
The American Journal of Engineering and Technology 90 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 90-98

DOI 10.37547/tajet/Volume07Issue10-12

OPEN ACCESS

SUBMITED 22 August 2025

ACCEPTED 30 September 2025

PUBLISHED 23 October 2025

VOLUME Vol.07 Issue 10 2025

CITATION
Kumar Avinash. (2025). Architectural Approaches to Scaling Distributed
Microservice Systems in The Cloud. The American Journal of Engineering
and Technology, 7(10), 90–98.
https://doi.org/10.37547/tajet/Volume07Issue10-12

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative common’s attributes 4.0 License.

Architectural Approaches

to Scaling Distributed

Microservice Systems in

The Cloud

Kumar Avinash
Software Development Engineer, Google Seattle, USA

Abstract: This article explores how distributed

microservice systems in the cloud are scaled. The goal is

to piece together, from scattered research, working

solutions and what might still be experimental. The

focus is on design and deployment strategies that aim

for reliability, elasticity, and cost-effective growth.

Open-access, peer-reviewed papers published since

2021 were reviewed with a special emphasis placed on

those with empirical tests, diagrams, or case studies to

see how ideas play out in practice. Across the papers

certain themes keep reappearing. Infrastructure work

revolves around horizontal and vertical scaling, while

orchestration and autoscaling — Kubernetes HPA/VPA,

serverless computing, various service meshes — are

interpreted as part of the broader field. The unique

contribution is the attempt to frame old and new

together — to see classical ideas such as service

modularity alongside hybrid autoscalers, energy-aware

verification, probabilistic checks. In some cases, these

tactics reinforce one another; in others they collide, or

create unexpected trade-offs. Observing them in the

same frame highlights that scaling microservices is as an

ongoing experiment, where established patterns and

cutting-edge proposals coexist. Taken together, the

available studies do not present a single blueprint but

instead sketch what looks like a layered approach. In

many cases services are kept as stateless and decoupled

as possible; in others that ideal is only partly met.

Horizontal and vertical scaling appear side by side —

sometimes combined in the same system — with their

usefulness varying by workload. Orchestration policies

are often automated, yet the literature also warns that

energy use and security concerns grow quietly in the

https://doi.org/10.37547/tajet/Volume07Issue10-12
https://doi.org/10.37547/tajet/Volume07Issue10-12

The American Journal of Engineering and Technology 91 https://www.theamericanjournals.com/index.php/tajet

background as systems expand and, if left unmanaged,

can erode the gains of scaling. This article will provide

value to cloud architects, DevOps engineers, developers,

and researchers interested in gaining awareness of

current practices as well as possible venues of where the

field might be heading next.

Keywords: Microservices, Cloud computing, Horizontal

scaling, Vertical scaling, Kubernetes, Autoscaling,

Serverless computing, Reinforcement learning,

Architectural design, Scalability.

Introduction

Microservices architecture is often described as

breaking an application into a set of smaller, loosely

connected services—each running on its own, talking

through APIs. Advocates of microservice architectures

usually mention higher availability, clearer fault isolation

and, perhaps most often, the promise of horizontal

scalability [3]. Breaking an application into distinct

components can allow one area to be scaled separately

from the rest. But the effect is uneven. In some reported

cases the gains are striking; in others they are marginal

or even negative [9]. A likely reason is that modularity

opens up boundaries where scaling can occur

independently, but the benefit depends on how much

cross-service communication, caching and shared state

exist. In other words, the same architectural feature that

enables independent scaling can also create extra

latency or coordination costs if the services are tightly

coupled in practice.

Cloud-native firms—Netflix is the primary example—

report major gains after moving from monolithic

architectures to microservices. They can add servers or

containers just for the overworked service rather than

for the entire application. This may improve overall

capacity and performance under heavy load.

Unfortunately, such outcomes are not guaranteed.

Smaller or more stable systems, for instance, might see

little advantage. Some empirical work even suggests

that on a single server a monolith can outperform an

equivalent microservice arrangement [3]. So the

apparent superiority of microservices could be context-

dependent—true at massive scale but not at the small

or medium range.

Microservices might be inherently well suited to cloud

environments, where on-demand resources and

autoscaling tools abound. Yet even in this case, scaling is

not automatic. Running dozens—or hundreds—of

independent services introduces new challenges:

service discovery, inter-service latency, and data

consistency among them. This could erode the very

gains that microservices promise. In practice,

architectural patterns and operational discipline seem

to matter as much as the architecture itself. Researchers

and practitioners therefore discuss stateless service

design, careful API boundaries, orchestration layers, and

increasingly, algorithmic resource management [4; 6].

These measures may, but do not always, ensure that

microservice systems grow smoothly while maintaining

performance.

This mixed record suggests a field still lacks consensus.

The literature from 2021 onward shows a lively search

for scalable designs and management strategies—some

quite technical, others organizational. It is probably

appropriate to suggest there is no single solution; rather,

scaling microservices involves a collection of

overlapping practices, tested under different conditions,

each with its own trade-offs.

Methods and Materials

This article uses a literature-based approach to explore

how architects and researchers are trying to scale

microservices in the cloud. The focus is on recent work,

mostly since 2021, but the boundary is porous; some

earlier ideas still echo through the newer papers. The

studies sampled range widely: basic design principles,

performance comparisons between microservice and

monolithic systems, autoscaling algorithms, and

assorted cloud-native technologies. The first set of

themes includes service statelessness, loose coupling,

clean API boundaries. Yet these supposedly

“fundamental” patterns don’t always work as

advertised; some studies hint at unexpected bottlenecks

or coordination costs. After that come more

infrastructural questions—horizontal versus vertical

scaling, container orchestration, and the sometimes

messy business of distributing loads across replicas.

Kubernetes appears everywhere in the literature, but

opinions diverge on whether its autoscaling features are

enough or need to be augmented by hybrid or machine-

learning–driven methods. Serverless computing crops

up as a suitable alternative in some cases, though critics

note it may only shift complexity elsewhere.

Alharthi et al. sketch the landscape of autoscaling in

cloud computing, teasing apart reactive and proactive

strategies and hinting at unresolved research problems

[1]. Berardi et al. dig into microservice security—

spoofing, denial-of-service—and in doing so indirectly

The American Journal of Engineering and Technology 92 https://www.theamericanjournals.com/index.php/tajet

show how scaling and security intertwine [2]. Blinowski

et al. run empirical tests comparing monoliths and

microservices under various workloads, and the results

are uneven: sometimes microservices win, sometimes

not [3]. Chavan explores how scaling can drive costs up

and looks to FinOps to rein things back in [4].

Domakonda sets out design principles for secure and

scalable systems but also notes how complicated they

can be to achieve in practice [5]. Filippone et al.

experiment with choreography-based microservice

systems to improve coordination—another route to

scalability [6]. Jawaddi et al. use probabilistic model

checking to handle energy-efficient autoscaling on

Kubernetes, suggesting yet another trade-off space [7].

Pandiya outlines core scalability patterns—horizontal,

vertical, serverless [8]. Sharma investigates system-level

scalability impacts, presenting evidence that flexibility

and performance may improve but not universally [9].

Xu et al. introduce CoScal, a reinforcement-learning

framework mixing horizontal and vertical scaling with

feature brownout—showing how technical creativity

continues at the edges [10].

Results and Discussion

Achieving scalability begins with how microservices are

designed. A core principle is to make services stateless

wherever possible, meaning they do not maintain

session-specific data internally. Stateless services can be

replicated and load-balanced freely, since any instance

can handle a request without relying on local state.

Adopting stateless, loosely coupled services ensures

that scaling out (adding instances) will not introduce

consistency problems within the service [8]. In real

systems this often drifts toward pushing state out —

distributed databases, caches, anything that lets the

service itself stay lighter.

Another idea that keeps surfacing is bounded contexts.

Each microservice has its own area of responsibility by

design. In practice boundaries blur, business rules

change, and the clean lines can fray. Still, the

modularization combined with tech-agnostic

communication (REST, queues) does seem to give teams

room to pick their own stacks and scale each piece as

needed. As Domakonda notes, microservices improve

resource utilization and flexibility compared to

monoliths by isolating functionality and enabling

independent deployment and scaling [5]. This capacity

for independent scalability is often cited as a key

advantage. Components of an application that

experience surges in demand—such as a “checkout”

service in an e-commerce system—can be replicated to

absorb the load without having to over-provision the

entire application [9]. Yet this benefit comes with an

architectural trade-off: a microservice system adds

layers of communication and coordination, which in turn

can introduce latency and operational complexity. As a

result, effective API management, service discovery, and

robust monitoring infrastructures become essential to

keep the system coherent and to prevent small issues

from propagating across services [5]. Figure 1

summarizes the distribution of security threats reported

in recent microservice deployments.

Figure 1. Prevalence of threat categories in microservice-oriented systems by Berardi et al. [2].

The American Journal of Engineering and Technology 93 https://www.theamericanjournals.com/index.php/tajet

Figure 1 sketches the distribution of attack types in

microservice-oriented systems as mapped onto the

STRIDE threat model. The biggest portions — at least in

this sample — appear to be denial of service (around

40.5 percent) and spoofing (roughly 40 percent). After

that the numbers decrease: information disclosure

about 10.8 percent, repudiation near 7.3 percent, with

only slivers for tampering, anomaly detection, and

elevation of privilege. It is not clear whether these

proportions would hold in a different dataset; one

possible explanation is that DoS and spoofing are simply

easier to detect and report than subtler threats. This

demonstrates that, as microservice systems become

more distributed and independently scaled, their attack

surface shifts heavily toward identity/communication

exploits (spoofing) and availability threats (denial of

service).

At the infrastructure level, there are two primary

approaches to scale a service: horizontal scaling (also

known as scale-out) and vertical scaling (scale-up).

Horizontal scaling means increasing capacity by adding

more instances of a service (e.g. launching additional

container replicas or VMs), and distributing the

workload among them via load balancing [8]. This is the

de facto scaling method for microservices – since

services are modular, one can run 5, 10, 100 copies of a

microservice behind a load balancer to handle growing

traffic. Horizontal scaling is often regarded as essentially

unbounded — in practice it is limited by infrastructure

and management overhead — and it tends to improve

fault tolerance as well. If one instance goes down, others

can usually keep serving [8]. Vertical scaling is the mirror

image: instead of multiplying instances, more resources

are piled into one.

It is important to note that horizontal and vertical scaling

are not mutually exclusive; they can be combined for

optimal results. Many cloud deployments use moderate

vertical scaling (ensuring each instance has enough

resources to be efficient) in tandem with horizontal

replication. A 2022 study turned up an interesting

pattern in a managed cloud environment (Azure). For a

while, purely vertical scaling looked more cost-effective

than horizontal scaling [5] — which seems

counterintuitive given the usual enthusiasm for scaling

out. Yet as more instances were added, performance

started to sag, apparently from inter-service overhead.

It is premature to state exactly where the break-even

point lies; maybe it depends on workload shape or how

services share data. Still, the finding suggests that there

is a kind of “sweet spot” in scaling — too far in either

direction and the gains begin to reverse. If there are too

few instances and each node shoulders too much load;

too many and coordination costs—network latency,

load-balancer churn, cache-coherency headaches—

start to erode throughput.

In real deployments, architects seem to confront this

balance constantly. Some even place hard caps on

autoscaling to prevent thrashing or runaway complexity.

Blinowski et al., for example, found that scaling out past

a moderate number of instances yielded diminishing

returns and, in some cases, outright performance drops

[2]. One possible explanation is that microservices

introduce their own friction—API calls, inter-process

communication, state synchronization—that scales non-

linearly with distribution. Yet that friction may be offset

in other workloads or architectures. To contextualize the

architectural approaches discussed in the literature,

Figure 2 illustrates the relative emphasis of scaling

strategies found in recent microservice research and

practice.

The American Journal of Engineering and Technology 94 https://www.theamericanjournals.com/index.php/tajet

Figure 2. Relative emphasis of scaling approaches in microservice architectures by the author based on studies

by Sharma [9] and Domakonda [5]

The pie chart on Figure 2 shows the distribution of

attention and adoption among five key scaling

approaches. Independent scalability is frequently

presented as a major advantage. In practice, it allows

only the parts of an application under pressure — for

instance, a “checkout” service in an e-commerce system

— to be replicated without over-provisioning the rest

[9]. Yet this gain is not free. Splitting a system into many

small services brings extra communication and

coordination overhead, which can quietly erode

performance. One consequence is that strong API

management, service discovery, and careful monitoring

move from “nice to have” to “required” [5]. These

mechanisms help keep the pieces aligned but also

introduce their own complexity, so the trade-off is not

always straightforward.

Modern microservice systems almost always rely on

container orchestration platforms (such as Kubernetes)

to manage scaling in an automated way. A real-world

example of large-scale orchestration came from the

author’s work on Prime Video’s Startover Playback

feature. This capability lets viewers restart a live event

from the beginning while it is still being broadcast — a

function that might sound simple but requires complex

coordination behind the scenes. Multiple microservices

handle ingest, encoding, and delivery, each scaling

independently. When audience numbers spiked during

big live events, raw server power alone wasn’t enough.

The system used distributed caching and adaptive load

balancing to soak up sudden surges, keeping playback

smooth even with millions of concurrent viewers. In day-

to-day operation, the design mixed horizontal scaling

with event-driven orchestration so the entire pipeline

stayed responsive and fault-tolerant worldwide. This

experience illustrates how thoughtful microservice

design can turn backend scalability directly into visible

reliability and higher viewer engagement.

Kubernetes is an open-source cluster manager that

automates deployment, scaling, and operation of

containerized services. It provides built-in autoscalers at

both the horizontal and vertical level – the Horizontal

Pod Autoscaler (HPA) can automatically add or remove

container replicas based on metrics like CPU utilization,

and the Vertical Pod Autoscaler (VPA) can adjust

The American Journal of Engineering and Technology 95 https://www.theamericanjournals.com/index.php/tajet

resource limits of containers on the fly [7]. Choosing to

rely on orchestration platforms is itself an architectural

move. Rather than manually spinning up or shutting

down instances, the system is built so that Kubernetes—

or something similar—monitors service metrics and

adjusts capacity based on the feedback. In principle this

should deliver strong elasticity for cloud-based

microservices [7], yet in practice the effect can be

uneven. Monitoring intervals, scaling thresholds, and

workload bursts can all shape how well the mechanism

actually responds. Saradgishvili notes that Kubernetes’

native autoscaling features have played a major role in

improving efficiency under variable workloads [7]. One

possible explanation is that the platform’s built-in logic

fits common use cases but may need tuning or

augmentation for more complex systems. For example,

it is possible to set a policy that if the CPU usage of a

microservice’s pods exceeds 80% for a sustained period,

the HPA will create a new pod (container instance) of

that microservice, and the ingress load balancer will

start routing traffic to the new pod as well. Conversely,

when load drops, the HPA can scale down the number

of pods to reduce resource usage. Such dynamic

provisioning ensures the application always has enough

capacity to maintain performance without wasting

resources during lulls [8].

An alternative architectural approach for scaling

microservices is to use serverless computing, typically

via Function-as-a-Service (FaaS) platforms (e.g. AWS

Lambda, Azure Functions). In a serverless model, the

unit of deployment is a small function (which may

correspond to a microservice endpoint) that the cloud

platform can instantiate on demand in response to

events. Serverless architectures inherently provide

automatic scaling – when an event (such as an HTTP

request or message trigger) occurs, the platform runs

the function, scaling out to as many parallel function

instances as needed to handle incoming events, and

scaling down to zero when idle. This paradigm can be

viewed as an extreme form of microservices, focusing on

single-function services that start up on demand. The

key advantage is elasticity: resources are allocated

exactly in proportion to the workload, with no need to

manage servers or container pools for each microservice

[8]. For example, an image-processing service might be

deployed as a serverless function; if a spike of 1000

images to process comes in, the cloud will concurrently

execute many function instances, then wind them down

once finished, with billing only for actual execution time.

As Pandiya (2021) explains, under a serverless

architecture the application automatically scales up with

inbound requests and scales down when demand falls,

offering essentially unparalleled scalability without

human intervention [8]. This on-demand scaling is often

granular to the request level – e.g., AWS Lambda can

start additional function instances in milliseconds when

new events arrive, effectively matching even highly

unpredictable loads.

Pricing adds another complication. Not every workload

fits the serverless billing model. Long-running or very

steady tasks can end up cheaper on reserved instances;

bursty, unpredictable workloads are where serverless

usually shines. In a separate context focused on

optimizing performance within constrained hardware

environments, a subtitle processing system was

engineered as part of Prime Video’s just-after-broadcast

(JAB) pipeline. The goal was to keep subtitles accurate

and in sync even on older smart TVs with very limited

memory. To achieve this, the team used a small

segmentation algorithm that broke subtitle data into

short, time-based chunks and eliminated repeated lines

— a method later reflected in U.S. Patent 10,893,331 B1.

This cut memory use and bandwidth at the same time,

keeping playback stable and allowing the system to scale

upward without changing the hardware.

This case also shows that scalability doesn’t always come

from adding servers or infrastructure. Careful tuning of

algorithms and data handling can achieve similar gains.

At the same time, it highlights that serverless computing

is not a one-size-fits-all solution. Its value depends on

the workload pattern, the limits of the chosen cloud

provider, and overall cost sensitivity. In practice, many

teams end up with a hybrid design — core services

running in long-lived containers, while event-driven or

bursty components run as serverless functions.

Architecturally, this means designing the system to emit

and respond to events. For instance, an e-commerce site

might use microservice containers for its main web API

and use serverless functions for background tasks like

sending notifications or generating reports on demand.

Such a serverless event-driven architecture is depicted

by Pandiya, where AWS Lambda functions are

integrated as event handlers in the microservice

ecosystem [8]. The takeaway is that serverless

computing can be viewed as another tool for scaling: it

shifts the responsibility of scaling to the cloud provider’s

platform, which will transparently allocate containers

and threads to meet the event rate.

The American Journal of Engineering and Technology 96 https://www.theamericanjournals.com/index.php/tajet

One strand getting attention is the use of machine

learning — especially reinforcement learning — to guide

autoscaling. The thinking goes that the old rule-of-

thumb triggers (“if CPU > 70%, add one instance”) can

be inefficient, sometimes overprovisioning or reacting

too late. By contrast, trained models might anticipate

demand and adjust capacity ahead of time. The

implication is that machine-learning autoscaling is

promising but still experimental. Xu et al. introduce

CoScal, a multi-faceted scaling approach that combines

horizontal scaling, vertical scaling, and even brownout

techniques under an RL agent [10]. Brownout in this

context means dynamically disabling non-essential

features when the system is under heavy load, thereby

reducing resource usage. CoScal’s RL agent uses deep

learning to forecast workload and then decides the best

combination of actions – e.g., scale out certain services,

scale up resources on another, or temporarily disable a

feature – to minimize response time and cost. Studies

using these techniques generally report better resource

utilization and service quality than static policies [10]. In

effect, the architecture takes on an extra layer — an

intelligent controller that keeps adjusting its own scaling

rules for a complex microservice setup. One example is

Alqassem et al., who built a proactive autoscaler using

Random Forest predictors to anticipate bursts in

microservice workloads [10].

While these approaches sound promising, they also pull

in added complexity and remain very much in the

research stage. Architecturally, adopting a learning-

based autoscaler means collecting far more telemetry —

response times, resource usage, request rates, maybe

even custom application metrics — and feeding it back

into a model that may need retraining or at least regular

updates. This extra loop can pay off, but it also risks

introducing new points of failure or drift over time. In

practice the “intelligent” autoscaler can end up as

another system to monitor, rather than a self-managing

black box. Although such techniques are still maturing,

they represent an architectural layer on top of

autoscaling – essentially a verification or optimization

layer – that could be incorporated into future

microservice platforms to automatically tune scaling

behavior for multiple objectives (performance, cost,

energy).

It is important to discuss the cost and complexity trade-

offs that come with scaling microservices. The ability to

scale each service independently is powerful, but it

often means an organization ends up managing dozens

or hundreds of service instances, each incurring

resource and management overhead. Chavan points out

that as an organization grows its microservices

deployment, the operational costs can “skyrocket”

because each microservice demands its own

infrastructure, development pipeline, monitoring, and

security measures [3]. The contrast between a

monolithic deployment and a microservice-based

deployment is illustrated in Figure 3.

Figure 3. From monolith to microservices: Increased components and operational overhead - the author’s

illustration of implications made by Blinowski et al. [3]

The American Journal of Engineering and Technology 97 https://www.theamericanjournals.com/index.php/tajet

The diagram on Figure 3 highlights how scaling

microservices adds multiple independent services,

databases, and a gateway layer, illustrating the cost and

complexity trade-offs of distributed scaling. On the left,

the diagram shows a single monolithic application —

one codebase, one database — almost spartan in its

simplicity. Scaling here is straightforward, if limited:

adding more power to the same machine or running a

few replicas behind a load balancer. On the right, by

contrast, are multiple microservices, each with its own

container and a small database or cache, fronted by an

API gateway.

In short, microservices swap simplicity for agility. They

gain the ability to evolve, deploy, and scale

independently but at the cost of more moving parts. As

a result, the architecture must include compensating

mechanisms: an API gateway to centralize some cross-

cutting concerns (authentication, routing), a service

mesh to make inter-service communication more

predictable, and robust monitoring and alerting so that

engineers can actually see what’s happening.

Autoscaling to zero (shutting down idle services) and

rightsizing resources are two common tactics to avoid

waste, and many teams now adopt FinOps practices

alongside their technical scaling strategies [3]. Despite

these challenges, when it works, microservices let

organizations line up resources closely with demand. A

well-designed microservice system can deliver

predictable performance under load while optimizing

cost — but only if it is designed with caution. That might

mean picking the right scaling strategy for each service,

setting safe limits to prevent runaway replicas, and

constantly tuning the metrics that drive autoscalers.

Taken together, the findings suggest scaling distributed

microservices in the cloud is less a single technique and

more a layered approach. First, services need to be as

stateless, decoupled, and independently deployable as

possible — otherwise scaling flexibility disappears.

Second, horizontal scaling is probably still the main lever

for increasing capacity — yet vertical scaling hasn’t

disappeared; it keeps a role, at least until the point

where returns flatten out [2].

None of these elements really solves the scalability

challenge on its own. Each addresses a fragment of it,

and sometimes they even work at cross-purposes. When

combined carefully they can make it possible for a

microservice system to withstand heavy demand on

cloud infrastructure without losing reliability or

efficiency. In the real world the picture is usually

patchier, with monitoring gaps, cost surprises or

autoscalers behaving unpredictably. The mix of

patterns, compromises and ongoing tuning is perhaps

the real hallmark of scaling microservices today — less a

single formula than a set of overlapping practices.

Conclusion

Scaling distributed microservice systems in the cloud

seems to demand both thoughtful architecture and

cloud-native tooling. At the design level, modularity and

statelessness look like the bedrock principles — services

should, at least in theory, be able to scale out simply by

adding instances without fighting state-synchronization

problems. Still, the evidence suggests that when

microservices are kept as stateless and decoupled as

feasible, scaling out becomes far less taxing. Embracing

loose coupling and independent deployment ensures

that each service can be scaled (or updated) on its own

timeline, which is fundamental for responding to uneven

load patterns across an application. A careful choice

between horizontal and vertical scaling (and often a

blend of both) is part of the architectural strategy:

horizontal scaling provides practically unbounded

capacity by replicating services, whereas vertical scaling

can yield performance gains up to hardware limits – the

optimal mix depends on the application’s characteristics

and cost considerations.

Modern cloud-based microservice architectures tend to

lean on horizontal scaling through orchestration

platforms — though exactly how well this works can vary

widely. Kubernetes, for instance, has become almost a

default choice. It bundles autoscaling, load balancing,

and self-healing into one ecosystem, which seems

essential during unpredictable traffic spikes. Yet it is not

always obvious whether the built-in mechanisms alone

are enough; in some workloads they are smooth, in

others they need heavy tuning.

Scaling a microservice system is an ongoing architectural

concern. The goal is always a moving target: enough

capacity for peaks without wasting resources during

lulls. Patterns such as stateless service design and

database sharding can make scaling simpler, while

advanced autoscaling frameworks give architects more

control — but only if applied thoughtfully. Sometimes

these strategies do hold up — the system stays

surprisingly responsive under heavy load, which seems

The American Journal of Engineering and Technology 98 https://www.theamericanjournals.com/index.php/tajet

to validate the microservice idea. Other times the same

setup turns costly or fragile, and the gains aren’t obvious

at all. It’s hard to predict which way it will go without

running it at scale. Looking ahead, future research can

focus on energy-aware scaling, cross-layer

optimizations, and “autonomic” orchestration —

architectures that are supposed to learn and adapt over

time.

References

1. Alharthi, S., Alshamsi, A., Alseiari, A., & Alwarafy, A.

(2024). Auto-Scaling Techniques in Cloud

Computing: Issues and Research Directions.

Sensors, 24(17), 5551.

https://doi.org/10.3390/s24175551

2. Berardi, D., Giallorenzo, S., Mauro, J., Melis, A.,

Montesi, F., & Prandini, M. (2022). Microservice

security: a systematic literature review. PeerJ

Computer Science, 8, e779.

https://doi.org/10.7717/peerj-cs.779

3. Blinowski, G. J., Ojdowska, A., & Przybyłek, A.

(2022). Monolithic vs. microservice architecture: A

performance and scalability evaluation. IEEE

Access, 10, 20357–20374.

https://doi.org/10.1109/ACCESS.2022.3152803

4. Chavan, A. (2023). Managing Scalability and Cost in

Microservices Architecture – Balancing Infinite

Scalability with Financial Constraints. Journal of

Artificial Intelligence & Cloud Computing, 2(4), 1–

14. https://doi.org/10.47363/JMHC/2023(5)E102

5. Domakonda, D. (2025). Secure and Scalable

Microservices Architecture: Principles, Benefits,

and Challenges. International Journal of Scientific

Research in CSEIT, 11(2), 1897–1902.

https://doi.org/10.32628/CSEIT23112569

6. Filippone, G., Pompilio, C., Autili, M., & Tivoli, M.

(2022). An architectural style for scalable

choreography-based microservice-oriented

distributed systems. Computing, 105(9), 1933–

1956. https://doi.org/10.32628/CSWEIT23112569

7. Agos Jawaddi, S.N., Ismail, A., Sulaiman, M.S. et al.

Analyzing Energy-Efficient and Kubernetes-Based

Autoscaling of Microservices Using Probabilistic

Model Checking. J Grid Computing, 23, 3 (2025).

https://doi.org/10.1007/s10723-024-09789-9

8. Dileep Kumar Pandiya. (2021). Scalability Patterns

for Microservices Architecture. Educational

Administration: Theory and Practice, 27(3), 1178–

1183. https://doi.org/10.53555/kuey.v27i3.6897

9. Saurav Sharma. (2025). The Impact of

Microservices Architecture on System Scalability.

American Scientific Research Journal for

Engineering, Technology, and Sciences, 102(1), 140-

148.

https://asrjetsjournal.org/American_Scientific_Jour

nal/article/view/11677

10. Xu, M., Song, C., Ilager, S., Gill, S. S., Zhao, J., Ye, K.,

& Xu, C. (2022). CoScal: Multi-faceted scaling of

microservices with reinforcement learning. IEEE

Transactions on Network and Service Management,

19(4), 3995–

4009.https://doi.org/10.1109/TNSM.2022.3210211

https://doi.org/10.3390/s24175551
https://doi.org/10.7717/peerj-cs.779
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.47363/JMHC/2023(5)E102
https://doi.org/10.32628/CSEIT23112569
https://doi.org/10.32628/CSEIT23112569
https://doi.org/10.1007/s10723-024-09789-9
https://doi.org/10.53555/kuey.v27i3.6897
https://asrjetsjournal.org/American_Scientific_Journal/article/view/11677
https://asrjetsjournal.org/American_Scientific_Journal/article/view/11677

