
The American Journal of Engineering and Technology 71 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 71-77

DOI 10.37547/tajet/Volume07Issue08-08

OPEN ACCESS

SUBMITED 17 July 2025

ACCEPTED 28 July 2025

PUBLISHED 12 August 2025

VOLUME Vol.07 Issue 08 2025

CITATION

Vladyslav Vodopianov. (2025). Real-time Data Streaming using Kafka,
Kinesis, and RabbitMQ. The American Journal of Engineering and
Technology, 7(8), 71–77.
https://doi.org/10.37547/tajet/Volume07Issue08-08

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Real-time Data Streaming

using Kafka, Kinesis, and

RabbitMQ

Vladyslav Vodopianov
Senior Software Engineer, Wirex Kyiv, Ukraine

Abstract: In the present work a comprehensive

comparative analysis of the three leading platforms for

organizing message streaming — Apache Kafka, Amazon

Kinesis and RabbitMQ — is performed with the aim of

identifying their architectural features, operational

strengths and limitations under conditions of peak loads

and stringent latency requirements. The study relies on

a comprehensive methodological approach, including a

systematic review of current scientific publications, the

conduct of comparative performance measurements in

laboratory settings and the synthesis of practical case

studies of integrating the systems under consideration

into real IT landscapes. The obtained results

demonstrate that a reasoned choice of platform for

stream processing depends on a multitude of

interrelated factors: the volume of messages processed,

the required throughput metrics and maximum

response time, the preferred deployment model (on-

premises solution, cloud service or their hybrid), the

capabilities for seamless integration with existing

services and infrastructure, as well as the project’s

budgetary constraints. On the basis of the conducted

analysis a unified decision-making methodology is

proposed for selecting tools for streaming data

processing, adapted to the tasks of data engineers,

distributed systems architects and researchers of high-

performance information platforms. The material is of

practical interest to specialists designing fault-tolerant

and scalable distributed message queues, as well as to

experts in real-time analytics and cloud solution

developers seeking to gain a deeper understanding of

the architectural schemes and methods for optimizing

throughput applied in Kafka, Kinesis and RabbitMQ. In

addition, the research results may be useful to scientists

in the field of distributed computing and the Internet of

Things, focusing on the theoretical foundations and

https://doi.org/10.37547/tajet/Volume07Issue08-08
https://doi.org/10.37547/tajet/Volume07Issue08-08

The American Journal of Engineering and Technology 72 https://www.theamericanjournals.com/index.php/tajet

practical aspects of constructing reliable event-data

pipelines.

Keywords: streaming data processing, Apache Kafka,

Amazon Kinesis, RabbitMQ, big data, distributed

systems, low latency, high bandwidth, data architecture,

platform comparison.

Introduction

Modern real-time data streaming technologies have

fundamentally transformed methodologies for data

collection, processing, and analytics, shifting

organizations from traditional batch processing to

architectures of continuous monitoring and immediate

decision-making based on operational data. The rapid

growth in generated data volumes—particularly in areas

such as the Internet of Things (IoT), high-frequency

financial transactions, social media activity, and cloud-

based online services—has sustained strong demand for

end-to-end analytics solutions. According to [1], the

global streaming analytics market is projected to grow

from USD 29.53 billion in 2024 to USD 125.85 billion by

2029, representing a compound annual growth rate of

33.6 percent over the forecast period [1].

However, a scientific-methodological gap exists in the

comprehensive comparative analysis of leading

streaming platforms—Apache Kafka, Amazon Kinesis,

and RabbitMQ—taking into account their latest

functional enhancements, scalability, and performance

metrics in hybrid and multi-cloud environments, as well

as the specifics of integration with modern data

processing pipelines (data lakes and data warehouses).

The objective of the study is to analyze the

characteristics of real-time data streaming using Kafka,

Kinesis, and RabbitMQ.

The scientific novelty resides in outlining the criteria for

selecting streaming infrastructure components, which

encompass not only key technical specifications but also

operational complexity and total cost of ownership.

The study hypothesizes that the most rational choice of

platform is determined by the results of a multi-criteria

analysis of the specific project requirements and the

characteristics of its operational environment.

Materials and methods

Literature review reveals that researchers address real-

time challenges in streaming data from multiple

perspectives. In the Research and Markets report [1], a

quantitative forecasting methodology is applied, with

market segmentation by technology—Complex Event

Processing (CEP), Event Stream Processing (ESP), and

data visualization—as well as by application domain,

including fraud detection, asset management, and risk

management. The authors construct long-term

development scenarios through 2029, relying on

deployment statistics and growth rates in key sectors.

In the empirical research section, emphasis is placed on

performance measurement and throughput

optimization.Amilineni K., Krishnan R., Goyal S., Rao S.

V. N.[2] employ test streams with varying packet sizes

and configurable batching parameters to identify

optimal settings for minimizing latency and maximizing

throughput in real-world applications. Padmanaban K.,

Balaji R. V., Baskar S., Sharma V. [3] focus on tuning

Apache Kafka clusters—adjusting the number of

partitions and replication factors—and demonstrate

how these adjustments influence latency and event

propagation speed when scaling to thousands of

messages per second. Velickovska M., Gusev M. [4]

present a case study of streaming electrocardiogram

data via AWS Kinesis and Firehose, evaluating latency,

packet loss, and infrastructure load. Bux R., Shenoy G. S.

[6] compare RESTful services with RabbitMQ in a

microservices architecture, showing that the message

broker maintains stable throughput under peak loads

but exhibits higher latency for small messages. The

official Confluent guide “Apache Kafka® Performance”

[10] provides recommendations for tuning the Java

Virtual Machine, network buffers, and producer and

consumer settings.

Comparative reviews by Vyas S., Jain P., Sharma S., Soni

P. [7] and by Dingorkar S., Singh S., Ghosh S., Roy R.[9]

provide a comprehensive overview of the data-

transmission ecosystem. George J. [5] outlines the

design of a scalable AWS pipeline using Amazon Kinesis

for ingestion, AWS Lambda for processing, Amazon S3

and Redshift for storage, and Amazon QuickSight for

visualization. Chen F., Yan Z., Gu L. [8] propose a low-

latency infrastructure based on Sangfor, combining

Apache Kafka with zero-copy and RDMA-optimized

network stacks, and integrating Apache Storm and Spark

Streaming for hybrid processing. The Microsoft [11] and

AWS [12] technical guides offer recommendations on

selecting streaming platforms and message brokers in

serverless environments, emphasizing specific use cases

such as log management, real-time analytics and ETL.

These evaluations reveal divergent assessments of

The American Journal of Engineering and Technology 73 https://www.theamericanjournals.com/index.php/tajet

latency: some researchers assert Kafka’s superiority

under heavy loads [3, 10], whereas others report low

end-to-end latency for RabbitMQ with small message

sizes [6]. Findings regarding the Kappa architecture for

IoT are similarly contradictory: Dingorkar S., Singh S.,

Ghosh S. and Roy R. [9] endorse it, while Chen F., Yan Z.

and Gu L. [8] underline the merits of hybrid approaches.

Security and real-time encryption, resilience to network

failures and split-brain scenarios in distributed brokers

remain underexplored. Likewise, mechanisms for

automatic scaling in multi-cluster and multi-cloud

deployments, and the integration of advanced complex-

event-processing (CEP) engines with machine-learning

models for adaptive analytics, are insufficiently

developed.

Results and discussions

The analysis of Apache Kafka, Amazon Kinesis, and

RabbitMQ reveals fundamental differences in their

architectures, delivery models, performance

characteristics, and intended use cases. Each system

was engineered for a distinct purpose: Kafka to handle

event streams at LinkedIn, Kinesis as AWS’s cloud-based

streaming analytics platform, and RabbitMQ as a reliable

broker conforming to the AMQP standard.

Apache Kafka is based on an immutable commit log:

events are appended sequentially to topics partitioned

across the cluster, enabling linear scalability through

parallel processing [2, 3]. Messages are stored on disk

with configurable retention policies, and consumer

offsets permit arbitrary navigation through the event

history. Optimizations for sequential write and read

operations deliver throughput of up to millions of

messages per second per cluster, and long-term storage

of streaming data extends Kafka’s functionality beyond

simple message delivery [7]. Partition replication across

brokers ensures fault tolerance; however, cluster

configuration and ZooKeeper management (though

simplified in recent releases) demand operational

expertise [9].

Amazon Kinesis is a fully managed AWS service for

ingesting and processing data streams. It comprises

Kinesis Data Streams and Kinesis Data Firehose. Data

Streams provides low latency and automatic scaling via

sharding: each shard offers a dedicated throughput unit,

and adjusting the shard count enables dynamic

adaptation to workload fluctuations [4]. Deep

integration with Lambda, S3, DynamoDB, Redshift, and

other AWS services simplifies the construction of end-

to-end analytics pipelines [5]. Data Firehose automates

event delivery and transformation into target storage

systems and analytics tools, freeing developers from

custom ETL coding. Its primary limitation is the

dependency on the AWS ecosystem, which may be

unsuitable for hybrid or multi-cloud architectures.

RabbitMQ implements the AMQP standard and

supports MQTT, STOMP, and other protocols, focusing

on flexible routing through exchanges and queues [6].

Bindings between exchanges and queues enable the

configuration of complex message-delivery topologies, a

critical capability for microservices and IoT scenarios.

Delivery guarantees include at-most-once, at-least-

once, and exactly-once, with optional message

persistence. Under extreme workloads, however,

RabbitMQ’s throughput generally falls short of Kafka’s,

and its storage model does not provide a long-lived

streaming log [8].

Figure 1 schematically shows the basic components of

the three systems.

The American Journal of Engineering and Technology 74 https://www.theamericanjournals.com/index.php/tajet

Figure 1 - Architectures of Apache Kafka, Amazon Kinesis Data Streams and RabbitMQ [2, 4, 6].

In the comparative analysis of distributed messaging

systems, the key metrics are throughput and latency.

Since these parameters vary according to hardware

platform characteristics, software configuration

settings, and workload profile, aggregated results of

empirical studies [2, 8, 10] are often employed. For

single-message transmission, Apache Kafka in typical

industrial scenarios is capable of processing a high

number of messages per second on a scalable cluster

while maintaining minimal delay.

The AWS Kinesis Data Streams architecture exhibits

comparable performance: by elastically increasing the

number of shards, it achieves stable throughput with

end-to-end latency on the order of single-digit

milliseconds [4, 5].

RabbitMQ, when optimally configured and applied to

workflows involving numerous small messages and

complex routing, also delivers high message-processing

rates with low latency; however, its horizontal scalability

under extreme peak loads is inferior to that of Kafka [6].

Table 1 summarizes the key characteristics of the

platforms under consideration.

Table 1 - Comparative characteristics of Apache Kafka, Amazon Kinesis and RabbitMQ [2, 5, 6, 7, 11, 12]).

Characteristic Apache Kafka Amazon Kinesis

Data Streams

RabbitMQ

Core paradigm Distributed commit log Shard-based data

streams

Message broker (AMQP,

MQTT, STOMP)

Throughput Very high High; horizontally

scalable

Moderate to high

Latency Low Low Very low in specific

scenarios

The American Journal of Engineering and Technology 75 https://www.theamericanjournals.com/index.php/tajet

Message

retention

Long-term, configurable Up to 7 days

(extendable to 365

days)

Short-term by default;

persistence optional

Deployment

model

On-premises, cloud,

hybrid

AWS managed

service

On-premises, cloud, hybrid

Operational

complexity

Moderate to high

(requires expertise)

Low (managed

service)

Moderate

Scalability Horizontal (adding

brokers or partitions)

Horizontal (adding

or merging shards)

Horizontal (clustering) and

vertical

Delivery

guarantees

At least once; exactly

once (since v0.11)

At least once At most once; at least once;

exactly once with

transactions

Ecosystem /

integrations

Extensive (Spark, Flink,

Storm, connectors)

Deep integration

with AWS services

Broad client support;

pluggable architecture

Primary use cases Big-data analytics, event

sourcing, log

aggregation, streaming

ETL

Real-time

applications on

AWS, IoT, mobile

data

Microservices, task queues,

notifications, IoT

Cost model Open-source software

(infrastructure and

support costs)

Pay-as-you-go

pricing (throughput

and storage)

Open-source software

(infrastructure and support

costs); commercial editions

available

Next, table 2 will describe the advantages, disadvantages, and trends of using Apache Kafka, Amazon Kinesis, and

RabbitMQ in real-time data streaming.

Table 2 - Advantages, disadvantages, and trends of using Apache Kafka, Amazon Kinesis, and RabbitMQ in real-

time data streaming [2, 5, 7].

Technology Advantages Disadvantages Future trends

Apache

Kafka

- High bandwidth and low

latency- Horizontal scaling

(sharding via topic-partition)

- Delivery guarantees (at least-

once, exactly-once)

- - Large ecosystem (Kafka

Streams, hsqldb, Connect)

- The complexity of the

initial setup and operation

- High resource

requirements (disk I/O,

memory)

- Difficulties with security

and integration into

corporate networks

- The need to manage your

own cluster

- Transition to cloud-based

(Managed Kafka: Confluent

Cloud, AWS MSK)

- Active development of

streamSQL (ksqlDB) and

integration with ML/AI

- Unification of event-sourcing

and CQRS-patterns

- Improvement of Operator

approaches for Kubernetes

The American Journal of Engineering and Technology 76 https://www.theamericanjournals.com/index.php/tajet

Amazon

Kinesis

- Fully managed AWS service-

Auto-scaling and high

availability out-of-the-box

- Deep integration with the AWS

ecosystem (Lambda, S3,

Redshift)

- AWS IAM-level security and

data encryption

- Vendor lock-in (AWS only)

- Cost increases with data

volume and retention

- Bandwidth limits per

shard (single shard)

- Less flexibility for non-

standard scenarios

- Development of enhanced

fanout and HTTP/2 connections

to reduce delays- Tight

integration with ML services

(Salemaker, Rekognition)

- The emergence of Kinesis Data

Streams for IoT and edge cases

- Automatic scaling of shards

based on load

RabbitMQ - Easy to install and configure

- Support for multiple protocols

(AMQP, MQTT, STOMP)

- Flexible routing and reliable

queuing mechanism

- Lightweight and intuitive web

UI for administration

- Limited horizontal

scalability (clustering is

more difficult)

- Delays increase with very

large volumes of messages

- There is no native support

for stream-processing

- Operator development for

Kubernetes (RabbitMQ Operator)

- Expansion of cloud-based

managed offerings (CloudAMQP,

AWS MQ)

- - Integration with stream-

processing frameworks (Flunk,

Aka Streams)

Thus, in the context of enterprises deeply integrated

into the AWS cloud ecosystem, Kinesis is often regarded

as the preferred solution due to its tight integration with

all AWS services, simplified cluster management, and

built-in scalability and monitoring mechanisms. In

contrast, organizations prioritizing maximum autonomy

and avoidance of vendor lock-in frequently opt to deploy

Kafka or RabbitMQ directly within their own data

centers or on virtual infrastructure in a cloud

environment of their choice.

Conclusion

The comparative evaluation indicates that Apache Kafka

outperforms alternative messaging systems when

tasked with ingesting and processing massive,

continuous data flows: it achieves sub-millisecond end-

to-end latencies while preserving messages indefinitely,

a combination that has cemented its role in large-scale

analytics and event-sourcing frameworks. In contrast,

Amazon Kinesis—leveraging its native integration within

the AWS ecosystem—provides frictionless, fully

managed scalability and provisioning, making it

especially attractive for enterprises already committed

to Amazon’s cloud platform and seeking rapid,

infrastructure-light deployment. Meanwhile, RabbitMQ

retains its competitive edge through a highly adaptable

routing topology and support for a variety of messaging

patterns; this versatility proves particularly useful in

microservice environments and distributed work-queue

scenarios where throughput requirements fall below the

scale that would justify a Kafka-based solution.

Looking forward, it is imperative to investigate

composite architectures that harness the

complementary advantages of these platforms—such as

coupling Kafka’s high-throughput buffering with

Kinesis’s serverless elasticity or RabbitMQ’s

sophisticated exchange mechanisms. Additionally, a

rigorous assessment of their performance and cost-

efficiency within emerging paradigms like serverless

stream processing and geographically distributed (edge)

computing environments will provide critical guidance

for designing resilient, low-latency data pipelines in

heterogeneous deployment contexts.

References

1. Research and Markets. (n.d.). Streaming analytics

market by technology (real-time data processing,

complex event processing, data visualization &

reporting, event stream processing), application

(fraud detection, predictive asset management, risk

management) - Global forecast to 2029.

https://www.researchandmarkets.com/report/stre

aming-analytics (accessed June 6, 2025)

2. Amilineni, K., Krishnan, R., Goyal, S., & Rao, S. V. N.

(2022). Optimizing data stream throughput for real-

time applications. In S. K. Bhoi, S. Patnaik, S. P.

Mohanty, & B. K. Tripathy (Eds.), International

conference on big data intelligence and computing,

410-417.

https://www.researchandmarkets.com/report/streaming-analytics
https://www.researchandmarkets.com/report/streaming-analytics

The American Journal of Engineering and Technology 77 https://www.theamericanjournals.com/index.php/tajet

3. Padmanaban, K., Balaji, R. V., Baskar, S., & Sharma,

V. (2024). Apache Kafka on big data event streaming

for enhanced data flows. In 2024 8th International

Conference on I-SMAC (IoT in Social, Mobile,

Analytics and Cloud)(I-SMAC), 977-983.

https://doi.org/10.1109/I-

SMAC61858.2024.10714884

4. Velickovska, M., & Gusev, M. (2022). Comparing

AWS streaming services: A use case on ECG data

streams. In 2022 45th Jubilee International

Convention on Information, Communication and

Electronic Technology (MIPRO),1387-1392.

https://doi.org/10.23919/MIPRO55190.2022.98033

59

5. George, J. (2024). Build a realtime data pipeline:

Scalable application data analytics on Amazon Web

Services (AWS). SSRN, 1-9.

http://dx.doi.org/10.2139/ssrn.4963387

6. Bux, R., & Shenoy, G. S. (2024). Performance analysis

of RESTful web services and RabbitMQ for

microservices based systems on cloud environment.

In 2024 3rd International Conference for Innovation

in Technology (INOCON),1-6.

https://doi.org/10.1109/INOCON60754.2024.1051

1747

7. Vyas, S., Jain, P., Sharma, S., & Soni, P. (2021).

Literature review: A comparative study of real time

streaming technologies and Apache Kafka. In 2021

Fourth International Conference on Computational

Intelligence and Communication Technologies

(CCICT), 146-153.

https://doi.org/10.1109/CCICT53244.2021.00038

8. Chen, F., Yan, Z., & Gu, L. (2022). Towards low-

latency big data infrastructure at Sangfor. In A. K.

Das, P. K. Singh, & H. Ghayvat (Eds.), International

symposium on emerging information security and

applications, 37-54.

9. Dingorkar, S., Singh, S., Ghosh, S., & Roy, R. (2024).

Real-time data processing architectures for IoT

applications: A comprehensive review. In 2024 First

International Conference on Technological

Innovations and Advance Computing (TIACOMP),

507-513.

https://doi.org/10.1109/TIACOMP64125.2024.000

90

10. Confluent. (n.d.). Apache Kafka® performance.

https://developer.confluent.io/learn/kafka-

performance/ (accessed May 22, 2025)

11. Microsoft. (n.d.). Choose a stream processing

technology in Azure.

https://learn.microsoft.com/en-

us/azure/architecture/data-guide/technology-

choices/stream-processing (accessed June 07, 2025)

12. Amazon Web Services. (n.d.). Choosing between

messaging services for serverless

applications.https://aws.amazon.com/ru/blogs/co

mpute/choosing-between-messaging-services-for-

serverless-applications/ (accessed June 07, 2025)

https://doi.org/10.1109/I-SMAC61858.2024.10714884
https://doi.org/10.1109/I-SMAC61858.2024.10714884
https://doi.org/10.23919/MIPRO55190.2022.9803359
https://doi.org/10.23919/MIPRO55190.2022.9803359
https://dx.doi.org/10.2139/ssrn.4963387
https://doi.org/10.1109/INOCON60754.2024.10511747
https://doi.org/10.1109/INOCON60754.2024.10511747
https://doi.org/10.1109/CCICT53244.2021.00038
https://doi.org/10.1109/TIACOMP64125.2024.00090
https://doi.org/10.1109/TIACOMP64125.2024.00090
https://aws.amazon.com/ru/blogs/compute/choosing-between-messaging-services-for-serverless-applications/
https://aws.amazon.com/ru/blogs/compute/choosing-between-messaging-services-for-serverless-applications/
https://aws.amazon.com/ru/blogs/compute/choosing-between-messaging-services-for-serverless-applications/

