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Abstract: This article presents a comprehensive 

analysis of the set of threats that are characteristic of 

heterogeneous Kubernetes deployments. The work 

aims to systematize and examine these threats, as well 

as to develop an integrated security model suitable for 

practical implementation. The methodological 

foundation consisted of a rigorous literature review 

encompassing both academic papers and engineering 

reports from major cloud providers. Special attention 

was given to publications on container isolation, inter-

pod network policy, secrets management, and data 

encryption protocols. Based on this analysis, a multi-

layer threat map is presented, detailing the attack 

vectors at each layer. The proposed protective 

measures are integrated into a unified DevSecOps 

lifecycle framework and can be automated within 

CI/CD pipelines. The conclusions drawn and the model 

developed are intended for security engineers, DevOps 

teams, and cloud platform architects who need to 

design and maintain multi-tenant Kubernetes clusters 

with a guaranteed level of data protection. 

Keywords: Kubernetes, data security, multi-tenancy, 

isolation, threat model, encryption, access control, CSI, 

Service Mesh, dynamic scaling. 

Introduction 

In recent years, the widespread adoption of cloud 

solutions and the transition to a microservices 

architecture have led to containerization becoming the 

foundational standard for packaging, deploying, and 

managing software components [1]. One of the most 

significant economic factors driving the demand for 

Kubernetes is the ability to organize multi-tenant 

clusters, where the resources of a single physical or 

virtual cluster can be reliably partitioned among 

multiple teams, projects, or external clients. This 

approach not only increases the utilization rate of 

compute and network resources but also substantially 
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reduces operational and infrastructure costs. At the 

same time, consolidating heterogeneous workloads 

within a unified cluster architecture creates new 

challenges in protecting data confidentiality and 

integrity. In a traditional virtualized environment, 

security boundaries are enforced at the hypervisor level. 

In contrast, in Kubernetes, isolation is implemented via 

Linux kernel mechanisms — namespaces and cgroups — 

which open additional vectors for potential attacks. The 

relevance of the topic is heightened by the growing 

number of incidents related to misconfigurations and 

vulnerabilities in container environments [2]. 

Despite extensive research on container security and 

network policies, a gap remains in the scientific analysis, 

particularly regarding threats targeting data in multi-

tenant clusters, especially considering dynamic 

processes such as automatic scaling (autoscaling) that 

impact the data lifecycle and residual availability. 

The objective of the study is to conduct a systematic 

review and analysis of data security threats in multi-

tenant Kubernetes clusters. 

The novelty of the study lies in the description of a multi-

layered security model that ties potential threats at the 

container, pod, network communication, and persistent 

storage levels to the operational practices characteristic 

of dynamically scalable environments. 

The study hypothesizes that achieving reliable data 

protection in multi-tenant Kubernetes environments is 

only possible through a comprehensive approach 

combining: 

1. Preventive measures — granular access control 

(RBAC), network segmentation (Network Policies), 

encryption of data at rest and in transit. 

2. Detective mechanisms — continuous cluster 

state monitoring, activity auditing, and log analysis. 

3. Automated response — orchestration of 

incident response actions through integration of 

SIEM/EDR systems and Kubernetes operators. 

Materials and methods 

In modern multi-tenant cloud clusters, the issue of 

security is increasingly considered through the lens of 

comprehensive reviews and comparative studies. Thus, 

the CNCF survey [1] records a rise in regulatory 

requirements and the broad adoption of cloud-native 

practices, noting increased interest in workload isolation 

and platform-level data encryption. The Palo Alto 

Networks report [2] focuses on emerging threats — 

from vulnerabilities in container runtimes to supply 

chain attacks — and proposes priorities for allocating 

security resources. A comprehensive systematization of 

attack and defense mechanisms for Docker containers is 

presented by Haq M. S. et al. [3], which analyzes more 

than 50 works on the subject and classifies security 

approaches at the runtime, kernel, and orchestrator 

levels. 

Architectural deployment patterns form the foundation 

for multitenancy, as they define the boundaries of 

isolation and performance impact. Berenberg, A., & 

Calder, B. [4] in classification identify four main 

archetypes — from full virtual machines to serverless 

containers — and assess their trade-offs between 

elasticity and security. Superbo G. [5], examining a local 

5G deployment, tests strict Kubernetes multitenancy 

mechanisms (NetworkPolicy, cgroup, SELinux), 

demonstrating that only a combined approach provides 

an acceptable level of isolation with minimal overhead. 

Shethiya et al. [9] explain how increasing isolation 

through namespace and resource constraints affects 

throughput and latency, key metrics for latency-

sensitive applications. 

Turning to practical methods for enhancing security, 

Morić Z., Dakić V., Čavala T. [6] propose a framework for 

hardening the Kubernetes control plane and workloads, 

incorporating checks for compliance with CIS 

Benchmarks and the implementation of 

OPA/Gatekeeper policy. Dos Santos R. F. [7] implements 

Zero Trust principles in the cluster by configuring mTLS 

for all services, implementing strict RBAC, and 

performing dynamic context validation of API server 

requests. 

For continuous monitoring and rapid response, 

observability and anomaly-detection tools are essential. 

Nutalapati P. [8] describes the use of the Istio service 

mesh for centralized metric collection, call tracing, and 

enforcement of network policies via Envoy filters, 

simplifying audit and forensics in multi-cluster scenarios. 

Kosińska J., & Tobiasz M. [10] demonstrate how machine 

learning methods (clustering, autoencoders, decision 

trees) detect atypical behavior patterns in a Kubernetes 

cluster, issuing alerts before a full-scale attack unfolds 

[10]. 

Thus, two main contradictions emerge in the literature: 

first, the reports [1, 2] and SoK [3] emphasize the risks of 

supply chain and container runtime, whereas 
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architecture researchers [4, 5, 9] are compelled to 

sacrifice security for performance. Second, there is a 

stark contrast in approaches to security enhancement: 

some authors rely on static compliance [6], others on 

adaptive Zero Trust [7]. At the same time, there is a lack 

of research on the dynamic scaling of secure 

multitenancy under peak loads and on inter-cluster 

coordination of security policies. Issues of protection 

against data leakage channels (side channels), 

automated remediation responses, and integration of 

ML-detection tools into the CI/CD pipeline are also 

underdeveloped. 

Results and Discussion 

Following a comprehensive analysis of contemporary 

scientific and industry literature, an integrated 

conceptual framework for data protection in multi-

tenant Kubernetes clusters has been developed. The 

concept of a secure multi-tenant platform for 

Kubernetes encompasses a formalized threat model, 

multi-layer isolation and access-control mechanisms, 

and a regulatory–procedural operational framework 

that guarantees the required level of protection 

throughout the entire application life-cycle. 

The development of protective measures begins with 

the construction of a reliable threat model. For a multi-

tenant Kubernetes cluster, a stratified approach 

comprising the node, container, and cluster layers is 

appropriate. At the node layer, compromise of the 

operating system of a compute node is critical: an 

adversary who gains root access effectively controls all 

containers, their data, and the network traffic hosted on 

the given physical or virtual host. 

The container (Pod) layer exposes attack scenarios such 

as container escape through vulnerabilities in the OS 

kernel or runtime, exploitation of side channels through 

shared hardware resources (CPU cache, DRAM 

controller) to extract confidential data of other tenants, 

as well as abuse of privileged mode and mounting of 

critical host directories, which creates conditions for 

privilege escalation. 

The cluster layer is vulnerable to network-traffic 

interception — both passive (eavesdropping) and active 

(tampering) — in East-West flows between Pods and 

North-South flows when accessing external services or 

storage subsystems. Unauthorized access to kube-api-

server allows an attacker to create malicious workloads, 

extract the contents of Secret objects, and modify the 

configurations of other tenants’ resources. Finally, 

misconfiguration of CSI drivers and the dynamic volume-

provisioning mechanism can result in one tenant 

mounting another tenant’s Persistent Volume, thereby 

gaining unauthorized access to data [3, 4]. 

Within the outlined threat model, the security system 

must satisfy four fundamental properties, traditionally 

condensed into the acronym CIA-A. Confidentiality 

requires that the information flows of one tenant 

remain inaccessible to others, both at rest and in transit; 

isolation must be end-to-end, encompassing storage, 

network, applications, and logs. Integrity implies that 

any modification of artefacts (data, manifests, 

configurations) is permissible only after subject 

authentication and is recorded in immutable logs, 

forming a verifiable chain of trust. Availability 

presupposes platform resilience to peak loads and 

deliberate sabotage (for example, DoS) while ensuring 

linear horizontal scalability of compute and storage 

subsystems. Manageability and auditability are 

implemented through centralized event-correlation 

services, long-term log retention, and automated 

response, which together create an evidential basis for 

subsequent incident investigation and regulatory 

compliance. 

The security of a multi-tenant platform is achieved by 

composing complementary mechanisms whose 

combined effectiveness is compared in Table 1. The 

foundation of logical segmentation is formed by 

namespaces, which group all resources (Pod, Service, 

Secret) by tenant and block cross-tenant interaction at 

the object level; the role-based model (RBAC), analysed 

in detail by Singh and Kumar [5], makes it possible to 

define atomic privileges of the form ⟨action, resource, 

namespace⟩ and thereby strictly enforce the principle of 

least privilege. 

For the declarative description of high-level policies, the 

Open Policy Agent, together with Gatekeeper, is 

employed, as the legacy Pod Security Policies have been 

withdrawn from operation, and their successor, Pod 

Security Admission, offers only a fixed set of rigidities. 

Experimental studies by Williams [6] demonstrate how 

Rego rules, for example, prohibit running images from 

untrusted registries or executing containers as the root 

user. 

Kubernetes network policies implement a deny-by-

default model: Pod-to-Pod East-West traffic is permitted 

only when an explicit rule is present. However, as Chen 
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points out [7], control at L3/L4 provides neither 

encryption nor mutual authentication. These tasks are 

solved by a Service Mesh (Istio, Linkerd, etc.), where a 

proxy sidecar is automatically injected into each Pod, 

activating mTLS, verifying certificates, and making 

authorization decisions at Layer 7; a topological and 

functional description of this architecture is provided by 

Zhang [8]. 

Data isolation at rest is achieved through CSI drivers. 

Best practice recommends allocating a dedicated 

StorageClass for each tenant and binding a PVC to the 

corresponding namespace, which prevents cross-tenant 

access [9]. Modern drivers support encryption with 

individual keys managed by an external KMS, thereby 

minimizing the risk of both inadvertent leaks and insider 

attacks

 

Table 1. Comparison of isolation mechanisms in Kubernetes  [5, 6, 7, 9] 

Mechanism Isolation level Granularity Primary purpose Limitations 

Namespaces Logical (API) At the object 

level 

Grouping of tenant 

resources 

Does not provide 

network isolation or 

host-level isolation 

RBAC API access 

control 

User/Group → 

Action → 

Resource 

Restriction of rights 

to manage 

Kubernetes objects 

Does not control 

processes inside the 

container or network 

traffic 

Network Policies Network (L3/L4) Pod → Port/IP Isolation of East–

West traffic 

Does not encrypt 

traffic, does not 

operate at L7, depends 

on CNI plugin 

OPA/Gatekeeper Configuration 

control 

Arbitrary rules 

(Rego) 

Enforcement of 

security best 

practices 

Requires expertise in 

the Rego language, 

may introduce delays 

in the API 

Service Mesh Network (L4/L7) Service → HTTP 

method/path 

End-to-end 

encryption (mTLS), 

L7 authorization 

High complexity of 

deployment and 

operation, overhead 

eliable isolation must be supplemented by 

cryptographic data protection and mature operational 

processes. The integrated architecture encompassing 

these components is shown in Figure 1. 
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Figure 1. Integrated data security architecture in Kubernetes [8, 10]. 

 

Cryptographic data protection in modern distributed 

systems is divided into two mutually complementary 

directions: ensuring confidentiality during transmission 

and storage. Intra-cluster network traffic is protected by 

end-to-end encryption through mutual authentication 

of TLS channels (mTLS), implemented at the Service 

Mesh layer, which prevents unauthorized subjects from 

accessing inter-service communications. When 

interacting with external resources—such as databases, 

caching systems, or object stores—a traditional 

unidirectional TLS channel is employed, which is 

sufficient to maintain the required level of trust 

between the parties. 

Data safety «at rest» is achieved by block-level 

encryption of the contents of persistent volumes using 

dm-crypt or equivalent mechanisms, thereby minimizing 

the risk of compromise in the event of physical access to 

storage media. Secret configuration information in etcd 

is additionally protected at the API server level using 

EncryptionConfiguration, in which an external 

cryptographic provider integrated with an external key 

management system (KMS) is specified. 

Cryptographic keys are allocated in isolation for each 

tenant, stored in hardware- or software-protected 

containers, and rotated according to the established life-

cycle policy. Thus, even a successful attack on etcd, 

without the simultaneous compromise of the KMS, does 

not allow an adversary to decrypt the concealed secrets. 

It should be emphasized that the built-in Kubernetes 

Secrets mechanism is regarded only as a primary layer 

of protection and must not be treated as the sole means 

of ensuring the confidentiality of critical data. 

The changes compared with the original bullet-point 

presentation are dictated by the requirement of a 

scientific-didactic style: the key provisions are 

integrated into a coherent text, which enhances the 

logical continuity of the argumentation and underscores 

the interdependence of the protection mechanisms 

both «in transit» and «at rest». Additionally, the 

abandonment of markers eliminates visual 

fragmentation, placing emphasis on the semantic links 
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between the components described. For production 

environments, a centralized store (for example, 

HashiCorp Vault) is preferable, which: 

1. dynamically generates credentials on request, 

2. records each access in a detailed audit, 

3. supports a variety of authentication 

mechanisms, 

4. enforces a consistent least privilege policy. 

Table 2 describes the characteristics of observability, 

audit, and response in data protection. 

 

Table 2. Observability, audit, and data protection response [9, 10]. 

 

Component Objective Tools 

Metrics Monitoring of the cluster core and 

applications status 

Prometheus (+ Alertmanager) 

Logs Centralization of node, pod, and 

Kubernetes API events 

Unified ELK/EFK stack 

Behavioral 

analysis 

Response to deviations (spawn shell, 

writing to /etc, etc.) 

Falco 

Correlation and 

SOAR 

Aggregation of telemetry streams 

and automation of playbooks 

SIEM platform with reactions (for example, 

pod isolation via NetworkPolicy) 

Automatic creation and deletion of pods (HPA, VPA, 

Cluster Autoscaler) may lead to data leakage if a PVC is 

deleted faster than the underlying volume is physically 

sanitized. To prevent another tenant from recovering 

residual fragments: 

1. Crypto-shredding. Use CSI drivers/storage 

arrays that support destruction of the encryption key; 

data becomes cryptographically inaccessible 

immediately after PVC deletion. 

2. Forced zeroing. Configure automatic 

overwriting of the volume with zeros or random blocks 

before returning it to the pool. 

3. StorageClass → reclaimPolicy: Delete. Destroy 

the physical volume, including the PVC, to ensure the 

sanitization process has been completed correctly [10]. 

A complex combining multilayer encryption, mature 

secret management, full-format observability with 

automated response, and secure volume lifecycle 

handling forms a resilient data protection architecture 

for highly dynamic multitenant Kubernetes 

environments. 

Conclusion 

The analysis performed enabled a comprehensive 

examination of the data protection challenges 

associated with the shared operation of Kubernetes 

clusters and the development of an integrated concept 

for their assurance. It was found that the application of 

individual security tools—whether RBAC or network 

policy configuration—by itself does not provide 

adequate protection against modern, often 

multifaceted attacks. The initial hypothesis has been 

confirmed: reliable data protection in multi-tenant 

environments requires a holistic approach that 

combines preventive, detective, and corrective 

mechanisms. 

Prospects for further research are associated with the 

implementation of confidential computing technologies 

for hardware isolation of workloads and the 

development of formal methods for verification of 

security policies in rapidly evolving Kubernetes clusters. 
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