/VPA, 

serverless computing, various service meshes — are 

interpreted as part of the broader field. The unique 

contribution is the attempt to frame old and new 

together — to see classical ideas such as service 

modularity alongside hybrid autoscalers, energy-aware 

verification, probabilistic checks.  In some cases, these 

tactics reinforce one another; in others they collide, or 

create unexpected trade-offs. Observing them in the 

same frame highlights that scaling microservices is as an 

ongoing experiment, where established patterns and 

cutting-edge proposals coexist. Taken together, the 

available studies do not present a single blueprint but 

instead sketch what looks like a layered approach. In 

many cases services are kept as stateless and decoupled 

as possible; in others that ideal is only partly met. 

Horizontal and vertical scaling appear side by side — 

sometimes combined in the same system — with their 

usefulness varying by workload. Orchestration policies 

are often automated, yet the literature also warns that 

energy use and security concerns grow quietly in the 
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background as systems expand and, if left unmanaged, 

can erode the gains of scaling. This article will provide 

value to cloud architects, DevOps engineers, developers, 

and researchers interested in gaining awareness of 

current practices as well as possible venues of where the 

field might be heading next. 

Keywords: Microservices, Cloud computing, Horizontal 

scaling, Vertical scaling, Kubernetes, Autoscaling, 

Serverless computing, Reinforcement learning, 

Architectural design, Scalability. 

Introduction 

Microservices architecture is often described as 

breaking an application into a set of smaller, loosely 

connected services—each running on its own, talking 

through APIs. Advocates of microservice architectures 

usually mention higher availability, clearer fault isolation 

and, perhaps most often, the promise of horizontal 

scalability [3]. Breaking an application into distinct 

components can allow one area to be scaled separately 

from the rest. But the effect is uneven. In some reported 

cases the gains are striking; in others they are marginal 

or even negative [9]. A likely reason is that modularity 

opens up boundaries where scaling can occur 

independently, but the benefit depends on how much 

cross-service communication, caching and shared state 

exist. In other words, the same architectural feature that 

enables independent scaling can also create extra 

latency or coordination costs if the services are tightly 

coupled in practice. 

Cloud-native firms—Netflix is the primary example—

report major gains after moving from monolithic 

architectures to microservices. They can add servers or 

containers just for the overworked service rather than 

for the entire application. This may improve overall 

capacity and performance under heavy load. 

Unfortunately, such outcomes are not guaranteed. 

Smaller or more stable systems, for instance, might see 

little advantage. Some empirical work even suggests 

that on a single server a monolith can outperform an 

equivalent microservice arrangement [3]. So the 

apparent superiority of microservices could be context-

dependent—true at massive scale but not at the small 

or medium range. 

Microservices might be inherently well suited to cloud 

environments, where on-demand resources and 

autoscaling tools abound. Yet even in this case, scaling is 

not automatic. Running dozens—or hundreds—of 

independent services introduces new challenges: 

service discovery, inter-service latency, and data 

consistency among them. This could erode the very 

gains that microservices promise. In practice, 

architectural patterns and operational discipline seem 

to matter as much as the architecture itself. Researchers 

and practitioners therefore discuss stateless service 

design, careful API boundaries, orchestration layers, and 

increasingly, algorithmic resource management [4; 6]. 

These measures may, but do not always, ensure that 

microservice systems grow smoothly while maintaining 

performance. 

This mixed record suggests a field still lacks consensus. 

The literature from 2021 onward shows a lively search 

for scalable designs and management strategies—some 

quite technical, others organizational. It is probably 

appropriate to suggest there is no single solution; rather, 

scaling microservices involves a collection of 

overlapping practices, tested under different conditions, 

each with its own trade-offs. 

Methods and Materials  

This article uses a literature-based approach to explore 

how architects and researchers are trying to scale 

microservices in the cloud. The focus is on recent work, 

mostly since 2021, but the boundary is porous; some 

earlier ideas still echo through the newer papers. The 

studies sampled range widely: basic design principles, 

performance comparisons between microservice and 

monolithic systems, autoscaling algorithms, and 

assorted cloud-native technologies. The first set of 

themes includes service statelessness, loose coupling, 

clean API boundaries. Yet these supposedly 

“fundamental” patterns don’t always work as 

advertised; some studies hint at unexpected bottlenecks 

or coordination costs. After that come more 

infrastructural questions—horizontal versus vertical 

scaling, container orchestration, and the sometimes 

messy business of distributing loads across replicas. 

Kubernetes appears everywhere in the literature, but 

opinions diverge on whether its autoscaling features are 

enough or need to be augmented by hybrid or machine-

learning–driven methods. Serverless computing crops 

up as a suitable alternative in some cases, though critics 

note it may only shift complexity elsewhere. 

Alharthi et al. sketch the landscape of autoscaling in 

cloud computing, teasing apart reactive and proactive 

strategies and hinting at unresolved research problems 

[1]. Berardi et al. dig into microservice security—

spoofing, denial-of-service—and in doing so indirectly 
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show how scaling and security intertwine [2]. Blinowski 

et al. run empirical tests comparing monoliths and 

microservices under various workloads, and the results 

are uneven: sometimes microservices win, sometimes 

not [3]. Chavan explores how scaling can drive costs up 

and looks to FinOps to rein things back in [4]. 

Domakonda sets out design principles for secure and 

scalable systems but also notes how complicated they 

can be to achieve in practice [5]. Filippone et al. 

experiment with choreography-based microservice 

systems to improve coordination—another route to 

scalability [6]. Jawaddi et al. use probabilistic model 

checking to handle energy-efficient autoscaling on 

Kubernetes, suggesting yet another trade-off space [7]. 

Pandiya outlines core scalability patterns—horizontal, 

vertical, serverless [8]. Sharma investigates system-level 

scalability impacts, presenting evidence that flexibility 

and performance may improve but not universally [9]. 

Xu et al. introduce CoScal, a reinforcement-learning 

framework mixing horizontal and vertical scaling with 

feature brownout—showing how technical creativity 

continues at the edges [10]. 

Results and Discussion 

Achieving scalability begins with how microservices are 

designed. A core principle is to make services stateless 

wherever possible, meaning they do not maintain 

session-specific data internally. Stateless services can be 

replicated and load-balanced freely, since any instance 

can handle a request without relying on local state. 

Adopting stateless, loosely coupled services ensures 

that scaling out (adding instances) will not introduce 

consistency problems within the service [8]. In real 

systems this often drifts toward pushing state out — 

distributed databases, caches, anything that lets the 

service itself stay lighter.  

Another idea that keeps surfacing is bounded contexts. 

Each microservice has its own area of responsibility by 

design. In practice boundaries blur, business rules 

change, and the clean lines can fray. Still, the 

modularization combined with tech-agnostic 

communication (REST, queues) does seem to give teams 

room to pick their own stacks and scale each piece as 

needed. As Domakonda notes, microservices improve 

resource utilization and flexibility compared to 

monoliths by isolating functionality and enabling 

independent deployment and scaling [5]. This capacity 

for independent scalability is often cited as a key 

advantage. Components of an application that 

experience surges in demand—such as a “checkout” 

service in an e-commerce system—can be replicated to 

absorb the load without having to over-provision the 

entire application [9]. Yet this benefit comes with an 

architectural trade-off: a microservice system adds 

layers of communication and coordination, which in turn 

can introduce latency and operational complexity. As a 

result, effective API management, service discovery, and 

robust monitoring infrastructures become essential to 

keep the system coherent and to prevent small issues 

from propagating across services [5]. Figure 1 

summarizes the distribution of security threats reported 

in recent microservice deployments. 

 

Figure 1. Prevalence of threat categories in microservice-oriented systems by Berardi et al. [2]. 
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Figure 1 sketches the distribution of attack types in 

microservice-oriented systems as mapped onto the 

STRIDE threat model. The biggest portions — at least in 

this sample — appear to be denial of service (around 

40.5 percent) and spoofing (roughly 40 percent). After 

that the numbers decrease: information disclosure 

about 10.8 percent, repudiation near 7.3 percent, with 

only slivers for tampering, anomaly detection, and 

elevation of privilege. It is not clear whether these 

proportions would hold in a different dataset; one 

possible explanation is that DoS and spoofing are simply 

easier to detect and report than subtler threats. This 

demonstrates that, as microservice systems become 

more distributed and independently scaled, their attack 

surface shifts heavily toward identity/communication 

exploits (spoofing) and availability threats (denial of 

service). 

At the infrastructure level, there are two primary 

approaches to scale a service: horizontal scaling (also 

known as scale-out) and vertical scaling (scale-up). 

Horizontal scaling means increasing capacity by adding 

more instances of a service (e.g. launching additional 

container replicas or VMs), and distributing the 

workload among them via load balancing [8]. This is the 

de facto scaling method for microservices – since 

services are modular, one can run 5, 10, 100 copies of a 

microservice behind a load balancer to handle growing 

traffic. Horizontal scaling is often regarded as essentially 

unbounded — in practice it is limited by infrastructure 

and management overhead — and it tends to improve 

fault tolerance as well. If one instance goes down, others 

can usually keep serving [8]. Vertical scaling is the mirror 

image: instead of multiplying instances, more resources 

are piled into one.  

It is important to note that horizontal and vertical scaling 

are not mutually exclusive; they can be combined for 

optimal results. Many cloud deployments use moderate 

vertical scaling (ensuring each instance has enough 

resources to be efficient) in tandem with horizontal 

replication. A 2022 study turned up an interesting 

pattern in a managed cloud environment (Azure). For a 

while, purely vertical scaling looked more cost-effective 

than horizontal scaling [5] — which seems 

counterintuitive given the usual enthusiasm for scaling 

out. Yet as more instances were added, performance 

started to sag, apparently from inter-service overhead. 

It is premature to state exactly where the break-even 

point lies; maybe it depends on workload shape or how 

services share data. Still, the finding suggests that there 

is a kind of “sweet spot” in scaling — too far in either 

direction and the gains begin to reverse. If there are too 

few instances and each node shoulders too much load; 

too many and coordination costs—network latency, 

load-balancer churn, cache-coherency headaches—

start to erode throughput. 

In real deployments, architects seem to confront this 

balance constantly. Some even place hard caps on 

autoscaling to prevent thrashing or runaway complexity. 

Blinowski et al., for example, found that scaling out past 

a moderate number of instances yielded diminishing 

returns and, in some cases, outright performance drops 

[2]. One possible explanation is that microservices 

introduce their own friction—API calls, inter-process 

communication, state synchronization—that scales non-

linearly with distribution. Yet that friction may be offset 

in other workloads or architectures. To contextualize the 

architectural approaches discussed in the literature, 

Figure 2 illustrates the relative emphasis of scaling 

strategies found in recent microservice research and 

practice.  
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Figure 2. Relative emphasis of scaling approaches in microservice architectures by the author based on studies 

by Sharma [9] and Domakonda [5] 

 

 

The pie chart on Figure 2 shows the distribution of 

attention and adoption among five key scaling 

approaches. Independent scalability is frequently 

presented as a major advantage. In practice, it allows 

only the parts of an application under pressure — for 

instance, a “checkout” service in an e-commerce system 

— to be replicated without over-provisioning the rest 

[9]. Yet this gain is not free. Splitting a system into many 

small services brings extra communication and 

coordination overhead, which can quietly erode 

performance. One consequence is that strong API 

management, service discovery, and careful monitoring 

move from “nice to have” to “required” [5]. These 

mechanisms help keep the pieces aligned but also 

introduce their own complexity, so the trade-off is not 

always straightforward. 

Modern microservice systems almost always rely on 

container orchestration platforms (such as Kubernetes) 

to manage scaling in an automated way. A real-world 

example of large-scale orchestration came from the 

author’s work on Prime Video’s Startover Playback 

feature. This capability lets viewers restart a live event 

from the beginning while it is still being broadcast — a 

function that might sound simple but requires complex 

coordination behind the scenes. Multiple microservices 

handle ingest, encoding, and delivery, each scaling 

independently. When audience numbers spiked during 

big live events, raw server power alone wasn’t enough. 

The system used distributed caching and adaptive load 

balancing to soak up sudden surges, keeping playback 

smooth even with millions of concurrent viewers. In day-

to-day operation, the design mixed horizontal scaling 

with event-driven orchestration so the entire pipeline 

stayed responsive and fault-tolerant worldwide. This 

experience illustrates how thoughtful microservice 

design can turn backend scalability directly into visible 

reliability and higher viewer engagement. 

Kubernetes is an open-source cluster manager that 

automates deployment, scaling, and operation of 

containerized services. It provides built-in autoscalers at 

both the horizontal and vertical level – the Horizontal 

Pod Autoscaler (HPA) can automatically add or remove 

container replicas based on metrics like CPU utilization, 

and the Vertical Pod Autoscaler (VPA) can adjust 
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resource limits of containers on the fly [7]. Choosing to 

rely on orchestration platforms is itself an architectural 

move. Rather than manually spinning up or shutting 

down instances, the system is built so that Kubernetes—

or something similar—monitors service metrics and 

adjusts capacity based on the feedback. In principle this 

should deliver strong elasticity for cloud-based 

microservices [7], yet in practice the effect can be 

uneven. Monitoring intervals, scaling thresholds, and 

workload bursts can all shape how well the mechanism 

actually responds. Saradgishvili notes that Kubernetes’ 

native autoscaling features have played a major role in 

improving efficiency under variable workloads [7]. One 

possible explanation is that the platform’s built-in logic 

fits common use cases but may need tuning or 

augmentation for more complex systems. For example, 

it is possible to set a policy that if the CPU usage of a 

microservice’s pods exceeds 80% for a sustained period, 

the HPA will create a new pod (container instance) of 

that microservice, and the ingress load balancer will 

start routing traffic to the new pod as well. Conversely, 

when load drops, the HPA can scale down the number 

of pods to reduce resource usage. Such dynamic 

provisioning ensures the application always has enough 

capacity to maintain performance without wasting 

resources during lulls [8]. 

An alternative architectural approach for scaling 

microservices is to use serverless computing, typically 

via Function-as-a-Service (FaaS) platforms (e.g. AWS 

Lambda, Azure Functions). In a serverless model, the 

unit of deployment is a small function (which may 

correspond to a microservice endpoint) that the cloud 

platform can instantiate on demand in response to 

events. Serverless architectures inherently provide 

automatic scaling – when an event (such as an HTTP 

request or message trigger) occurs, the platform runs 

the function, scaling out to as many parallel function 

instances as needed to handle incoming events, and 

scaling down to zero when idle. This paradigm can be 

viewed as an extreme form of microservices, focusing on 

single-function services that start up on demand. The 

key advantage is elasticity: resources are allocated 

exactly in proportion to the workload, with no need to 

manage servers or container pools for each microservice 

[8]. For example, an image-processing service might be 

deployed as a serverless function; if a spike of 1000 

images to process comes in, the cloud will concurrently 

execute many function instances, then wind them down 

once finished, with billing only for actual execution time. 

As Pandiya (2021) explains, under a serverless 

architecture the application automatically scales up with 

inbound requests and scales down when demand falls, 

offering essentially unparalleled scalability without 

human intervention [8]. This on-demand scaling is often 

granular to the request level – e.g., AWS Lambda can 

start additional function instances in milliseconds when 

new events arrive, effectively matching even highly 

unpredictable loads. 

Pricing adds another complication. Not every workload 

fits the serverless billing model. Long-running or very 

steady tasks can end up cheaper on reserved instances; 

bursty, unpredictable workloads are where serverless 

usually shines. In a separate context focused on 

optimizing performance within constrained hardware 

environments, a subtitle processing system was 

engineered as part of Prime Video’s just-after-broadcast 

(JAB) pipeline. The goal was to keep subtitles accurate 

and in sync even on older smart TVs with very limited 

memory. To achieve this, the team used a small 

segmentation algorithm that broke subtitle data into 

short, time-based chunks and eliminated repeated lines 

— a method later reflected in U.S. Patent 10,893,331 B1. 

This cut memory use and bandwidth at the same time, 

keeping playback stable and allowing the system to scale 

upward without changing the hardware. 

This case also shows that scalability doesn’t always come 

from adding servers or infrastructure. Careful tuning of 

algorithms and data handling can achieve similar gains. 

At the same time, it highlights that serverless computing 

is not a one-size-fits-all solution. Its value depends on 

the workload pattern, the limits of the chosen cloud 

provider, and overall cost sensitivity. In practice, many 

teams end up with a hybrid design — core services 

running in long-lived containers, while event-driven or 

bursty components run as serverless functions. 

Architecturally, this means designing the system to emit 

and respond to events. For instance, an e-commerce site 

might use microservice containers for its main web API 

and use serverless functions for background tasks like 

sending notifications or generating reports on demand. 

Such a serverless event-driven architecture is depicted 

by Pandiya, where AWS Lambda functions are 

integrated as event handlers in the microservice 

ecosystem [8]. The takeaway is that serverless 

computing can be viewed as another tool for scaling: it 

shifts the responsibility of scaling to the cloud provider’s 

platform, which will transparently allocate containers 

and threads to meet the event rate.  
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One strand getting attention is the use of machine 

learning — especially reinforcement learning — to guide 

autoscaling. The thinking goes that the old rule-of-

thumb triggers (“if CPU > 70%, add one instance”) can 

be inefficient, sometimes overprovisioning or reacting 

too late. By contrast, trained models might anticipate 

demand and adjust capacity ahead of time. The 

implication is that machine-learning autoscaling is 

promising but still experimental. Xu et al. introduce 

CoScal, a multi-faceted scaling approach that combines 

horizontal scaling, vertical scaling, and even brownout 

techniques under an RL agent [10]. Brownout in this 

context means dynamically disabling non-essential 

features when the system is under heavy load, thereby 

reducing resource usage. CoScal’s RL agent uses deep 

learning to forecast workload and then decides the best 

combination of actions – e.g., scale out certain services, 

scale up resources on another, or temporarily disable a 

feature – to minimize response time and cost. Studies 

using these techniques generally report better resource 

utilization and service quality than static policies [10]. In 

effect, the architecture takes on an extra layer — an 

intelligent controller that keeps adjusting its own scaling 

rules for a complex microservice setup. One example is 

Alqassem et al., who built a proactive autoscaler using 

Random Forest predictors to anticipate bursts in 

microservice workloads [10].  

While these approaches sound promising, they also pull 

in added complexity and remain very much in the 

research stage. Architecturally, adopting a learning-

based autoscaler means collecting far more telemetry — 

response times, resource usage, request rates, maybe 

even custom application metrics — and feeding it back 

into a model that may need retraining or at least regular 

updates. This extra loop can pay off, but it also risks 

introducing new points of failure or drift over time. In 

practice the “intelligent” autoscaler can end up as 

another system to monitor, rather than a self-managing 

black box. Although such techniques are still maturing, 

they represent an architectural layer on top of 

autoscaling – essentially a verification or optimization 

layer – that could be incorporated into future 

microservice platforms to automatically tune scaling 

behavior for multiple objectives (performance, cost, 

energy). 

It is important to discuss the cost and complexity trade-

offs that come with scaling microservices. The ability to 

scale each service independently is powerful, but it 

often means an organization ends up managing dozens 

or hundreds of service instances, each incurring 

resource and management overhead. Chavan points out 

that as an organization grows its microservices 

deployment, the operational costs can “skyrocket” 

because each microservice demands its own 

infrastructure, development pipeline, monitoring, and 

security measures [3]. The contrast between a 

monolithic deployment and a microservice-based 

deployment is illustrated in Figure 3. 

 

Figure 3. From monolith to microservices: Increased components and operational overhead - the author’s 

illustration of implications made by Blinowski et al. [3] 
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The diagram on Figure 3 highlights how scaling 

microservices adds multiple independent services, 

databases, and a gateway layer, illustrating the cost and 

complexity trade-offs of distributed scaling. On the left, 

the diagram shows a single monolithic application — 

one codebase, one database — almost spartan in its 

simplicity. Scaling here is straightforward, if limited: 

adding more power to the same machine or running a 

few replicas behind a load balancer. On the right, by 

contrast, are multiple microservices, each with its own 

container and a small database or cache, fronted by an 

API gateway. 

In short, microservices swap simplicity for agility. They 

gain the ability to evolve, deploy, and scale 

independently but at the cost of more moving parts. As 

a result, the architecture must include compensating 

mechanisms: an API gateway to centralize some cross-

cutting concerns (authentication, routing), a service 

mesh to make inter-service communication more 

predictable, and robust monitoring and alerting so that 

engineers can actually see what’s happening. 

Autoscaling to zero (shutting down idle services) and 

rightsizing resources are two common tactics to avoid 

waste, and many teams now adopt FinOps practices 

alongside their technical scaling strategies [3]. Despite 

these challenges, when it works, microservices let 

organizations line up resources closely with demand. A 

well-designed microservice system can deliver 

predictable performance under load while optimizing 

cost — but only if it is designed with caution. That might 

mean picking the right scaling strategy for each service, 

setting safe limits to prevent runaway replicas, and 

constantly tuning the metrics that drive autoscalers. 

Taken together, the findings suggest scaling distributed 

microservices in the cloud is less a single technique and 

more a layered approach. First, services need to be as 

stateless, decoupled, and independently deployable as 

possible — otherwise scaling flexibility disappears. 

Second, horizontal scaling is probably still the main lever 

for increasing capacity — yet vertical scaling hasn’t 

disappeared; it keeps a role, at least until the point 

where returns flatten out [2].  

None of these elements really solves the scalability 

challenge on its own. Each addresses a fragment of it, 

and sometimes they even work at cross-purposes. When 

combined carefully they can make it possible for a 

microservice system to withstand heavy demand on 

cloud infrastructure without losing reliability or 

efficiency. In the real world the picture is usually 

patchier, with monitoring gaps, cost surprises or 

autoscalers behaving unpredictably. The mix of 

patterns, compromises and ongoing tuning is perhaps 

the real hallmark of scaling microservices today — less a 

single formula than a set of overlapping practices. 

Conclusion 

Scaling distributed microservice systems in the cloud 

seems to demand both thoughtful architecture and 

cloud-native tooling. At the design level, modularity and 

statelessness look like the bedrock principles — services 

should, at least in theory, be able to scale out simply by 

adding instances without fighting state-synchronization 

problems. Still, the evidence suggests that when 

microservices are kept as stateless and decoupled as 

feasible, scaling out becomes far less taxing. Embracing 

loose coupling and independent deployment ensures 

that each service can be scaled (or updated) on its own 

timeline, which is fundamental for responding to uneven 

load patterns across an application. A careful choice 

between horizontal and vertical scaling (and often a 

blend of both) is part of the architectural strategy: 

horizontal scaling provides practically unbounded 

capacity by replicating services, whereas vertical scaling 

can yield performance gains up to hardware limits – the 

optimal mix depends on the application’s characteristics 

and cost considerations. 

Modern cloud-based microservice architectures tend to 

lean on horizontal scaling through orchestration 

platforms — though exactly how well this works can vary 

widely. Kubernetes, for instance, has become almost a 

default choice. It bundles autoscaling, load balancing, 

and self-healing into one ecosystem, which seems 

essential during unpredictable traffic spikes. Yet it is not 

always obvious whether the built-in mechanisms alone 

are enough; in some workloads they are smooth, in 

others they need heavy tuning. 

Scaling a microservice system is an ongoing architectural 

concern. The goal is always a moving target: enough 

capacity for peaks without wasting resources during 

lulls. Patterns such as stateless service design and 

database sharding can make scaling simpler, while 

advanced autoscaling frameworks give architects more 

control — but only if applied thoughtfully. Sometimes 

these strategies do hold up — the system stays 

surprisingly responsive under heavy load, which seems 
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to validate the microservice idea. Other times the same 

setup turns costly or fragile, and the gains aren’t obvious 

at all. It’s hard to predict which way it will go without 

running it at scale. Looking ahead, future research can 

focus on energy-aware scaling, cross-layer 

optimizations, and “autonomic” orchestration — 

architectures that are supposed to learn and adapt over 

time. 
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