
The American Journal of Engineering and Technology 92 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 92-100

DOI 10.37547/tajet/Volume07Issue08-11

OPEN ACCESS

SUBMITED 19 July 2025

ACCEPTED 29 July 2025

PUBLISHED 12 August 2025

VOLUME Vol.07 Issue 08 2025

CITATION

Ankit Agarwal. (2025). Paradigms of Generative Artificial Intelligence in
Automating Corporate Code Writing. The American Journal of Engineering
and Technology, 7(8), 92–100.
https://doi.org/10.37547/tajet/Volume07Issue08-11

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Paradigms of Generative

Artificial Intelligence in

Automating Corporate

Code Writing

Ankit Agarwal
Staff Software Engineer, Door Dash Seattle, USA

Abstract: This paper examines the paradigm shifts in

leveraging generative artificial intelligence for

automated code generation at the enterprise level. It is

thus a critical review of prevailing prescriptions for

integrating LLM agents into the software development

lifecycles of modern enterprises, assessing their impact

on team productivity and the new risks they introduce

to confidentiality and licensing matters. The study would

therefore be most befitting at this stage, as fast-forward

steps are being made towards organizational adoption

of generative AI, from mere IDE autocompletion

features to more than a co-programmer but an

autonomous agent capable even of popping pull

requests sans humans in the loop, demanding new

forms of legibility both organizationally and technically.

The novelty of this research lies in its integration of

material from scholarly works, industry reports, and

case studies, along with lab pilot runs of Copilot and

actual DevSecOps implementations, to triangulate the

current state and future promise of this technology on a

practical business level. Key findings include: a reduction

of development cycle time by 50–60% without

compromising code quality thanks to the integration of

AI agents into IDEs and CI/CD pipelines; a shift of

developers’ roles toward architects and reviewers as

routine tasks are delegated to digital co‑programmers;

and a necessity for phased implementation that

accounts for private code protection and compliance

with licensing norms. Significant barriers identified

include model hallucination management, ensuring the

traceability of changes, and adapting organizational

culture and regulations to new roles such as prompt

designers and AI-agent curators. The article will be of

use to IT department heads, software architects,

https://doi.org/10.37547/tajet/Volume07Issue08-11
https://doi.org/10.37547/tajet/Volume07Issue08-11

The American Journal of Engineering and Technology 93 https://www.theamericanjournals.com/index.php/tajet

DevSecOps specialists, and researchers in the field of

artificial intelligence.

Keywords: generative artificial intelligence,

programming automation, corporate SDLC, AI agents,

DevSecOps

Introduction

Large‑scale language models for programming code

have existed for just over four years, yet their

development trajectory resembles an exponential

curve. While Codex-class models of 2021 could

complete functions by writing a few lines at a time, by

mid-2025, agent-based systems had already

decomposed tasks into subprocesses, executed tests,

and opened pull requests without human involvement.

A McKinsey experiment demonstrated that time spent

on typical operations—from writing new logic to

documentation—was nearly halved, with no

degradation in quality and even an increase in

developers’ subjective engagement (Deniz et al., 2023).

A randomized laboratory study, which utilized GitHub

Copilot, also recorded a 55.8% acceleration in HTTP

server creation, confirming the reproducibility of the

effect beyond consulting scenarios (Peng et al., 2023).

The high return on investment led to widespread

adoption quickly. A global McKinsey survey reports that

the share of companies using generative AI in at least

one business function increased from 33% in 2023 to

71% in 2024 (Singla et al., 2025). At the level of individual

corporations, the figures are even more striking:

Microsoft already generates approximately 35% of its

product code with AI systems, a metric directly linked to

accelerated release cycles (Reuters, 2025).

Consequently, this is not a gadget for the enthusiast

developer but a technology whose diffusion is

comparable to that of early cloud computing and mobile

applications.

Generative model integration is gradually encompassing

the entire software lifecycle. In DevSecOps pipelines, AI

agents undertake not only autocompletion but also test

generation, static analysis, vulnerable‑dependency

updates, and even regulatory compliance reporting.

Practice confirms that without automation, the

increasing tempo of releases—weekly and even daily

deployments—becomes unattainable ; ESG analysts

note that simply adding more people is no longer an

option, and that LLM‑based automation is regarded as

the key method to manage the growing volume of tasks

(Pariseau, 2024). Thus, the SDLC is being repositioned:

humans focus on requirements specification,

architecture validation, and critical-change review,

while the mundane tasks are handed over to digital

coprogrammers, opening up new reserves of speed,

quality, and flexibility for organizations.

Materials and Methodology

This paper reviews sixteen sources, comprising scholarly

articles, trade publications, research papers, and

technical documentation, in its attempt to trace the

influence path for generative artificial intelligence

within the mechanism of enterprise programming

automation. The theoretical background work has

encompassed studies regarding the implementation of

generative AI in software development. For example,

such works, like those of Deniz et al. (2023), exemplify

increased developer productivity because now it is a

reality that AI is being integrated into the programming

process and at the same time proving the effectiveness

of generative models in improving code quality as

validated by the results of the experiment with GitHub

Copilot (Peng et al., 2023).

It uses technological comparative analysis, a review of AI

applications in DevSecOps, and the path of

implementing AI within corporate systems. This paper

compares the leading code-creating AI assistants,

GitHub Copilot and JetBrains AI Assistant (GitHub Docs,

2025a; JetBrains, 2024). Maximum confidentiality is a

must-have when using AI in any corporate environment.

It mainly lies in sources that are not open, as well as any

information that falls under the sensitive category. This

reflects aspects such as options to train models fully

inside the corporate perimeter, focusing on approaches

towards data isolation as well as model development

methodologies (GitHub Docs, 2025b).

This includes a thorough analysis of rules and

regulations, including compliance with all licensing

conditions and the preservation of property rights.

Works that should be described in the risk associated

with using the code, to what extent it may be infringing

copyrights, and any other related lawful claims. This is

when real-time similarity with open-source codebases

becomes essential.

A review of industry use cases will best evaluate the

practical efficiency gained by integrating generative AI

into the development process. For example, a test run

at Goldman Sachs of virtual developer Devin explicitly

yields positive productivity results under the highest

security standards (Bort, 2025). This would go a long way

The American Journal of Engineering and Technology 94 https://www.theamericanjournals.com/index.php/tajet

to demonstrating practically how corporate processes

can be integrated with generative AI agents while

maintaining a similarly high standard of security for

confidential information.

Results and Discussion

The first paradigm of generative AI appears in the role of

the co‑programmer, that is, a model embedded directly

within the development environment and linked to the

corporate repository. GitHub Copilot, launched from VS

Code, Visual Studio, and other IDEs, generates multi-line

suggestions in real-time and enables dialogue with the

model in a chat window within the code context,

thereby avoiding context switching (GitHub Docs, 2022).

Similar features and functionalities are provided by

JetBrains AI Assistant, wherein all prompt logic,

suggestions, explanations, and even test generation

work at the abstraction level of the IDE. It can consider

file types, the history associated with them, and even

local changes not yet committed to Git (JetBrains, 2025).

The Artificial Intelligence Co-Programmer is thus

integrated into a developer interface rather than being

any standalone service, and therefore reduces cognitive

overhead while interacting with the model.

Deep integration encompasses not only the editor but

the entire change lifecycle. Copilot can automatically

generate a pull request summary, listing affected files

and key edits, which accelerates review of large code

batches and structures collective discussion. Within the

repository, a developer can assign an issue to

Copilot Agent: after analyzing project history, the agent

creates a branch, generates a fix, runs tests, and opens

a draft PR, leaving the human the role of final reviewer

(GitHub Docs, 2025b). Such automation progressively

elevates AI from a suggestion tool to an active process

participant, shifting pair programming into an

asynchronous, human-defined goal, agent-

implemented mode.

AI access to private code mandates strict confidentiality

guarantees. By default, GitHub does not use private

snippets, requests, or responses for global model

training, and corporate customers have the option of

complete telemetry isolation. Administrators can

manually designate paths that Copilot must ignore, such

as folders containing proprietary algorithms or keys.

Additionally, they can train a private model hosted

within the customer’s cloud perimeter; in this scenario,

data never leaves the enterprise boundary (GitHub

Docs, 2025a). An example of repository and path

settings in organizational configurations is presented in

Figure 1.

The American Journal of Engineering and Technology 95 https://www.theamericanjournals.com/index.php/tajet

Fig. 1. Repositories and Paths in Organization Settings (GitHub Docs, 2025a)

JetBrains facilitates linking local LLMs through Ollama or

LM Studio for firms choosing the offline method and

turns off every cloud call by using an Offline mode

switch, yet keeping most of the assistant functions

available (JetBrains, 2024). The code‑referencing

mechanism gives more transparency. If a generated

suggestion matches an open‑source snippet, Copilot

displays a direct link to the source, thereby simplifying

license auditing and minimizing the risk of plagiarism.

Owing to such close collaboration, everyday

programming practices are changing. In a controlled

experiment involving the creation of an HTTP server,

participants using Copilot completed the task 55.8%

faster than the control group, confirming that the

benefit extends beyond autocompletion to the

acceleration of problem‑solving (Peng et al., 2023). Also,

76% of developers say they use or plan to use AI tools in

their work. That number is 14 percentage points higher

than it was a year ago. Widespread adoption is making

model collaboration the new workflow norm by task

breakdown by developer level as seen in Figure 2 (Stack

Overflow, 2024).

The American Journal of Engineering and Technology 96 https://www.theamericanjournals.com/index.php/tajet

Fig. 2. AI tools in the development process

In contrast, the primary barriers concern the need to

verify output correctness and learn prompt formulation

(Liang et al., 2023). In other words, the AI co-

programmer does not replace the human actor but

requires a restructuring of skills, from pure manual input

to that of an editor, who defines direction, filters

suggestions, and integrates them into the project

architecture.

The next stage following pair programming was the

emergence of autonomous agent‑based systems to

which one can assign tasks in natural language and await

a completed pull request. By June 2025, Microsoft noted

that daily usage of such agents had more than doubled

compared to the previous year, indicating rapid market

maturation and demand for delegating routine code to

digital colleagues (Altchek, 2025).

The delegation mechanism is built upon standard

GitHub‑flow artifacts : a developer assigns an Issue to

the Copilot Agent, the agent creates an isolated branch,

implements changes, generates a series of commits, and

opens a draft pull request, after which it requests human

review. All operations — from branch creation to PR

description — are performed automatically, and the

agent’s activity log is stored alongside the code, ensuring

transparency and traceability (GitHub Docs, 2024).

Alternative agent solutions have also emerged. Devin,

from the startup Cognition, is positioned as a virtual

developer and is already undergoing a pilot at

Goldman Sachs, where plans call for the deployment of

hundreds, and subsequently thousands, of agent

instances under human supervision. The bank

anticipates that this hybrid model will enhance the

productivity of its 12,000 engineers without

necessitating staff replacements (Bort, 2025). For the

market, this signals that autonomous agents are moving

beyond startup experimentation into formal corporate

processes with stringent security and compliance

requirements.

The expanded role of agents inevitably alters labor

organization. The annual Work Trend Index report

shows that 67% of executives are already familiar with

the agent concept, whereas among rank-and-file

employees, the figure reaches only 40%. Furthermore,

28% of managers plan to hire specialists for managing AI

colleagues within the next 12–18 months, thus creating

a new role of agent boss, responsible for task

assignment, quality control, and training of the digital

team (Microsoft, 2025).

The American Journal of Engineering and Technology 97 https://www.theamericanjournals.com/index.php/tajet

Fig. 3. Comparative Indicators of Agent Mindset in Leaders and Employees (Microsoft, 2025)

Thus, the agent paradigm shifts the developer’s focus

from writing code to providing architectural guidance:

the human formulates the objective and evaluates the

outcome, while execution is delegated to AI. The broad

integration of Copilot Agent and the wager on Devin

shows that enterprise SDLCs are quickly shifting towards

setups where self-running help­ers do much of the

detailed work in building things, with people mainly

watching them as if they were new team members.

The quick take-up of co-writers has made old code

problems very clear. For many years, business code has

been written in old languages like COBOL and PL/I, as

well as in small-scale scripting languages like Ansible.

General‑purpose AI models proved insufficient for these

stacks, leading to the emergence of domain‑specific

assistants. These systems are trained on specialized

datasets and integrated into development

environments where such code resides. For example,

some solutions can automatically analyze legacy COBOL

or PL/I programs and generate fixes without disrupting

compatibility with critical transactional systems. In

infrastructure scenarios, Ansible assistants can generate

or explain playbooks based on an internal catalog of

vetted solutions, thereby improving reproducibility and

deployment efficiency. Recently, such systems have

added support for low‑level utilities, closing critical gaps

in mainframe workflows.

The advent of specialized solutions also obliged vendors

to provide legal guarantees. Some tools include

real‑time open‑source similarity checks. This prevents

the use of unauthorized code fragments and helps

ensure license compliance. Moreover, in the event of

legal claims, vendors assume responsibility for

protecting client interests, which is a critical factor for

organizations working with patents or sensitive code.

They are particularly valuable in sectors where

regulation and compliance are significant factors. In this

way, by modernizing legacy systems with the help of

generative AI assistants, the speed can be achieved

without compromising the regulatory adherence of the

process. For example, banks use domain‑specific

assistants to refactor and improve code that has not lost

its quality even though it is outdated. In some cases,

using such assistants has led to a tremendous direct time

and resource savings by converting legacy programs into

formats that are more readable and ready for further

redevelopment.

Aside from legacy modernization, AI assistants have

started tweaking baseline algorithms. Take, for instance,

the application of reinforcement learning in developing

more effective algorithms. A deep learning-based agent

identifies sorting approaches that outperform existing

ones, and these are now incorporated into standard

libraries. This goes a long way to proving that AI is not

only capable of mimicking the best solution a human can

offer, but also surpasses it by finding new solutions that

were previously beyond the purview of human intuition.

In this way, generative AI becomes not just a tool to

automate tasks; it is a potent tool for upgrading core

parts and algorithms inside enterprise development.

The growing intricacies of generative model use have led

The American Journal of Engineering and Technology 98 https://www.theamericanjournals.com/index.php/tajet

large enterprises to implement their language models

within a secure boundary. Leaving the public cloud

fulfills two primary needs: managing source data and

setting detailed access policies. An on-site stack works

with business authentication, records every action, and

limits access to specific repositories or even parts of

code, making it much easier to follow inside rules and

legal requirements.

 Moreover, open models are fully customizable;

enterprises can fine-tune them in their repository with

no data sharing with third parties, making suggestions

even more relevant than those from generic cloud

services.

The decision of using a local model or SaaS does not fall

in the quality domain but rather is an offset between

flexibility and operational overhead. The Cloud will

remove scaling concerns and infrastructure

maintenance at the user site, while ensuring access to

the most up-to-date version that contains all features,

such as global code search. Conversely, on-premises

deployment enables seamless integration with existing

version-control workflows, enforces corporate two-

factor authentication, and ensures that no network

traffic leaves the perimeter. In practice, many

organizations adopt a hybrid approach, hosting sensitive

projects on internal clusters while keeping less critical

tasks in the cloud.

Another shift has occurred in the engineering delivery

chain: generative agents are now invoked directly from

CI/CD pipelines. After the initial commit, they

automatically generate unit tests, run linters and

dependency static analysis, and, upon detecting a

vulnerability, propose a patch or library update.

Consequently, the developer sees not just a report of an

issue but a ready‑to‑merge fix in a separate branch. This

approach elevates the 'shift left' principle by delegating

tasks downward, fully automating routine quality

control and involving humans only in the final approval

of changes.

The end product is fewer manual interventions from

idea to go-live. The agent's code should be checked,

raised to standard, and then packaged as a release

artifact, complete with logs for every single action taken,

ensuring transparency and accountability remain intact.

The developer stays in charge - leading architect and

editor, but does not waste time on repetitive checks or

minor fixes; instead, focuses on feature design together

with risk assessment.

The massive rollout of generative models underscores

not only opportunities but vulnerabilities in enterprise

development. As agents gain more access to

repositories, build pipelines, and incident management

systems, the risk path for secrets sprawl increases. In

such an environment, where secret scanners and DLP

filters are most effective, the human factor will always

be a weakness; a developer may still paste a token into

a prompt for the model or approve code with a

password embedded within. Therefore, security

architecture centers on strict, context-based policies

and the automatic redaction of sensitive data before it

reaches the model.

Legally, the primary challenge concerns the provenance

of generated code. Even with a locally deployed model,

reproducing a licensed fragment that cannot be

distributed under a different license remains possible.

Responsibility boundaries are blurred: the developer

acts as editor, the vendor as model provider, and the

enterprise as ultimate rights holder. Real-time similarity

checks, together with indemnity clauses, have proven to

be the most effective way of managing this issue;

however, in the absence of an internal audit process,

they also remain largely a matter of declaration. The

technical quality of output needs consideration.

Hallucinations decrease when the model is fine-tuned

on the project code, but do not entirely disappear. An

adequate safeguard is test auto-generation and running

static analysis in the same CI pipeline where the agent

makes changes. In this context, the role of review shifts

from detecting minor errors to evaluating the integrity

of the solution and the correctness of its assumptions,

which raises the bar for reviewer professionalism.

Finally, the deployment of AI changes team social

dynamics. New roles emerge—such as prompt designer,

agent curator, and automation architect—and old forms

of micromanagement fade away. If organizational

culture fails to adapt, developers may perceive the

agent as a threat or yet another source of bureaucracy,

leading to covert resistance. Transparent

communication about objectives, along with a precise

distribution of responsibility—humans approve

outcomes, while agents handle routine tasks—helps

mitigate this risk.

Considering these risks, implementation should proceed

in stages. First, pilot a narrow scenario, such as the auto-

generation of tests in an open repository. After that, let

the model perform more sensitive tasks and only give it

The American Journal of Engineering and Technology 99 https://www.theamericanjournals.com/index.php/tajet

access to the necessary code once the steps have been

refined. This kind of step-by-step approach helps

identify organizational and technical mistakes early on

without interrupting the main flow of the release.

In choosing a model, do not fall for the seduction of the

largest architecture. Practice has proven that a relatively

moderately sized but well fine‑tuned version most times

offers more precise suggestions and requires fewer

computational resources. Effectiveness should be

measured not by abstract benchmark scores but by

reductions in development cycle time, defect counts,

and the proportion of code automatically covered by

tests. These metrics should be tracked in the same

analytics system that stores standard DevOps indicators.

The final element is systematic personnel training.

Teams adopt new processes more quickly when training

is integrated into the work rhythm: short, practical

sessions analyzing real-world problems, basic literacy in

prompt formulation, and clear instructions for handling

model incidents. Concurrently, regulations are updated

to define what constitutes sufficient review, how to

document an agent’s solution, and who issues the final

legal decision. This synthesis of practices,

measurements, and governance transforms generative

AI from merely piloting into an integral part of the

pipeline, thereby sustaining low risks associated with it.

It highlights how enterprise coding paradigms using

generative AI have evolved from producing mere code

completions to full-blown co-programmers and

autonomous agents capable of undertaking most

clerical functions, relegating humans to an architect and

final reviewer role while immensely quickening release

cycles and improving quality but increasing demands for

secrecy, licensing, and training such that phased

implementations, hybrid architectures and structured

monitoring become preconditions for success that

inform subsequent discussions.

Conclusion

This review demonstrates how the lifecycle of corporate

software development is undergoing a decisive shift as

generative AI evolves from line-level autocompletion to

fully autonomous agents capable of opening pull

requests without any human intervention. Across

sixteen scholarly and industrial sources, pilot data and

field deployments in actual use consistently record a

fifty-to-sixty percent drop in development cycle time. At

the same time, by subjective and objective measures,

code quality remains steady or better. As routine

implementation work migrates to AI assistants

embedded in IDEs and CI / CD pipelines, the human

developer’s contribution shifts toward high-level

architecture, requirements definition, and critical

review, thereby redefining professional roles and

prompting the emergence of positions such as prompt

designer, agent curator, and automation architect.

The findings also reveal that the advance of generative

agents introduces a new stratum of risk.

Organizationally, cultural adaptation is required

because, without explicit goal orientation and

transparent new boundaries of responsibility, teams

tend to find ways to work around or misuse new AI tools,

thus defeating intended productivity gains.

Effective adoption therefore hinges on a phased

strategy: begin with narrow pilots, such as automated

test generation in low-risk repositories, iteratively

broaden the scope while refining governance, and

measure success through concrete DevOps metrics,

including cycle time, defect rates, and automated test

coverage. Hybrid deployment architectures offer both

perimeter control and the scalability of cloud

computing. Staff training, when made continuous as

part of daily work, becomes process assimilation rather

than just learning. In aggregate, these tools will move

Generative AI from a laboratory curiosity to being piped

as a governed element of the enterprise pipeline.

In triangulation with controlled experiments, industry

surveys, and real-world case studies, this paper validates

that generative AI presently produces significant

business value in corporate code writing when

implemented deliberately, metrics-driven, and

accompanied by enhanced security and compliance

frameworks.

References

1. Altchek, A. (2025, May 19). Microsoft’s big event

was all about the explosion of AI agents. Business

Insider.

https://www.businessinsider.com/microsoft-build-

keynote-2025-ai-agent-use-doubled-2025-5

2. Bort, J. (2025). Goldman Sachs is testing viral AI

agent Devin as a new employee. TechCrunch.

https://techcrunch.com/2025/07/11/goldman-

sachs-is-testing-viral-ai-agent-devin-as-a-new-

employee/

3. Deniz, B., Gnanasambandam, C., Harrysson, M.,

Hussin, A., & Srivastava, S. (2023, June 27). Unleash

https://www.businessinsider.com/microsoft-build-keynote-2025-ai-agent-use-doubled-2025-5
https://www.businessinsider.com/microsoft-build-keynote-2025-ai-agent-use-doubled-2025-5
https://www.businessinsider.com/microsoft-build-keynote-2025-ai-agent-use-doubled-2025-5
https://www.businessinsider.com/microsoft-build-keynote-2025-ai-agent-use-doubled-2025-5
https://techcrunch.com/2025/07/11/goldman-sachs-is-testing-viral-ai-agent-devin-as-a-new-employee/
https://techcrunch.com/2025/07/11/goldman-sachs-is-testing-viral-ai-agent-devin-as-a-new-employee/
https://techcrunch.com/2025/07/11/goldman-sachs-is-testing-viral-ai-agent-devin-as-a-new-employee/
https://techcrunch.com/2025/07/11/goldman-sachs-is-testing-viral-ai-agent-devin-as-a-new-employee/
https://techcrunch.com/2025/07/11/goldman-sachs-is-testing-viral-ai-agent-devin-as-a-new-employee/

The American Journal of Engineering and Technology 100 https://www.theamericanjournals.com/index.php/tajet

developer productivity with generative AI. McKinsey

& Company.

https://www.mckinsey.com/capabilities/mckinsey-

digital/our-insights/unleashing-developer-

productivity-with-generative-ai

4. GitHub Docs. (2022). Getting code suggestions in

your IDE with GitHub Copilot. GitHub Docs.

https://docs.github.com/en/copilot/how-

tos/completions/getting-code-suggestions-in-your-

ide-with-github-copilot

5. GitHub Docs. (2024). About the Copilot coding

agent. GitHub Docs.

https://docs.github.com/en/copilot/concepts/abou

t-copilot-coding-agent

6. GitHub Docs. (2025a). Excluding content from

GitHub Copilot. GitHub Docs.

https://docs.github.com/en/copilot/how-

tos/content-exclusion/excluding-content-from-

github-copilot

7. GitHub Docs. (2025b). GitHub Copilot features.

GitHub Docs.

https://docs.github.com/en/copilot/get-

started/github-copilot-features

8. JetBrains. (2024). Models. Jet Brains.

https://www.jetbrains.com/help/ai-

assistant/settings-reference-models.html

9. JetBrains. (2025). AI chat. Jet Brains.

https://www.jetbrains.com/help/ai-assistant/ai-

chat.html

10. Liang, J. T., Yang, C., & Myers, B. A. (2023).

Understanding the Usability of AI Programming

Assistants. Arxiv.

https://doi.org/10.48550/arxiv.2303.17125

11. Microsoft. (2025). 2025: The Year the Frontier Firm

Is Born. Microsoft. https://www.microsoft.com/en-

us/worklab/work-trend-index/2025-the-year-the-

frontier-firm-is-born

12. Pariseau, B. (2024). DevSecOps pros prep for GenAI

upheavals in 2024. Tech Target.

https://www.techtarget.com/searchitoperations/n

ews/366563975/DevSecOps-pros-prep-for-GenAI-

upheavals-in-2024

13. Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M.

(2023). The Impact of AI on Developer Productivity:

Evidence from GitHub Copilot. Arxive Software

Engineering.

https://doi.org/10.48550/arxiv.2302.06590

14. Reuters. (2025, July 9). Microsoft racks up over $500

million in AI savings while slashing jobs. Reuters.

https://www.reuters.com/business/microsoft-

racks-up-over-500-million-ai-savings-while-

slashing-jobs-bloomberg-2025-07-09/

15. Singla, A., Sukharevsky, A., Yee, L., Chui, M., & Hall,

B. (2025, March 12). The state of AI: How

organizations are rewiring to capture value.

McKinsey & Company.

https://www.mckinsey.com/capabilities/quantumb

lack/our-insights/the-state-of-ai

16. Stack Overflow. (2024). 2024 Stack Overflow

Developer Survey. Stack Overflow.

https://survey.stackoverflow.co/2024/ai

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
https://docs.github.com/en/copilot/how-tos/completions/getting-code-suggestions-in-your-ide-with-github-copilot
https://docs.github.com/en/copilot/how-tos/completions/getting-code-suggestions-in-your-ide-with-github-copilot
https://docs.github.com/en/copilot/how-tos/completions/getting-code-suggestions-in-your-ide-with-github-copilot
https://docs.github.com/en/copilot/how-tos/completions/getting-code-suggestions-in-your-ide-with-github-copilot
https://docs.github.com/en/copilot/how-tos/completions/getting-code-suggestions-in-your-ide-with-github-copilot
https://docs.github.com/en/copilot/concepts/about-copilot-coding-agent
https://docs.github.com/en/copilot/concepts/about-copilot-coding-agent
https://docs.github.com/en/copilot/concepts/about-copilot-coding-agent
https://docs.github.com/en/copilot/concepts/about-copilot-coding-agent
https://docs.github.com/en/copilot/how-tos/content-exclusion/excluding-content-from-github-copilot
https://docs.github.com/en/copilot/how-tos/content-exclusion/excluding-content-from-github-copilot
https://docs.github.com/en/copilot/how-tos/content-exclusion/excluding-content-from-github-copilot
https://docs.github.com/en/copilot/how-tos/content-exclusion/excluding-content-from-github-copilot
https://docs.github.com/en/copilot/how-tos/content-exclusion/excluding-content-from-github-copilot
https://docs.github.com/en/copilot/get-started/github-copilot-features
https://docs.github.com/en/copilot/get-started/github-copilot-features
https://docs.github.com/en/copilot/get-started/github-copilot-features
https://docs.github.com/en/copilot/get-started/github-copilot-features
https://www.jetbrains.com/help/ai-assistant/settings-reference-models.html
https://www.jetbrains.com/help/ai-assistant/settings-reference-models.html
https://www.jetbrains.com/help/ai-assistant/settings-reference-models.html
https://www.jetbrains.com/help/ai-assistant/settings-reference-models.html
https://www.jetbrains.com/help/ai-assistant/ai-chat.html
https://www.jetbrains.com/help/ai-assistant/ai-chat.html
https://www.jetbrains.com/help/ai-assistant/ai-chat.html
https://www.jetbrains.com/help/ai-assistant/ai-chat.html
https://doi.org/10.48550/arxiv.2303.17125
https://doi.org/10.48550/arxiv.2303.17125
https://doi.org/10.48550/arxiv.2303.17125
https://www.microsoft.com/en-us/worklab/work-trend-index/2025-the-year-the-frontier-firm-is-born
https://www.microsoft.com/en-us/worklab/work-trend-index/2025-the-year-the-frontier-firm-is-born
https://www.microsoft.com/en-us/worklab/work-trend-index/2025-the-year-the-frontier-firm-is-born
https://www.microsoft.com/en-us/worklab/work-trend-index/2025-the-year-the-frontier-firm-is-born
https://www.techtarget.com/searchitoperations/news/366563975/DevSecOps-pros-prep-for-GenAI-upheavals-in-2024
https://www.techtarget.com/searchitoperations/news/366563975/DevSecOps-pros-prep-for-GenAI-upheavals-in-2024
https://www.techtarget.com/searchitoperations/news/366563975/DevSecOps-pros-prep-for-GenAI-upheavals-in-2024
https://www.techtarget.com/searchitoperations/news/366563975/DevSecOps-pros-prep-for-GenAI-upheavals-in-2024
https://www.techtarget.com/searchitoperations/news/366563975/DevSecOps-pros-prep-for-GenAI-upheavals-in-2024
https://doi.org/10.48550/arxiv.2302.06590
https://doi.org/10.48550/arxiv.2302.06590
https://doi.org/10.48550/arxiv.2302.06590
https://www.reuters.com/business/microsoft-racks-up-over-500-million-ai-savings-while-slashing-jobs-bloomberg-2025-07-09/
https://www.reuters.com/business/microsoft-racks-up-over-500-million-ai-savings-while-slashing-jobs-bloomberg-2025-07-09/
https://www.reuters.com/business/microsoft-racks-up-over-500-million-ai-savings-while-slashing-jobs-bloomberg-2025-07-09/
https://www.reuters.com/business/microsoft-racks-up-over-500-million-ai-savings-while-slashing-jobs-bloomberg-2025-07-09/
https://www.reuters.com/business/microsoft-racks-up-over-500-million-ai-savings-while-slashing-jobs-bloomberg-2025-07-09/
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://survey.stackoverflow.co/2024/ai
https://survey.stackoverflow.co/2024/ai
https://survey.stackoverflow.co/2024/ai

