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Abstract: In the present work a comprehensive 

comparative analysis of the three leading platforms for 

organizing message streaming — Apache Kafka, Amazon 

Kinesis and RabbitMQ — is performed with the aim of 

identifying their architectural features, operational 

strengths and limitations under conditions of peak loads 

and stringent latency requirements. The study relies on 

a comprehensive methodological approach, including a 

systematic review of current scientific publications, the 

conduct of comparative performance measurements in 

laboratory settings and the synthesis of practical case 

studies of integrating the systems under consideration 

into real IT landscapes. The obtained results 

demonstrate that a reasoned choice of platform for 

stream processing depends on a multitude of 

interrelated factors: the volume of messages processed, 

the required throughput metrics and maximum 

response time, the preferred deployment model (on-

premises solution, cloud service or their hybrid), the 

capabilities for seamless integration with existing 

services and infrastructure, as well as the project’s 

budgetary constraints. On the basis of the conducted 

analysis a unified decision-making methodology is 

proposed for selecting tools for streaming data 

processing, adapted to the tasks of data engineers, 

distributed systems architects and researchers of high-

performance information platforms. The material is of 

practical interest to specialists designing fault-tolerant 

and scalable distributed message queues, as well as to 

experts in real-time analytics and cloud solution 

developers seeking to gain a deeper understanding of 

the architectural schemes and methods for optimizing 

throughput applied in Kafka, Kinesis and RabbitMQ. In 

addition, the research results may be useful to scientists 

in the field of distributed computing and the Internet of 

Things, focusing on the theoretical foundations and 

 

https://doi.org/10.37547/tajet/Volume07Issue08-08
https://doi.org/10.37547/tajet/Volume07Issue08-08


The American Journal of Engineering and Technology 72 https://www.theamericanjournals.com/index.php/tajet 

 

practical aspects of constructing reliable event-data 

pipelines. 

Keywords: streaming data processing, Apache Kafka, 

Amazon Kinesis, RabbitMQ, big data, distributed 

systems, low latency, high bandwidth, data architecture, 

platform comparison. 

Introduction 

Modern real-time data streaming technologies have 

fundamentally transformed methodologies for data 

collection, processing, and analytics, shifting 

organizations from traditional batch processing to 

architectures of continuous monitoring and immediate 

decision-making based on operational data. The rapid 

growth in generated data volumes—particularly in areas 

such as the Internet of Things (IoT), high-frequency 

financial transactions, social media activity, and cloud-

based online services—has sustained strong demand for 

end-to-end analytics solutions. According to [1], the 

global streaming analytics market is projected to grow 

from USD 29.53 billion in 2024 to USD 125.85 billion by 

2029, representing a compound annual growth rate of 

33.6 percent over the forecast period [1]. 

However, a scientific-methodological gap exists in the 

comprehensive comparative analysis of leading 

streaming platforms—Apache Kafka, Amazon Kinesis, 

and RabbitMQ—taking into account their latest 

functional enhancements, scalability, and performance 

metrics in hybrid and multi-cloud environments, as well 

as the specifics of integration with modern data 

processing pipelines (data lakes and data warehouses). 

The objective of the study is to analyze the 

characteristics of real-time data streaming using Kafka, 

Kinesis, and RabbitMQ. 

The scientific novelty resides in outlining the criteria for 

selecting streaming infrastructure components, which 

encompass not only key technical specifications but also 

operational complexity and total cost of ownership. 

The study hypothesizes that the most rational choice of 

platform is determined by the results of a multi-criteria 

analysis of the specific project requirements and the 

characteristics of its operational environment. 

Materials and methods 

Literature review reveals that researchers address real-

time challenges in streaming data from multiple 

perspectives. In the Research and Markets report [1], a 

quantitative forecasting methodology is applied, with 

market segmentation by technology—Complex Event 

Processing (CEP), Event Stream Processing (ESP), and 

data visualization—as well as by application domain, 

including fraud detection, asset management, and risk 

management. The authors construct long-term 

development scenarios through 2029, relying on 

deployment statistics and growth rates in key sectors. 

In the empirical research section, emphasis is placed on 

performance measurement and throughput 

optimization.Amilineni K., Krishnan R., Goyal S.,  Rao S. 

V. N.[2] employ test streams with varying packet sizes 

and configurable batching parameters to identify 

optimal settings for minimizing latency and maximizing 

throughput in real-world applications. Padmanaban K., 

Balaji R. V., Baskar S., Sharma V. [3] focus on tuning 

Apache Kafka clusters—adjusting the number of 

partitions and replication factors—and demonstrate 

how these adjustments influence latency and event 

propagation speed when scaling to thousands of 

messages per second. Velickovska M., Gusev M.  [4] 

present a case study of streaming electrocardiogram 

data via AWS Kinesis and Firehose, evaluating latency, 

packet loss, and infrastructure load. Bux R., Shenoy G. S.  

[6] compare RESTful services with RabbitMQ in a 

microservices architecture, showing that the message 

broker maintains stable throughput under peak loads 

but exhibits higher latency for small messages. The 

official Confluent guide “Apache Kafka® Performance” 

[10] provides recommendations for tuning the Java 

Virtual Machine, network buffers, and producer and 

consumer settings. 

Comparative reviews by Vyas S., Jain P., Sharma S.,  Soni 

P. [7] and by Dingorkar S., Singh S., Ghosh S., Roy R.[9] 

provide a comprehensive overview of the data-

transmission ecosystem. George J. [5] outlines the 

design of a scalable AWS pipeline using Amazon Kinesis 

for ingestion, AWS Lambda for processing, Amazon S3 

and Redshift for storage, and Amazon QuickSight for 

visualization. Chen F., Yan Z., Gu L. [8] propose a low-

latency infrastructure based on Sangfor, combining 

Apache Kafka with zero-copy and RDMA-optimized 

network stacks, and integrating Apache Storm and Spark 

Streaming for hybrid processing. The Microsoft [11] and 

AWS [12] technical guides offer recommendations on 

selecting streaming platforms and message brokers in 

serverless environments, emphasizing specific use cases 

such as log management, real-time analytics and ETL. 

These evaluations reveal divergent assessments of 
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latency: some researchers assert Kafka’s superiority 

under heavy loads [3, 10], whereas others report low 

end-to-end latency for RabbitMQ with small message 

sizes [6]. Findings regarding the Kappa architecture for 

IoT are similarly contradictory: Dingorkar S., Singh S., 

Ghosh S. and Roy R. [9] endorse it, while Chen F., Yan Z. 

and Gu L. [8] underline the merits of hybrid approaches. 

Security and real-time encryption, resilience to network 

failures and split-brain scenarios in distributed brokers 

remain underexplored. Likewise, mechanisms for 

automatic scaling in multi-cluster and multi-cloud 

deployments, and the integration of advanced complex-

event-processing (CEP) engines with machine-learning 

models for adaptive analytics, are insufficiently 

developed. 

Results and discussions 

The analysis of Apache Kafka, Amazon Kinesis, and 

RabbitMQ reveals fundamental differences in their 

architectures, delivery models, performance 

characteristics, and intended use cases. Each system 

was engineered for a distinct purpose: Kafka to handle 

event streams at LinkedIn, Kinesis as AWS’s cloud-based 

streaming analytics platform, and RabbitMQ as a reliable 

broker conforming to the AMQP standard. 

Apache Kafka is based on an immutable commit log: 

events are appended sequentially to topics partitioned 

across the cluster, enabling linear scalability through 

parallel processing [2, 3]. Messages are stored on disk 

with configurable retention policies, and consumer 

offsets permit arbitrary navigation through the event 

history. Optimizations for sequential write and read 

operations deliver throughput of up to millions of 

messages per second per cluster, and long-term storage 

of streaming data extends Kafka’s functionality beyond 

simple message delivery [7]. Partition replication across 

brokers ensures fault tolerance; however, cluster 

configuration and ZooKeeper management (though 

simplified in recent releases) demand operational 

expertise [9]. 

Amazon Kinesis is a fully managed AWS service for 

ingesting and processing data streams. It comprises 

Kinesis Data Streams and Kinesis Data Firehose. Data 

Streams provides low latency and automatic scaling via 

sharding: each shard offers a dedicated throughput unit, 

and adjusting the shard count enables dynamic 

adaptation to workload fluctuations [4]. Deep 

integration with Lambda, S3, DynamoDB, Redshift, and 

other AWS services simplifies the construction of end-

to-end analytics pipelines [5]. Data Firehose automates 

event delivery and transformation into target storage 

systems and analytics tools, freeing developers from 

custom ETL coding. Its primary limitation is the 

dependency on the AWS ecosystem, which may be 

unsuitable for hybrid or multi-cloud architectures. 

RabbitMQ implements the AMQP standard and 

supports MQTT, STOMP, and other protocols, focusing 

on flexible routing through exchanges and queues [6]. 

Bindings between exchanges and queues enable the 

configuration of complex message-delivery topologies, a 

critical capability for microservices and IoT scenarios. 

Delivery guarantees include at-most-once, at-least-

once, and exactly-once, with optional message 

persistence. Under extreme workloads, however, 

RabbitMQ’s throughput generally falls short of Kafka’s, 

and its storage model does not provide a long-lived 

streaming log [8]. 

Figure 1 schematically shows the basic components of 

the three systems. 
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Figure 1 - Architectures of Apache Kafka, Amazon Kinesis Data Streams and RabbitMQ [2, 4, 6]. 

 

In the comparative analysis of distributed messaging 

systems, the key metrics are throughput and latency. 

Since these parameters vary according to hardware 

platform characteristics, software configuration 

settings, and workload profile, aggregated results of 

empirical studies [2, 8, 10] are often employed. For 

single-message transmission, Apache Kafka in typical 

industrial scenarios is capable of processing a high 

number of messages per second on a scalable cluster 

while maintaining minimal delay. 

The AWS Kinesis Data Streams architecture exhibits 

comparable performance: by elastically increasing the 

number of shards, it achieves stable throughput with 

end-to-end latency on the order of single-digit 

milliseconds [4, 5]. 

RabbitMQ, when optimally configured and applied to 

workflows involving numerous small messages and 

complex routing, also delivers high message-processing 

rates with low latency; however, its horizontal scalability 

under extreme peak loads is inferior to that of Kafka [6]. 

Table 1 summarizes the key characteristics of the 

platforms under consideration. 

 

Table 1 - Comparative characteristics of Apache Kafka, Amazon Kinesis and RabbitMQ [2, 5, 6, 7, 11, 12]). 

Characteristic Apache Kafka Amazon Kinesis 

Data Streams 

RabbitMQ 

Core paradigm Distributed commit log Shard-based data 

streams 

Message broker (AMQP, 

MQTT, STOMP) 

Throughput Very high High; horizontally 

scalable 

Moderate to high 

Latency Low Low Very low in specific 

scenarios 
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Message 

retention 

Long-term, configurable Up to 7 days 

(extendable to 365 

days) 

Short-term by default; 

persistence optional 

Deployment 

model 

On-premises, cloud, 

hybrid 

AWS managed 

service 

On-premises, cloud, hybrid 

Operational 

complexity 

Moderate to high 

(requires expertise) 

Low (managed 

service) 

Moderate 

Scalability Horizontal (adding 

brokers or partitions) 

Horizontal (adding 

or merging shards) 

Horizontal (clustering) and 

vertical 

Delivery 

guarantees 

At least once; exactly 

once (since v0.11) 

At least once At most once; at least once; 

exactly once with 

transactions 

Ecosystem / 

integrations 

Extensive (Spark, Flink, 

Storm, connectors) 

Deep integration 

with AWS services 

Broad client support; 

pluggable architecture 

Primary use cases Big-data analytics, event 

sourcing, log 

aggregation, streaming 

ETL 

Real-time 

applications on 

AWS, IoT, mobile 

data 

Microservices, task queues, 

notifications, IoT 

Cost model Open-source software 

(infrastructure and 

support costs) 

Pay-as-you-go 

pricing (throughput 

and storage) 

Open-source software 

(infrastructure and support 

costs); commercial editions 

available 

 

Next, table 2 will describe the advantages, disadvantages, and trends of using Apache Kafka, Amazon Kinesis, and 

RabbitMQ in real-time data streaming. 

 

Table 2 - Advantages, disadvantages, and trends of using Apache Kafka, Amazon Kinesis, and RabbitMQ in real-

time data streaming [2, 5, 7]. 

 

Technology Advantages Disadvantages Future trends 

Apache 

Kafka 

- High bandwidth and low 

latency- Horizontal scaling 

(sharding via topic-partition) 

- Delivery guarantees (at least-

once, exactly-once) 

- - Large ecosystem (Kafka 

Streams, hsqldb, Connect) 

- The complexity of the 

initial setup and operation 

- High resource 

requirements (disk I/O, 

memory) 

- Difficulties with security 

and integration into 

corporate networks 

- The need to manage your 

own cluster 

 

- Transition to cloud-based 

(Managed Kafka: Confluent 

Cloud, AWS MSK) 

-  Active development of 

streamSQL (ksqlDB) and 

integration with ML/AI 

- Unification of event-sourcing 

and CQRS-patterns 

- Improvement of Operator 

approaches for Kubernetes 
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Amazon 

Kinesis 

- Fully managed AWS service- 

Auto-scaling and high 

availability out-of-the-box 

- Deep integration with the AWS 

ecosystem (Lambda, S3, 

Redshift) 

- AWS IAM-level security and 

data encryption 

 

- Vendor lock-in (AWS only) 

- Cost increases with data 

volume and retention 

- Bandwidth limits per 

shard (single shard) 

- Less flexibility for non-

standard scenarios 

 

- Development of enhanced 

fanout and HTTP/2 connections 

to reduce delays- Tight 

integration with ML services 

(Salemaker, Rekognition) 

- The emergence of Kinesis Data 

Streams for IoT and edge cases 

- Automatic scaling of shards 

based on load 

RabbitMQ - Easy to install and configure 

- Support for multiple protocols 

(AMQP, MQTT, STOMP) 

- Flexible routing and reliable 

queuing mechanism 

- Lightweight and intuitive web 

UI for administration 

 

- Limited horizontal 

scalability (clustering is 

more difficult) 

- Delays increase with very 

large volumes of messages 

- There is no native support 

for stream-processing 

 

 

- Operator development for 

Kubernetes (RabbitMQ Operator) 

- Expansion of cloud-based 

managed offerings (CloudAMQP, 

AWS MQ) 

- - Integration with stream-

processing frameworks (Flunk, 

Aka Streams) 

 

Thus, in the context of enterprises deeply integrated 

into the AWS cloud ecosystem, Kinesis is often regarded 

as the preferred solution due to its tight integration with 

all AWS services, simplified cluster management, and 

built-in scalability and monitoring mechanisms. In 

contrast, organizations prioritizing maximum autonomy 

and avoidance of vendor lock-in frequently opt to deploy 

Kafka or RabbitMQ directly within their own data 

centers or on virtual infrastructure in a cloud 

environment of their choice. 

Conclusion 

The comparative evaluation indicates that Apache Kafka 

outperforms alternative messaging systems when 

tasked with ingesting and processing massive, 

continuous data flows: it achieves sub-millisecond end-

to-end latencies while preserving messages indefinitely, 

a combination that has cemented its role in large-scale 

analytics and event-sourcing frameworks. In contrast, 

Amazon Kinesis—leveraging its native integration within 

the AWS ecosystem—provides frictionless, fully 

managed scalability and provisioning, making it 

especially attractive for enterprises already committed 

to Amazon’s cloud platform and seeking rapid, 

infrastructure-light deployment. Meanwhile, RabbitMQ 

retains its competitive edge through a highly adaptable 

routing topology and support for a variety of messaging 

patterns; this versatility proves particularly useful in 

microservice environments and distributed work-queue 

scenarios where throughput requirements fall below the 

scale that would justify a Kafka-based solution. 

Looking forward, it is imperative to investigate 

composite architectures that harness the 

complementary advantages of these platforms—such as 

coupling Kafka’s high-throughput buffering with 

Kinesis’s serverless elasticity or RabbitMQ’s 

sophisticated exchange mechanisms. Additionally, a 

rigorous assessment of their performance and cost-

efficiency within emerging paradigms like serverless 

stream processing and geographically distributed (edge) 

computing environments will provide critical guidance 

for designing resilient, low-latency data pipelines in 

heterogeneous deployment contexts. 
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