W
THE USA
!‘(')URNA'I.?

The American Journal of
Engineering and Technology

ISSN 2689-0984 | Open Access

D)

Check for updates

OPEN ACCESS

22 August 2025
30 September 2025
23 October 2025
Vol.07 Issue 10 2025

Kumar Avinash. (2025). Architectural Approaches to Scaling Distributed
Microservice Systems in The Cloud. The American Journal of Engineering
and Technology, 7(10), 90-98.
https://doi.org/10.37547/tajet/VolumeO7Issuel0-12

© 2025 Original content from this work may be used under the terms
of the creative common’s attributes 4.0 License.

The American Journal of Engineering and Technology

90

Original Research
90-98
10.37547/tajet/VolumeO7Issuel0-12

Architectural Approaches
to Scaling Distributed
Microservice Systems in
The Cloud

Kumar Avinash

Software Development Engineer, Google Seattle, USA

Abstract: This article how distributed
microservice systems in the cloud are scaled. The goal is
to piece together, from scattered research, working
solutions and what might still be experimental. The
focus is on design and deployment strategies that aim
for reliability, elasticity, and cost-effective growth.

Open-access, peer-reviewed papers published since

explores

2021 were reviewed with a special emphasis placed on
those with empirical tests, diagrams, or case studies to
see how ideas play out in practice. Across the papers
certain themes keep reappearing. Infrastructure work
revolves around horizontal and vertical scaling, while
orchestration and autoscaling — Kubernetes HPA/VPA,
serverless computing, various service meshes — are
interpreted as part of the broader field. The unique
contribution is the attempt to frame old and new
together — to see classical ideas such as service
modularity alongside hybrid autoscalers, energy-aware
verification, probabilistic checks. In some cases, these
tactics reinforce one another; in others they collide, or
create unexpected trade-offs. Observing them in the
same frame highlights that scaling microservices is as an
ongoing experiment, where established patterns and
cutting-edge proposals coexist. Taken together, the
available studies do not present a single blueprint but
instead sketch what looks like a layered approach. In
many cases services are kept as stateless and decoupled
as possible; in others that ideal is only partly met.
Horizontal and vertical scaling appear side by side —
sometimes combined in the same system — with their
usefulness varying by workload. Orchestration policies
are often automated, yet the literature also warns that
energy use and security concerns grow quietly in the

https://www.theamericanjournals.com/index.php/tajet


https://doi.org/10.37547/tajet/Volume07Issue10-12
https://doi.org/10.37547/tajet/Volume07Issue10-12

background as systems expand and, if left unmanaged,
can erode the gains of scaling. This article will provide
value to cloud architects, DevOps engineers, developers,
and researchers interested in gaining awareness of
current practices as well as possible venues of where the
field might be heading next.

Keywords: Microservices, Cloud computing, Horizontal

scaling, Vertical scaling, Kubernetes, Autoscaling,

Serverless computing, Reinforcement learning,

Architectural design, Scalability.
Introduction

Microservices architecture is often described as
breaking an application into a set of smaller, loosely
connected services—each running on its own, talking
through APIs. Advocates of microservice architectures
usually mention higher availability, clearer fault isolation
and, perhaps most often, the promise of horizontal
scalability [3]. Breaking an application into distinct
components can allow one area to be scaled separately
from the rest. But the effect is uneven. In some reported
cases the gains are striking; in others they are marginal
or even negative [9]. A likely reason is that modularity
opens up boundaries where scaling can occur
independently, but the benefit depends on how much
cross-service communication, caching and shared state
exist. In other words, the same architectural feature that
enables independent scaling can also create extra
latency or coordination costs if the services are tightly

coupled in practice.

Cloud-native firms—Netflix is the primary example—
report major gains after moving from monolithic
architectures to microservices. They can add servers or
containers just for the overworked service rather than
for the entire application. This may improve overall
capacity and performance under heavy load.
Unfortunately, such outcomes are not guaranteed.
Smaller or more stable systems, for instance, might see
little advantage. Some empirical work even suggests
that on a single server a monolith can outperform an
So the

apparent superiority of microservices could be context-

equivalent microservice arrangement [3].

dependent—true at massive scale but not at the small
or medium range.

Microservices might be inherently well suited to cloud

environments, where on-demand resources and

autoscaling tools abound. Yet even in this case, scaling is

not automatic. Running dozens—or hundreds—of

independent services introduces new challenges:

The American Journal of Engineering and Technology

91

service discovery, inter-service latency, and data
consistency among them. This could erode the very
gains that microservices promise. In practice,

architectural patterns and operational discipline seem
to matter as much as the architecture itself. Researchers
and practitioners therefore discuss stateless service
design, careful APl boundaries, orchestration layers, and
increasingly, algorithmic resource management [4; 6].
These measures may, but do not always, ensure that
microservice systems grow smoothly while maintaining
performance.

This mixed record suggests a field still lacks consensus.
The literature from 2021 onward shows a lively search
for scalable designs and management strategies—some
quite technical, others organizational. It is probably
appropriate to suggest there is no single solution; rather,
of
overlapping practices, tested under different conditions,

scaling microservices involves a collection

each with its own trade-offs.
Methods and Materials

This article uses a literature-based approach to explore
how architects and researchers are trying to scale
microservices in the cloud. The focus is on recent work,
mostly since 2021, but the boundary is porous; some
earlier ideas still echo through the newer papers. The
studies sampled range widely: basic design principles,
performance comparisons between microservice and
monolithic systems, autoscaling algorithms, and
assorted cloud-native technologies. The first set of
themes includes service statelessness, loose coupling,
API Yet supposedly
“fundamental” don’t work
advertised; some studies hint at unexpected bottlenecks
After that

infrastructural questions—horizontal versus vertical

clean boundaries. these

patterns always as

or coordination costs. come more
scaling, container orchestration, and the sometimes
messy business of distributing loads across replicas.
Kubernetes appears everywhere in the literature, but
opinions diverge on whether its autoscaling features are
enough or need to be augmented by hybrid or machine-
learning—driven methods. Serverless computing crops
up as a suitable alternative in some cases, though critics

note it may only shift complexity elsewhere.

Alharthi et al. sketch the landscape of autoscaling in
cloud computing, teasing apart reactive and proactive
strategies and hinting at unresolved research problems
[1].

spoofing, denial-of-service—and in doing so indirectly

Berardi et al. dig into microservice security—

https://www.theamericanjournals.com/index.php/tajet



show how scaling and security intertwine [2]. Blinowski
et al. run empirical tests comparing monoliths and
microservices under various workloads, and the results
are uneven: sometimes microservices win, sometimes
not [3]. Chavan explores how scaling can drive costs up
and looks to FinOps to rein things back in [4].
Domakonda sets out design principles for secure and
scalable systems but also notes how complicated they
can be to achieve in practice [5]. Filippone et al.
experiment with choreography-based microservice
systems to improve coordination—another route to
scalability [6]. Jawaddi et al. use probabilistic model
checking to handle energy-efficient autoscaling on
Kubernetes, suggesting yet another trade-off space [7].
Pandiya outlines core scalability patterns—horizontal,
vertical, serverless [8]. Sharma investigates system-level
scalability impacts, presenting evidence that flexibility
and performance may improve but not universally [9].
Xu et al. introduce CoScal, a reinforcement-learning
framework mixing horizontal and vertical scaling with
feature brownout—showing how technical creativity
continues at the edges [10].

Results and Discussion

Achieving scalability begins with how microservices are
designed. A core principle is to make services stateless
wherever possible, meaning they do not maintain
session-specific data internally. Stateless services can be
replicated and load-balanced freely, since any instance
can handle a request without relying on local state.
Adopting stateless, loosely coupled services ensures
that scaling out (adding instances) will not introduce

consistency problems within the service [8]. In real
systems this often drifts toward pushing state out —
distributed databases, caches, anything that lets the
service itself stay lighter.

Another idea that keeps surfacing is bounded contexts.
Each microservice has its own area of responsibility by
design. In practice boundaries blur, business rules
and the clean lines can fray. Still, the
with
communication (REST, queues) does seem to give teams

change,

modularization combined tech-agnostic
room to pick their own stacks and scale each piece as
needed. As Domakonda notes, microservices improve
utilization to
by

independent deployment and scaling [5]. This capacity

resource and flexibility compared

monoliths isolating functionality and enabling
for independent scalability is often cited as a key
of that
experience surges in demand—such as a “checkout”

advantage. Components an application
service in an e-commerce system—can be replicated to
absorb the load without having to over-provision the
entire application [9]. Yet this benefit comes with an
architectural trade-off: a microservice system adds
layers of communication and coordination, which in turn
can introduce latency and operational complexity. As a
result, effective API management, service discovery, and
robust monitoring infrastructures become essential to
keep the system coherent and to prevent small issues
[5].

summarizes the distribution of security threats reported

from propagating across services Figure 1

in recent microservice deployments.

Figure 1. Prevalence of threat categories in microservice-oriented systems by Berardi et al. [2].

10.5% Denial of service (35)

The American Journal of Engineering and Technology

92

40% Spoofing (34)

4.8% Anomaly Detection (6)
" 1.2% Elevation of privileges (1)

1.8% Tampering (4)

';'.3':.31' Repudiation (7)

10.8% Information disclosure (9)

https://www.theamericanjournals.com/index.php/tajet



Figure 1 sketches the distribution of attack types in
microservice-oriented systems as mapped onto the
STRIDE threat model. The biggest portions — at least in
this sample — appear to be denial of service (around
40.5 percent) and spoofing (roughly 40 percent). After
that the numbers decrease: information disclosure
about 10.8 percent, repudiation near 7.3 percent, with
only slivers for tampering, anomaly detection, and
elevation of privilege. It is not clear whether these
proportions would hold in a different dataset; one
possible explanation is that DoS and spoofing are simply
easier to detect and report than subtler threats. This
demonstrates that, as microservice systems become
more distributed and independently scaled, their attack
surface shifts heavily toward identity/communication
exploits (spoofing) and availability threats (denial of
service).

At the infrastructure level, there are two primary
approaches to scale a service: horizontal scaling (also
known as scale-out) and vertical scaling (scale-up).
Horizontal scaling means increasing capacity by adding
more instances of a service (e.g. launching additional
and distributing the
workload among them via load balancing [8]. This is the

container replicas or VMs),
de facto scaling method for microservices — since
services are modular, one can run 5, 10, 100 copies of a
microservice behind a load balancer to handle growing
traffic. Horizontal scaling is often regarded as essentially
unbounded — in practice it is limited by infrastructure
and management overhead — and it tends to improve
fault tolerance as well. If one instance goes down, others
can usually keep serving [8]. Vertical scaling is the mirror
image: instead of multiplying instances, more resources
are piled into one.

Itis important to note that horizontal and vertical scaling

The American Journal of Engineering and Technology

93

are not mutually exclusive; they can be combined for
optimal results. Many cloud deployments use moderate
vertical scaling (ensuring each instance has enough
resources to be efficient) in tandem with horizontal
replication. A 2022 study turned up an interesting
pattern in a managed cloud environment (Azure). For a
while, purely vertical scaling looked more cost-effective
than scaling [5] which
counterintuitive given the usual enthusiasm for scaling

horizontal seems
out. Yet as more instances were added, performance
started to sag, apparently from inter-service overhead.
It is premature to state exactly where the break-even
point lies; maybe it depends on workload shape or how
services share data. Still, the finding suggests that there
is a kind of “sweet spot” in scaling — too far in either
direction and the gains begin to reverse. If there are too
few instances and each node shoulders too much load;
too many and coordination costs—network latency,
load-balancer churn, cache-coherency headaches—
start to erode throughput.

In real deployments, architects seem to confront this
balance constantly. Some even place hard caps on
autoscaling to prevent thrashing or runaway complexity.
Blinowski et al., for example, found that scaling out past
a moderate number of instances yielded diminishing
returns and, in some cases, outright performance drops
[2].

introduce their own friction—API calls, inter-process

One possible explanation is that microservices

communication, state synchronization—that scales non-
linearly with distribution. Yet that friction may be offset
in other workloads or architectures. To contextualize the
architectural approaches discussed in the literature,
Figure 2 illustrates the relative emphasis of scaling
strategies found in recent microservice research and
practice.

https://www.theamericanjournals.com/index.php/tajet



Figure 2. Relative emphasis of scaling approaches in microservice architectures by the author based on studies
by Sharma [9] and Domakonda [5]

ML-driven Scaling

Horizontal Scaling

The pie chart on Figure 2 shows the distribution of
attention and adoption among five key scaling
approaches. Independent scalability is frequently
presented as a major advantage. In practice, it allows
only the parts of an application under pressure — for
instance, a “checkout” service in an e-commerce system
— to be replicated without over-provisioning the rest
[9]. Yet this gain is not free. Splitting a system into many
small services brings extra communication and
coordination overhead, which can quietly erode
performance. One consequence is that strong API
management, service discovery, and careful monitoring
move from “nice to have” to “required” [5]. These
mechanisms help keep the pieces aligned but also
introduce their own complexity, so the trade-off is not

always straightforward.

Modern microservice systems almost always rely on
container orchestration platforms (such as Kubernetes)
to manage scaling in an automated way. A real-world
example of large-scale orchestration came from the
author’s work on Prime Video’s Startover Playback
feature. This capability lets viewers restart a live event

The American Journal of Engineering and Technology

94

Serverless Functions

Kubernetes/Autoscaling

Vertical Scaling

from the beginning while it is still being broadcast — a
function that might sound simple but requires complex
coordination behind the scenes. Multiple microservices
handle ingest, encoding, and delivery, each scaling
independently. When audience numbers spiked during
big live events, raw server power alone wasn’t enough.
The system used distributed caching and adaptive load
balancing to soak up sudden surges, keeping playback
smooth even with millions of concurrent viewers. In day-
to-day operation, the design mixed horizontal scaling
with event-driven orchestration so the entire pipeline
stayed responsive and fault-tolerant worldwide. This
experience illustrates how thoughtful microservice
design can turn backend scalability directly into visible
reliability and higher viewer engagement.

Kubernetes is an open-source cluster manager that
automates deployment, scaling, and operation of
containerized services. It provides built-in autoscalers at
both the horizontal and vertical level — the Horizontal
Pod Autoscaler (HPA) can automatically add or remove
container replicas based on metrics like CPU utilization,
and the Vertical Pod Autoscaler (VPA) can adjust

https://www.theamericanjournals.com/index.php/tajet



resource limits of containers on the fly [7]. Choosing to
rely on orchestration platforms is itself an architectural
move. Rather than manually spinning up or shutting
down instances, the system is built so that Kubernetes—
or something similar—monitors service metrics and
adjusts capacity based on the feedback. In principle this
should deliver strong elasticity for cloud-based
microservices [7], yet in practice the effect can be
uneven. Monitoring intervals, scaling thresholds, and
workload bursts can all shape how well the mechanism
actually responds. Saradgishvili notes that Kubernetes’
native autoscaling features have played a major role in
improving efficiency under variable workloads [7]. One
possible explanation is that the platform’s built-in logic
fits common use cases but may need tuning or
augmentation for more complex systems. For example,
it is possible to set a policy that if the CPU usage of a
microservice’s pods exceeds 80% for a sustained period,
the HPA will create a new pod (container instance) of
that microservice, and the ingress load balancer will
start routing traffic to the new pod as well. Conversely,
when load drops, the HPA can scale down the number
of pods to reduce resource usage. Such dynamic
provisioning ensures the application always has enough
capacity to maintain performance without wasting
resources during lulls [8].

An alternative architectural approach for scaling
microservices is to use serverless computing, typically
via Function-as-a-Service (FaaS) platforms (e.g. AWS
Lambda, Azure Functions). In a serverless model, the
unit of deployment is a small function (which may
correspond to a microservice endpoint) that the cloud
platform can instantiate on demand in response to
events. Serverless architectures inherently provide
automatic scaling — when an event (such as an HTTP
request or message trigger) occurs, the platform runs
the function, scaling out to as many parallel function
instances as needed to handle incoming events, and
scaling down to zero when idle. This paradigm can be
viewed as an extreme form of microservices, focusing on
single-function services that start up on demand. The
key advantage is elasticity: resources are allocated
exactly in proportion to the workload, with no need to
manage servers or container pools for each microservice
[8]. For example, an image-processing service might be
deployed as a serverless function; if a spike of 1000
images to process comes in, the cloud will concurrently
execute many function instances, then wind them down
once finished, with billing only for actual execution time.

The American Journal of Engineering and Technology

95

As (2021) under serverless

architecture the application automatically scales up with

Pandiya explains, a
inbound requests and scales down when demand falls,
offering essentially unparalleled scalability without
human intervention [8]. This on-demand scaling is often
granular to the request level — e.g., AWS Lambda can
start additional function instances in milliseconds when
new events arrive, effectively matching even highly

unpredictable loads.

Pricing adds another complication. Not every workload
fits the serverless billing model. Long-running or very
steady tasks can end up cheaper on reserved instances;
bursty, unpredictable workloads are where serverless
usually shines. In a separate context focused on
optimizing performance within constrained hardware
environments, a subtitle processing system was
engineered as part of Prime Video’s just-after-broadcast
(JAB) pipeline. The goal was to keep subtitles accurate
and in sync even on older smart TVs with very limited
memory. To achieve this, the team used a small
segmentation algorithm that broke subtitle data into
short, time-based chunks and eliminated repeated lines
— amethod later reflected in U.S. Patent 10,893,331 B1.
This cut memory use and bandwidth at the same time,
keeping playback stable and allowing the system to scale
upward without changing the hardware.

This case also shows that scalability doesn’t always come
from adding servers or infrastructure. Careful tuning of
algorithms and data handling can achieve similar gains.
At the same time, it highlights that serverless computing
is not a one-size-fits-all solution. Its value depends on
the workload pattern, the limits of the chosen cloud
provider, and overall cost sensitivity. In practice, many
teams end up with a hybrid design — core services
running in long-lived containers, while event-driven or
bursty components run as serverless functions.
Architecturally, this means designing the system to emit
and respond to events. For instance, an e-commerce site
might use microservice containers for its main web API
and use serverless functions for background tasks like
sending notifications or generating reports on demand.
Such a serverless event-driven architecture is depicted
by Pandiya, where AWS Lambda functions are
integrated as event handlers in the microservice
[8].

computing can be viewed as another tool for scaling: it

ecosystem The takeaway is that serverless
shifts the responsibility of scaling to the cloud provider’s
platform, which will transparently allocate containers

and threads to meet the event rate.

https://www.theamericanjournals.com/index.php/tajet



One strand getting attention is the use of machine
learning — especially reinforcement learning — to guide
autoscaling. The thinking goes that the old rule-of-
thumb triggers (“if CPU > 70%, add one instance”) can
be inefficient, sometimes overprovisioning or reacting
too late. By contrast, trained models might anticipate
demand and adjust capacity ahead of time. The
implication is that machine-learning autoscaling is
promising but still experimental. Xu et al. introduce
CoScal, a multi-faceted scaling approach that combines
horizontal scaling, vertical scaling, and even brownout
techniques under an RL agent [10]. Brownout in this
context means dynamically disabling non-essential
features when the system is under heavy load, thereby
reducing resource usage. CoScal’s RL agent uses deep
learning to forecast workload and then decides the best
combination of actions — e.g., scale out certain services,
scale up resources on another, or temporarily disable a
feature — to minimize response time and cost. Studies
using these techniques generally report better resource
utilization and service quality than static policies [10]. In
effect, the architecture takes on an extra layer — an
intelligent controller that keeps adjusting its own scaling
rules for a complex microservice setup. One example is
Algassem et al., who built a proactive autoscaler using
Random Forest predictors to anticipate bursts in
microservice workloads [10].

While these approaches sound promising, they also pull
in added complexity and remain very much in the

research stage. Architecturally, adopting a learning-
based autoscaler means collecting far more telemetry —
response times, resource usage, request rates, maybe
even custom application metrics — and feeding it back
into a model that may need retraining or at least regular
updates. This extra loop can pay off, but it also risks
introducing new points of failure or drift over time. In
practice the “intelligent” autoscaler can end up as
another system to monitor, rather than a self-managing
black box. Although such techniques are still maturing,
they represent an architectural layer on top of
autoscaling — essentially a verification or optimization
layer — that could be incorporated into future
microservice platforms to automatically tune scaling
behavior for multiple objectives (performance, cost,

energy).

It is important to discuss the cost and complexity trade-
offs that come with scaling microservices. The ability to
scale each service independently is powerful, but it
often means an organization ends up managing dozens
or hundreds of service instances, each incurring
resource and management overhead. Chavan points out
that as an organization grows its microservices
deployment, the operational costs can “skyrocket”
because each microservice demands its own
infrastructure, development pipeline, monitoring, and
[3].

monolithic deployment and a microservice-based

security measures The contrast between a

deployment is illustrated in Figure 3.

Figure 3. From monolith to microservices: Increased components and operational overhead - the author’s

illustration of implications made by Blinowski et al. [3]

API
Gateway

olithic Application
le codebase & DB)

The American Journal of Engineering and Technology

96

Service 1

/
—— Service 2
Service 3
| Service 4
Service 5

https://www.theamericanjournals.com/index.php/tajet



The diagram on Figure 3 highlights how scaling
microservices adds multiple independent services,
databases, and a gateway layer, illustrating the cost and
complexity trade-offs of distributed scaling. On the left,
the diagram shows a single monolithic application —
one codebase, one database — almost spartan in its
simplicity. Scaling here is straightforward, if limited:
adding more power to the same machine or running a
few replicas behind a load balancer. On the right, by
contrast, are multiple microservices, each with its own
container and a small database or cache, fronted by an

APl gateway.

In short, microservices swap simplicity for agility. They
the
independently but at the cost of more moving parts. As

gain ability to evolve, deploy, and scale
a result, the architecture must include compensating
mechanisms: an APl gateway to centralize some cross-
cutting concerns (authentication, routing), a service
mesh to make inter-service communication more
predictable, and robust monitoring and alerting so that
happening.

Autoscaling to zero (shutting down idle services) and

engineers can actually see what’s
rightsizing resources are two common tactics to avoid
waste, and many teams now adopt FinOps practices
alongside their technical scaling strategies [3]. Despite
these challenges, when it works, microservices let
organizations line up resources closely with demand. A
well-designed microservice system can deliver
predictable performance under load while optimizing
cost — but only if it is designed with caution. That might
mean picking the right scaling strategy for each service,
setting safe limits to prevent runaway replicas, and

constantly tuning the metrics that drive autoscalers.

Taken together, the findings suggest scaling distributed
microservices in the cloud is less a single technique and
more a layered approach. First, services need to be as
stateless, decoupled, and independently deployable as
possible — otherwise scaling flexibility disappears.
Second, horizontal scaling is probably still the main lever
for increasing capacity — yet vertical scaling hasn’t
disappeared; it keeps a role, at least until the point
where returns flatten out [2].

None of these elements really solves the scalability
challenge on its own. Each addresses a fragment of it,
and sometimes they even work at cross-purposes. When
combined carefully they can make it possible for a
microservice system to withstand heavy demand on

The American Journal of Engineering and Technology

97

cloud infrastructure without losing reliability or
efficiency. In the real world the picture is usually
patchier, with monitoring gaps, cost surprises or
autoscalers behaving unpredictably. The mix of
patterns, compromises and ongoing tuning is perhaps
the real hallmark of scaling microservices today — less a

single formula than a set of overlapping practices.
Conclusion

Scaling distributed microservice systems in the cloud
seems to demand both thoughtful architecture and
cloud-native tooling. At the design level, modularity and
statelessness look like the bedrock principles — services
should, at least in theory, be able to scale out simply by
adding instances without fighting state-synchronization
problems. Still, the evidence suggests that when
microservices are kept as stateless and decoupled as
feasible, scaling out becomes far less taxing. Embracing
loose coupling and independent deployment ensures
that each service can be scaled (or updated) on its own
timeline, which is fundamental for responding to uneven
load patterns across an application. A careful choice
between horizontal and vertical scaling (and often a
blend of both) is part of the architectural strategy:
horizontal scaling provides practically unbounded
capacity by replicating services, whereas vertical scaling
can yield performance gains up to hardware limits — the
optimal mix depends on the application’s characteristics
and cost considerations.

Modern cloud-based microservice architectures tend to
lean on horizontal scaling through orchestration
platforms — though exactly how well this works can vary
widely. Kubernetes, for instance, has become almost a
default choice. It bundles autoscaling, load balancing,
and self-healing into one ecosystem, which seems
essential during unpredictable traffic spikes. Yet it is not
always obvious whether the built-in mechanisms alone
are enough; in some workloads they are smooth, in

others they need heavy tuning.

Scaling a microservice system is an ongoing architectural
concern. The goal is always a moving target: enough
capacity for peaks without wasting resources during
lulls. Patterns such as stateless service design and
database sharding can make scaling simpler, while
advanced autoscaling frameworks give architects more
control — but only if applied thoughtfully. Sometimes
these strategies do hold up — the system stays
surprisingly responsive under heavy load, which seems

https://www.theamericanjournals.com/index.php/tajet



to validate the microservice idea. Other times the same
setup turns costly or fragile, and the gains aren’t obvious
at all. It’s hard to predict which way it will go without
running it at scale. Looking ahead, future research can
focus on  energy-aware

scaling,  cross-layer

optimizations, and “autonomic” orchestration —
architectures that are supposed to learn and adapt over

time.
References

1. Alharthi, S., Alshamsi, A., Alseiari, A., & Alwarafy, A.
(2024). Auto-Scaling Techniques in Cloud
Computing: Issues and Research Directions.
Sensors, 24(17), 5551.
https://doi.org/10.3390/s24175551

2. Berardi, D., Giallorenzo, S., Mauro, J., Melis, A.,
Montesi, F., & Prandini, M. (2022). Microservice
security: a systematic literature review. PeerJ
Computer Science, 8, e779.
https://doi.org/10.7717/peerj-cs.779

3. Blinowski, G. J., Ojdowska, A., & Przybytek, A.
(2022). Monolithic vs. microservice architecture: A
performance and scalability evaluation. IEEE
Access, 10, 20357-20374.
https://doi.org/10.1109/ACCESS.2022.3152803

4. Chavan, A. (2023). Managing Scalability and Cost in
Microservices Architecture — Balancing Infinite
Scalability with Financial Constraints. Journal of
Artificial Intelligence & Cloud Computing, 2(4), 1-
14. https://doi.org/10.47363/IMHC/2023(5)E102

5. Domakonda, D. (2025). Secure and Scalable
Microservices Architecture: Principles, Benefits,
and Challenges. International Journal of Scientific
Research in CSEIT, 11(2), 1897-1902.
https://doi.org/10.32628/CSEIT23112569

6. Filippone, G., Pompilio, C., Autili, M., & Tivoli, M.
(2022). An architectural style for scalable
choreography-based microservice-oriented
distributed systems. Computing, 105(9), 1933—
1956. https://doi.org/10.32628/CSWEIT23112569

7. AgosJawaddi, S.N., Ismail, A., Sulaiman, M.S. et al.
Analyzing Energy-Efficient and Kubernetes-Based
Autoscaling of Microservices Using Probabilistic
Model Checking. J Grid Computing, 23, 3 (2025).
https://doi.org/10.1007/s10723-024-09789-9

8. Dileep Kumar Pandiya. (2021). Scalability Patterns

The American Journal of Engineering and Technology 98

for Microservices Architecture. Educational
Administration: Theory and Practice, 27(3), 1178
1183. https://doi.org/10.53555/kuey.v27i3.6897

Saurav Sharma. (2025). The Impact of
Microservices Architecture on System Scalability.
American Scientific Research Journal for
Engineering, Technology, and Sciences, 102(1), 140-
148.

https://asrjetsjournal.org/American Scientific Jour
nal/article/view/11677

. Xu, M., Song, C., llager, S., Gill, S. S., Zhao, J., Ye, K.,

& Xu, C. (2022). CoScal: Multi-faceted scaling of
microservices with reinforcement learning. IEEE
Transactions on Network and Service Management,
19(4), 3995—
4009.https://doi.org/10.1109/TNSM.2022.3210211

https://www.theamericanjournals.com/index.php/tajet


https://doi.org/10.3390/s24175551
https://doi.org/10.7717/peerj-cs.779
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.47363/JMHC/2023(5)E102
https://doi.org/10.32628/CSEIT23112569
https://doi.org/10.32628/CSEIT23112569
https://doi.org/10.1007/s10723-024-09789-9
https://doi.org/10.53555/kuey.v27i3.6897
https://asrjetsjournal.org/American_Scientific_Journal/article/view/11677
https://asrjetsjournal.org/American_Scientific_Journal/article/view/11677

