
The American Journal of Engineering and Technology 268 https://www.theamericanjournals.com/index.php/tajet

 TYPE Original Research

PAGE NO. 268-274

DOI 10.37547/tajet/Volume07Issue08-22

OPEN ACCESS

SUBMITED 29 July 2025

ACCEPTED 07 August 2025

PUBLISHED 21 August 2025

VOLUME Vol.07 Issue 08 2025

CITATION

Megha Aggarwal. (2025). Data Security in Multi-Tenant Clusters. The

American Journal of Engineering and Technology, 7(8), 268–274.

https://doi.org/10.37547/tajet/Volume07Issue08-22

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Data Security in Multi-

Tenant Clusters

Megha Aggarwal
Software Development Engineer, Amazon AWS Seattle, WA, USA

Abstract: This article presents a comprehensive

analysis of the set of threats that are characteristic of

heterogeneous Kubernetes deployments. The work

aims to systematize and examine these threats, as well

as to develop an integrated security model suitable for

practical implementation. The methodological

foundation consisted of a rigorous literature review

encompassing both academic papers and engineering

reports from major cloud providers. Special attention

was given to publications on container isolation, inter-

pod network policy, secrets management, and data

encryption protocols. Based on this analysis, a multi-

layer threat map is presented, detailing the attack

vectors at each layer. The proposed protective

measures are integrated into a unified DevSecOps

lifecycle framework and can be automated within

CI/CD pipelines. The conclusions drawn and the model

developed are intended for security engineers, DevOps

teams, and cloud platform architects who need to

design and maintain multi-tenant Kubernetes clusters

with a guaranteed level of data protection.

Keywords: Kubernetes, data security, multi-tenancy,

isolation, threat model, encryption, access control, CSI,

Service Mesh, dynamic scaling.

Introduction

In recent years, the widespread adoption of cloud

solutions and the transition to a microservices

architecture have led to containerization becoming the

foundational standard for packaging, deploying, and

managing software components [1]. One of the most

significant economic factors driving the demand for

Kubernetes is the ability to organize multi-tenant

clusters, where the resources of a single physical or

virtual cluster can be reliably partitioned among

multiple teams, projects, or external clients. This

approach not only increases the utilization rate of

compute and network resources but also substantially

https://doi.org/10.37547/tajet/Volume07Issue08-22
https://doi.org/10.37547/tajet/Volume07Issue08-22

The American Journal of Engineering and Technology 269 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

reduces operational and infrastructure costs. At the

same time, consolidating heterogeneous workloads

within a unified cluster architecture creates new

challenges in protecting data confidentiality and

integrity. In a traditional virtualized environment,

security boundaries are enforced at the hypervisor level.

In contrast, in Kubernetes, isolation is implemented via

Linux kernel mechanisms — namespaces and cgroups —

which open additional vectors for potential attacks. The

relevance of the topic is heightened by the growing

number of incidents related to misconfigurations and

vulnerabilities in container environments [2].

Despite extensive research on container security and

network policies, a gap remains in the scientific analysis,

particularly regarding threats targeting data in multi-

tenant clusters, especially considering dynamic

processes such as automatic scaling (autoscaling) that

impact the data lifecycle and residual availability.

The objective of the study is to conduct a systematic

review and analysis of data security threats in multi-

tenant Kubernetes clusters.

The novelty of the study lies in the description of a multi-

layered security model that ties potential threats at the

container, pod, network communication, and persistent

storage levels to the operational practices characteristic

of dynamically scalable environments.

The study hypothesizes that achieving reliable data

protection in multi-tenant Kubernetes environments is

only possible through a comprehensive approach

combining:

1. Preventive measures — granular access control

(RBAC), network segmentation (Network Policies),

encryption of data at rest and in transit.

2. Detective mechanisms — continuous cluster

state monitoring, activity auditing, and log analysis.

3. Automated response — orchestration of

incident response actions through integration of

SIEM/EDR systems and Kubernetes operators.

Materials and methods

In modern multi-tenant cloud clusters, the issue of

security is increasingly considered through the lens of

comprehensive reviews and comparative studies. Thus,

the CNCF survey [1] records a rise in regulatory

requirements and the broad adoption of cloud-native

practices, noting increased interest in workload isolation

and platform-level data encryption. The Palo Alto

Networks report [2] focuses on emerging threats —

from vulnerabilities in container runtimes to supply

chain attacks — and proposes priorities for allocating

security resources. A comprehensive systematization of

attack and defense mechanisms for Docker containers is

presented by Haq M. S. et al. [3], which analyzes more

than 50 works on the subject and classifies security

approaches at the runtime, kernel, and orchestrator

levels.

Architectural deployment patterns form the foundation

for multitenancy, as they define the boundaries of

isolation and performance impact. Berenberg, A., &

Calder, B. [4] in classification identify four main

archetypes — from full virtual machines to serverless

containers — and assess their trade-offs between

elasticity and security. Superbo G. [5], examining a local

5G deployment, tests strict Kubernetes multitenancy

mechanisms (NetworkPolicy, cgroup, SELinux),

demonstrating that only a combined approach provides

an acceptable level of isolation with minimal overhead.

Shethiya et al. [9] explain how increasing isolation

through namespace and resource constraints affects

throughput and latency, key metrics for latency-

sensitive applications.

Turning to practical methods for enhancing security,

Morić Z., Dakić V., Čavala T. [6] propose a framework for

hardening the Kubernetes control plane and workloads,

incorporating checks for compliance with CIS

Benchmarks and the implementation of

OPA/Gatekeeper policy. Dos Santos R. F. [7] implements

Zero Trust principles in the cluster by configuring mTLS

for all services, implementing strict RBAC, and

performing dynamic context validation of API server

requests.

For continuous monitoring and rapid response,

observability and anomaly-detection tools are essential.

Nutalapati P. [8] describes the use of the Istio service

mesh for centralized metric collection, call tracing, and

enforcement of network policies via Envoy filters,

simplifying audit and forensics in multi-cluster scenarios.

Kosińska J., & Tobiasz M. [10] demonstrate how machine

learning methods (clustering, autoencoders, decision

trees) detect atypical behavior patterns in a Kubernetes

cluster, issuing alerts before a full-scale attack unfolds

[10].

Thus, two main contradictions emerge in the literature:

first, the reports [1, 2] and SoK [3] emphasize the risks of

supply chain and container runtime, whereas

The American Journal of Engineering and Technology 270 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

architecture researchers [4, 5, 9] are compelled to

sacrifice security for performance. Second, there is a

stark contrast in approaches to security enhancement:

some authors rely on static compliance [6], others on

adaptive Zero Trust [7]. At the same time, there is a lack

of research on the dynamic scaling of secure

multitenancy under peak loads and on inter-cluster

coordination of security policies. Issues of protection

against data leakage channels (side channels),

automated remediation responses, and integration of

ML-detection tools into the CI/CD pipeline are also

underdeveloped.

Results and Discussion

Following a comprehensive analysis of contemporary

scientific and industry literature, an integrated

conceptual framework for data protection in multi-

tenant Kubernetes clusters has been developed. The

concept of a secure multi-tenant platform for

Kubernetes encompasses a formalized threat model,

multi-layer isolation and access-control mechanisms,

and a regulatory–procedural operational framework

that guarantees the required level of protection

throughout the entire application life-cycle.

The development of protective measures begins with

the construction of a reliable threat model. For a multi-

tenant Kubernetes cluster, a stratified approach

comprising the node, container, and cluster layers is

appropriate. At the node layer, compromise of the

operating system of a compute node is critical: an

adversary who gains root access effectively controls all

containers, their data, and the network traffic hosted on

the given physical or virtual host.

The container (Pod) layer exposes attack scenarios such

as container escape through vulnerabilities in the OS

kernel or runtime, exploitation of side channels through

shared hardware resources (CPU cache, DRAM

controller) to extract confidential data of other tenants,

as well as abuse of privileged mode and mounting of

critical host directories, which creates conditions for

privilege escalation.

The cluster layer is vulnerable to network-traffic

interception — both passive (eavesdropping) and active

(tampering) — in East-West flows between Pods and

North-South flows when accessing external services or

storage subsystems. Unauthorized access to kube-api-

server allows an attacker to create malicious workloads,

extract the contents of Secret objects, and modify the

configurations of other tenants’ resources. Finally,

misconfiguration of CSI drivers and the dynamic volume-

provisioning mechanism can result in one tenant

mounting another tenant’s Persistent Volume, thereby

gaining unauthorized access to data [3, 4].

Within the outlined threat model, the security system

must satisfy four fundamental properties, traditionally

condensed into the acronym CIA-A. Confidentiality

requires that the information flows of one tenant

remain inaccessible to others, both at rest and in transit;

isolation must be end-to-end, encompassing storage,

network, applications, and logs. Integrity implies that

any modification of artefacts (data, manifests,

configurations) is permissible only after subject

authentication and is recorded in immutable logs,

forming a verifiable chain of trust. Availability

presupposes platform resilience to peak loads and

deliberate sabotage (for example, DoS) while ensuring

linear horizontal scalability of compute and storage

subsystems. Manageability and auditability are

implemented through centralized event-correlation

services, long-term log retention, and automated

response, which together create an evidential basis for

subsequent incident investigation and regulatory

compliance.

The security of a multi-tenant platform is achieved by

composing complementary mechanisms whose

combined effectiveness is compared in Table 1. The

foundation of logical segmentation is formed by

namespaces, which group all resources (Pod, Service,

Secret) by tenant and block cross-tenant interaction at

the object level; the role-based model (RBAC), analysed

in detail by Singh and Kumar [5], makes it possible to

define atomic privileges of the form ⟨action, resource,

namespace⟩ and thereby strictly enforce the principle of

least privilege.

For the declarative description of high-level policies, the

Open Policy Agent, together with Gatekeeper, is

employed, as the legacy Pod Security Policies have been

withdrawn from operation, and their successor, Pod

Security Admission, offers only a fixed set of rigidities.

Experimental studies by Williams [6] demonstrate how

Rego rules, for example, prohibit running images from

untrusted registries or executing containers as the root

user.

Kubernetes network policies implement a deny-by-

default model: Pod-to-Pod East-West traffic is permitted

only when an explicit rule is present. However, as Chen

The American Journal of Engineering and Technology 271 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

points out [7], control at L3/L4 provides neither

encryption nor mutual authentication. These tasks are

solved by a Service Mesh (Istio, Linkerd, etc.), where a

proxy sidecar is automatically injected into each Pod,

activating mTLS, verifying certificates, and making

authorization decisions at Layer 7; a topological and

functional description of this architecture is provided by

Zhang [8].

Data isolation at rest is achieved through CSI drivers.

Best practice recommends allocating a dedicated

StorageClass for each tenant and binding a PVC to the

corresponding namespace, which prevents cross-tenant

access [9]. Modern drivers support encryption with

individual keys managed by an external KMS, thereby

minimizing the risk of both inadvertent leaks and insider

attacks

Table 1. Comparison of isolation mechanisms in Kubernetes [5, 6, 7, 9]

Mechanism Isolation level Granularity Primary purpose Limitations

Namespaces Logical (API) At the object

level

Grouping of tenant

resources

Does not provide

network isolation or

host-level isolation

RBAC API access

control

User/Group →

Action →

Resource

Restriction of rights

to manage

Kubernetes objects

Does not control

processes inside the

container or network

traffic

Network Policies Network (L3/L4) Pod → Port/IP Isolation of East–

West traffic

Does not encrypt

traffic, does not

operate at L7, depends

on CNI plugin

OPA/Gatekeeper Configuration

control

Arbitrary rules

(Rego)

Enforcement of

security best

practices

Requires expertise in

the Rego language,

may introduce delays

in the API

Service Mesh Network (L4/L7) Service → HTTP

method/path

End-to-end

encryption (mTLS),

L7 authorization

High complexity of

deployment and

operation, overhead

eliable isolation must be supplemented by

cryptographic data protection and mature operational

processes. The integrated architecture encompassing

these components is shown in Figure 1.

The American Journal of Engineering and Technology 272 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

Figure 1. Integrated data security architecture in Kubernetes [8, 10].

Cryptographic data protection in modern distributed

systems is divided into two mutually complementary

directions: ensuring confidentiality during transmission

and storage. Intra-cluster network traffic is protected by

end-to-end encryption through mutual authentication

of TLS channels (mTLS), implemented at the Service

Mesh layer, which prevents unauthorized subjects from

accessing inter-service communications. When

interacting with external resources—such as databases,

caching systems, or object stores—a traditional

unidirectional TLS channel is employed, which is

sufficient to maintain the required level of trust

between the parties.

Data safety «at rest» is achieved by block-level

encryption of the contents of persistent volumes using

dm-crypt or equivalent mechanisms, thereby minimizing

the risk of compromise in the event of physical access to

storage media. Secret configuration information in etcd

is additionally protected at the API server level using

EncryptionConfiguration, in which an external

cryptographic provider integrated with an external key

management system (KMS) is specified.

Cryptographic keys are allocated in isolation for each

tenant, stored in hardware- or software-protected

containers, and rotated according to the established life-

cycle policy. Thus, even a successful attack on etcd,

without the simultaneous compromise of the KMS, does

not allow an adversary to decrypt the concealed secrets.

It should be emphasized that the built-in Kubernetes

Secrets mechanism is regarded only as a primary layer

of protection and must not be treated as the sole means

of ensuring the confidentiality of critical data.

The changes compared with the original bullet-point

presentation are dictated by the requirement of a

scientific-didactic style: the key provisions are

integrated into a coherent text, which enhances the

logical continuity of the argumentation and underscores

the interdependence of the protection mechanisms

both «in transit» and «at rest». Additionally, the

abandonment of markers eliminates visual

fragmentation, placing emphasis on the semantic links

The American Journal of Engineering and Technology 273 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

between the components described. For production

environments, a centralized store (for example,

HashiCorp Vault) is preferable, which:

1. dynamically generates credentials on request,

2. records each access in a detailed audit,

3. supports a variety of authentication

mechanisms,

4. enforces a consistent least privilege policy.

Table 2 describes the characteristics of observability,

audit, and response in data protection.

Table 2. Observability, audit, and data protection response [9, 10].

Component Objective Tools

Metrics Monitoring of the cluster core and

applications status

Prometheus (+ Alertmanager)

Logs Centralization of node, pod, and

Kubernetes API events

Unified ELK/EFK stack

Behavioral

analysis

Response to deviations (spawn shell,

writing to /etc, etc.)

Falco

Correlation and

SOAR

Aggregation of telemetry streams

and automation of playbooks

SIEM platform with reactions (for example,

pod isolation via NetworkPolicy)

Automatic creation and deletion of pods (HPA, VPA,

Cluster Autoscaler) may lead to data leakage if a PVC is

deleted faster than the underlying volume is physically

sanitized. To prevent another tenant from recovering

residual fragments:

1. Crypto-shredding. Use CSI drivers/storage

arrays that support destruction of the encryption key;

data becomes cryptographically inaccessible

immediately after PVC deletion.

2. Forced zeroing. Configure automatic

overwriting of the volume with zeros or random blocks

before returning it to the pool.

3. StorageClass → reclaimPolicy: Delete. Destroy

the physical volume, including the PVC, to ensure the

sanitization process has been completed correctly [10].

A complex combining multilayer encryption, mature

secret management, full-format observability with

automated response, and secure volume lifecycle

handling forms a resilient data protection architecture

for highly dynamic multitenant Kubernetes

environments.

Conclusion

The analysis performed enabled a comprehensive

examination of the data protection challenges

associated with the shared operation of Kubernetes

clusters and the development of an integrated concept

for their assurance. It was found that the application of

individual security tools—whether RBAC or network

policy configuration—by itself does not provide

adequate protection against modern, often

multifaceted attacks. The initial hypothesis has been

confirmed: reliable data protection in multi-tenant

environments requires a holistic approach that

combines preventive, detective, and corrective

mechanisms.

Prospects for further research are associated with the

implementation of confidential computing technologies

for hardware isolation of workloads and the

development of formal methods for verification of

security policies in rapidly evolving Kubernetes clusters.

References

1. Cloud Native Computing Foundation. (2024). CNCF

annual survey 2023: The state of cloud native

development. Retrieved from

https://www.cncf.io/reports/cncf-annual-survey-

2023/ (date accessed: 17.05.2025).

2. Palo Alto Networks. (2024). 2024 state of cloud

native security report [Report]. Retrieved from

https://www.paloaltonetworks.com/resources/res

https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.paloaltonetworks.com/resources/research/state-of-cloud-native-security-2024

The American Journal of Engineering and Technology 274 https://www.theamericanjournals.com/index.php/tajet

The American Journal of Engineering and Technology

earch/state-of-cloud-native-security-2024 (date

accessed: 20.05.2025).

3. Haq, M. S., et al. (2024). SoK: A comprehensive

analysis and evaluation of Docker container attack

and defense mechanisms. In 2024 IEEE Symposium

on Security and Privacy (SP) (pp. 4573–4590). IEEE.

https://doi.org/10.1109/SP54263.2024.00268

4. Berenberg, A., & Calder, B. (2022). Deployment

archetypes for cloud applications. ACM Computing

Surveys, 55(3), 1–48.

https://doi.org/10.1145/3498336

5. Superbo, G. (2022). Hard multi-tenancy Kubernetes

approaches in a local 5G deployment: Testing and

evaluation of the available solutions, 43 – 60.

6. Morić, Z., Dakić, V., & Čavala, T. (2025). Security

hardening and compliance assessment of

Kubernetes control plane and workloads. Journal of

Cybersecurity and Privacy, 5(2).

https://doi.org/10.3390/jcp5020030

7. Dos Santos, R. F. (2025). Applying zero trust to

Kubernetes clusters. ARIS2 – Advanced Research on

Information Systems Security, 5(1), 57–71.

https://doi.org/10.56394/aris2.v5i1.58

8. Nutalapati, P. (2021). Service mesh in Kubernetes:

Implementing Istio for enhanced observability and

security. Journal of Scientific and Engineering

Research, 8(11), 200–206.

9. Shethiya, A. S. (2024). Ensuring optimal

performance in secure multi-tenant cloud

deployments. Spectrum of Research, 4(2), 1–7.

10. Kosińska, J., & Tobiasz, M. (2022). Detection of

cluster anomalies with ML techniques. IEEE Access,

10, 110742–110753.

https://doi.org/10.1109/ACCESS.2022.3216080.

11. Dip Bharatbhai Patel. (2025). Comparing Neural

Networks and Traditional Algorithms in Fraud

Detection. The American Journal of Applied

Sciences, 7(07), 128–132.

https://doi.org/10.37547/tajas/Volume07Issue07-

13

https://www.paloaltonetworks.com/resources/research/state-of-cloud-native-security-2024
https://doi.org/10.1109/SP54263.2024.00268
https://doi.org/10.1145/3498336
https://doi.org/10.3390/jcp5020030
https://doi.org/10.56394/aris2.v5i1.58
https://doi.org/10.1109/ACCESS.2022.3216080

