
The American Journal of Engineering and Technology 167 https://www.theamericanjournals.com/index.php/tajet

TYPE Original Research

PAGE NO. 167-179

DOI 10.37547/tajet/Volume07Issue07-16

OPEN ACCESS

SUBMITED 22 June 2025

ACCEPTED 28 June 2025

PUBLISHED 30 July 2025

VOLUME Vol.07 Issue 07 2025

CITATION

Hari Dasari. (2025). Implementing Site Reliability Engineering (SRE) in
Legacy Retail Infrastructure. The American Journal of Engineering and
Technology, 7(07), 169–179.
https://doi.org/10.37547/tajet/Volume07Issue07-16

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

Implementing Site

Reliability Engineering

(SRE) in Legacy Retail

Infrastructure

Hari Dasari
Expert Infrastructure Engineer Leading Financial Tech Company

Aldie, Virginia

Abstract: During digital transformation, retail

companies with legacy IT infrastructures struggle to

maintain service dependability, scalability, and agility.

Many mainframes, on-premise applications, batch

processing processes, and monolithic codebases were

not designed for today's dynamic operational contexts.

Google-developed Site Reliability Engineering (SRE)

approaches including Service Level Objectives (SLOs),

automation, and blameless postmortems can bridge the

gap between outdated systems and modern operational

excellence. This article proposes gradual adoption,

cultural change, and measurable service reliability

improvements for legacy retail environments adopting

SRE. A concentrated SRE rollout helped a national retail

chain reduce toil and improve mean time to detect

(MTTD), mean time to resolve (MTTR), and MTTR. The

model shows that incremental SRE adoption can

modernize legacy systems and prepare them for future

innovation without comprehensive re-architecture.

Keywords: Site Reliability Engineering (SRE), Legacy

Systems, Retail IT Infrastructure, Observability, Toil

Reduction, Service Level Objectives (SLOs), Error

Budgets, Incident Management, Automation in

Operations, Hybrid Cloud Monitoring, Cultural

Transformation, Batch Job Monitoring, DevOps in

Legacy Environments, Mainframe Reliability, Retail

Digital Transformation

1. Introduction

In today's fast-paced digital economy, merchants

are under increasing pressure to provide smooth,

reliable, and always-on customer experiences

across both physical and digital channels. However,

https://doi.org/10.37547/tajet/Volume07Issue07-16
https://doi.org/10.37547/tajet/Volume07Issue07-16

The American Journal of Engineering and Technology 168 https://www.theamericanjournals.com/index.php/tajet

many large retail firms are hampered by legacy IT

systems that were created decades ago for a

different operational paradigm and are struggling

to satisfy modern reliability and scalability

requirements. These legacy infrastructures often

comprise mainframe programs, batch processing

systems, point-of-sale (POS) software, and closely

integrated middleware, all of which were designed

for transaction processing and physical store

availability rather than uptime.

Legacy systems are frequently associated with high

operational risk, poor observability, minimal

automation, and inadequate support for horizontal

growth. As a result, these environments frequently

experience outages, delayed issue resolution, and

sluggish deployment processes. As customers'

expectations for real-time availability and

omnichannel integration rise, these failures can

result in revenue loss, reputational damage, and

damaged client trust.

Site Reliability Engineering (SRE), pioneered by

Google [1], is a potential technique to modernizing

operations that does not require a full-scale system

rearchitecture. SRE focuses on automation,

monitoring, dependability as a measurable goal,

and a strong engineering approach to operations.

While SRE was originally intended for cloud-native

systems, its key principles—such as creating Service

Level Objectives (SLOs), controlling error budgets,

decreasing toil, and introducing automated

alerting—can be wisely applied to legacy

environments.

This paper intends to bridge the gap between

literature and reality by giving a structured

technique for integrating SRE in legacy retail

systems. It describes a staged strategy, examines

tool selection and organizational alignment, and

includes a real-world case study to show practical

benefits. According to the study, SRE can be an

effective technique for increasing the resilience and

observability of legacy systems, as well as driving

incremental modernization with clear metrics and

responsibility.

2.Charactersitics of Legacy Retail Infrastructure

Many major and established retail chains rely
heavily on legacy retail infrastructures to run their
operations. These systems were frequently
developed in-house or acquired through mergers
over decades, with technologies that predated
modern software engineering concepts. Although
stable and functionally rich, these legacy systems
provide substantial hurdles in today's rapidly
changing retail world, where real-time response,
cloud integration, and customer-centric agility are
critical.

2.1. Monolithic Architecture and Tight Coupling

Legacy systems are often monolithic, with business

logic, data access, and UI components inextricably

linked. This tight linkage prevents modular updates

and makes even minor modifications dangerous

and time-consuming.

2.2. Batch-oriented processing.

Many older systems rely on nightly or scheduled

batch jobs to perform key tasks like inventory

updates, pricing synchronization, and loyalty point

calculations. This paradigm lacks the

responsiveness necessary for real-time decision-

making and dynamic pricing.

2.3. Limited observability.

These systems were not created with telemetry in

mind. Logs may be minimal, metrics absent, and

tracing unsupported. As a result, root cause analysis

becomes reactive and dependent on human skill.

2.4. Manual Implementation and Change

Management

Legacy infrastructures frequently lack CI/CD

pipelines. Changes are manually deployed and

validated, which increases the possibility of human

mistake and lengthens the lead time for updates.

2.5. Fragile Integration with Modern Systems

The American Journal of Engineering and Technology 169 https://www.theamericanjournals.com/index.php/tajet

Retailers typically use fragile connections like

message queues or custom adapters to layer newer

services on top of historical cores, such as mobile

apps, e-commerce APIs, and loyalty platforms.

These integration points are prone to versioning

difficulties, delays, and inconsistent behavior.

As presented in Table 1, these systemic limitations

obstruct the adoption of modern engineering

practices such as automated failover, real-time

observability, and scalable service delivery.

Challenge Description

Scalability Difficult to scale beyond vertical scaling due to monolithic design

Observability Minimal logging, no metrics or tracing, and limited visibility

Change Management Manual deployments and change control processes increase operational risk

Incident Response Reactive approach with little automation or early detection

Integration

Limitations
Fragile middleware and message queues for connecting to modern retail systems

Operational Cost High maintenance costs due to outdated hardware and lack of automation

Table 1: Challenges in Legacy Retail Infrastructure

2.6. Organizational and Cultural Inertia

The organization's opposition to change is equally

challenging. Teams operating old systems may have

deeply embedded routines, little exposure to

contemporary tooling, and legitimate concerns

about changing mission-critical systems that "still

work."

Together, these qualities create a complicated

context in which reliability engineering cannot be

used as a drop-in solution. Instead, a progressive,

context-sensitive adoption of SRE principles is

required, as discussed in the sections below.

3.Principles of SRE Relevant to Legacy Systems

Site Reliability Engineering (SRE) is a systematic

strategy to improving service dependability by

incorporating software engineering principles into

infrastructure and operations. While SRE was

developed for large-scale, distributed, cloud-native

environments, its key ideas are extremely

adaptable to legacy retail infrastructures if

implemented wisely.

This section goes over the major SRE ideas and how

they can be applied to the limits of legacy

environments without requiring a total system

overhaul.

3.1 Service Level Objectives (SLO) and Service Level

Indicators (SLI)

SLOs specify the desired reliability of a system in

measurable terms. Even for legacy systems,

meaningful SLIs can be defined based on accessible

information. Setting realistic SLOs ensures that the

business and technical teams have a clear

knowledge of acceptable service performance.

For example, a merchant may specify a SLO as

requiring 99.5% of overnight inventory

reconciliation activities to be completed by 6:00

a.m. each day.

3.2 Error budgets

An error budget is the permitted level of

unavailability based on the set SLO. It guides

judgments regarding implementing changes. Error

budgets in legacy systems can help balance

innovation (for example, automation) with fragile

systems' risk tolerance.

The American Journal of Engineering and Technology 170 https://www.theamericanjournals.com/index.php/tajet

Benefit: Helps to justify why not every change

should be sent into production immediately in

systems with limited rollback alternatives.

3.3 Toil Reduction

Toil refers to manual, repetitive, and automatable

labor. Toil is abundant in older setups, whether it's

monitoring batch job statuses, manually checking

logs, or doing normal restart activities. Identifying

and lowering labor through simple automation

(scripts, scheduled jobs, etc.) is a high-return SRE

practice.

For example, instead of depending on manual

checks, send out automated notifications when

crucial batch operations fail.

3.4 Observability & Monitoring

Legacy systems frequently lack out-of-box

observability. However, integrating basic

monitoring with technologies such as Prometheus,

Nagios, or even custom scripts can provide

immediate results. Log shipping and metric

extraction from outdated programs are basic tasks.

As illustrated in Figure 1, legacy constraints do not

preclude SRE adoption; rather, they necessitate

customized implementations of its fundamental

concepts.

Figure 1: Applying Core SRE Principles to Legacy System Constraints

This picture shows how SRE principles like SLOs, toil

minimization, and observability may be

incrementally applied to legacy infrastructures.

3.5 Blameless Postmortems

Legacy. IT operations frequently have a blame

based culture. SRE focuses on learning from failure

through systematic, blameless incident reviews.

This move promotes collaboration and ongoing

improvement, even among traditional IT teams.

Impact: Encourages teams to investigate

fundamental issues thoroughly and communicate

results without fear of repercussions.

3.6 Automation for Incident Response

SRE promotes the creation of automated playbooks

and incident detection techniques. Even in legacy

systems, teams can increase responsiveness and

MTTR by defining standard operating procedures

(SOPs) and utilizing scripting or lightweight

orchestration.

Summary: Applying these approaches

incrementally can significantly improve legacy retail

settings without requiring complete system

rewrites. The following section will describe an

organized, staged methodology for efficiently

implementing these concepts in such

circumstances.

The American Journal of Engineering and Technology 171 https://www.theamericanjournals.com/index.php/tajet

4.Architectural Strategies for Resilience

Applying SRE to legacy retail infrastructure necessitates

a practical, staged strategy. Legacy environments, as

opposed to greenfield systems, cannot afford downtime

or drastic reengineering. This section describes a four-

phase implementation architecture customized to

legacy systems, allowing for gradual adoption of SRE

principles while retaining operational stability.

As shown in Figure 2, the phased model enables a

risk-aware, structured transition to SRE practices in

legacy infrastructure without requiring a full system

rewrite.

Figure 2: Phased SRE Implementation Framework for Legacy Retail Systems

This figure outlines the four phases of SRE adoption

in legacy environments:

1. Foundation (Monitoring & Visibility)

2. Stabilization (SLOs & Error Budgets)

3. Optimization (Automation & Toil

Reduction)

4. Institutionalization (Culture, Runbooks,

Reviews)

Phase 1: Foundation: Establish Monitoring and Visibility.

The initial focus should be on observability. Legacy

systems frequently lack native monitoring, necessitating

the use of external agents, bespoke log scrapers, and

simple dashboards. The purpose is to:

• Identify critical SLIs, such as job success rate and

POS endpoint uptime.

• Implement warning systems for service

anomalies.

• Use open-source tools such as Prometheus,

Grafana, or Nagios for low-friction deployment.

For example, a COBOL-based nightly routine can be

wrapped in a script that logs start/end times and

failures to a file that a monitoring agent can analyze.

Phase 2: Stabilization—Define SLOs and Error Budgets

With visibility in place, teams may set Service Level

Objectives (SLOs) and Service Level Indicators (SLIs)

based on business goals.

• Implement internal SLOs (for example, "95% of

inventory sync jobs must complete within 2

hours")

• Define acceptable error budgets and use them

to control dangerous changes.

• Use historical data to establish baselines and

thresholds.

Outcome: Teams are empowered to make informed

trade-offs between stability and rapidity.

Phase 3: Optimization - Reduce Labor Through

Automation

Legacy teams are frequently plagued with manual duties

that are ideal for automation.

• Automate repetitive operational operations,

such as restarts, status checks, or file transfers.

• Implement programmed reactions to typical

occurrences, such as disk space issues or service

restarts.

• Use tools like Rundeck or Jenkins for basic

orchestration with no big dependencies.

For example, replacing a 10-step manual health

check process with a nightly automated validation

script increases consistency and decreases on-call

fatigue.

Phase 4: Institutionalization (Runbooks, Reviews, and

Culture)

The final phase focuses on embedding SRE practices in

the organization.

The American Journal of Engineering and Technology 172 https://www.theamericanjournals.com/index.php/tajet

• Generate runbooks for repeatable operational

procedures.

• Conduct blameless postmortems following

incidents to determine systemic remedies.

• Assign ownership and escalation paths to legacy

services.

• Create cross-functional SRE pods for legacy

systems.

Goal: Create a learning-oriented, dependable, and

responsive operational culture that meets modern

reliability criteria.

Summary: This methodology allows older

infrastructures to implement SRE in measured,

controlled increments, rather than disruptive overhauls.

Each phase builds on the previous one, allowing even

the most fragile and mission-critical systems to enhance

dependability through visibility, standardization, and

automation.

5. Case Study: SRE in a National Retail Chain

To highlight the practical implementation and

impact of SRE in a legacy environment, this section

presents a real-world case study of a US-based

national retail chain that manages over 1,200

physical locations and runs on a legacy technology

stack consisting of:

• Mainframe-based batch systems for

overnight processing.

• Distributed in-store POS systems with

nightly data uploads.

• FTP and message queue interaction with e-

commerce platforms

The organization encountered frequent job failures,

long incident reaction times, and poor

observability, limiting its ability to satisfy

operational SLAs and respond to system outages

efficiently.

5.1 Business Challenge

The IT operations team dealt with the following

issues:

• Inventory synchronization jobs would

periodically fail, going undiscovered until

the morning.

• Manual triage and troubleshooting took up

to 3-4 hours each day.

• Operations relied on outdated monitoring

tools without real-time alerts or

dashboards.

• There are no established SLOs or

accountability mechanisms for reliability

breaches.

5.2 The SRE Adoption Approach

The organization followed the tiered SRE

deployment model outlined in Section 4:

• Monitoring setup includes Prometheus and

Grafana agents to track job completion

status and synchronization events. Logs

from FTP jobs and POS uploads were

collected using Fluentd and parsed into

structured representations.

• SLOs were designed for essential batch jobs,

such as:

- 99.5% success percentage for POS

uploads by 3:00 a.m.

- 99% availability for in-store system

check-ins.

• A set of Python scripts and Rundeck jobs

were created to automate:

- Daily job health inspections.

- Monitor disk utilization on

mainframes.

- Alerting for late or missing data

uploads

Cultural Shifts: The team used blameless

postmortems, developed a runbook library for 20+

frequent failure situations, and reduced manual

incident resolution.

As shown in Table 2, SRE adoption led to a 70%

reduction in MTTR, an 11% improvement in job

reliability, and a substantial drop in SLA breaches

within six months.

The American Journal of Engineering and Technology 173 https://www.theamericanjournals.com/index.php/tajet

Metric Before SRE After SRE (6 Months)

Mean Time to Detect (MTTD) 40 minutes 12 minutes

Mean Time to Resolve (MTTR) 120 minutes 45 minutes

Job Failure Rate 15% 4%

Manual Health Check Effort ~3 hours/day <30 minutes/day

SLA Violations per Month 18 3

Table 2: Key Metrics Before and After SRE Implementation

6. Monitoring, Tooling, and Automation

Legacy retail systems have generally lacked robust

observability and relied primarily on human

activities, causing gaps in reliability management.

Site Reliability Engineering (SRE) focuses on

proactive monitoring, standardized tooling, and

automation to detect, respond to, and avoid

problems before they affect consumers or

downstream systems. This section investigates the

practical application of current monitoring and

automation approaches in traditional retail

environments.

6.1 Monitoring in Legacy Systems

Legacy systems, such as mainframes, POS

terminals, or FTP-driven batch processors, often do

not support native monitoring interfaces. However,

indirect instrumentation and wrapper-based

logging can be used to collect meaningful

telemetry:

• Log Parsing: Use Fluentd or Logstash to

extract structured events from legacy logs

• Job Status Tracking: Wrap batch jobs with

scripts that emit start, end, and error codes

to a centralized logging pipeline

• System Metrics Collection: Utilize tools like

Node Exporter or Telegraf to gather CPU,

memory, and disk metrics from legacy

servers

• Basic Health Probes: Implement synthetic

checks (e.g., TCP port pings, job output

checksum validators)

Result: These lightweight additions enable visibility

into performance and failure conditions without

altering the core legacy system code.

6.2 Automation Opportunities

SRE encourages reducing toil—the manual,

repetitive operational work that can and should be

automated. In legacy systems, common areas for

automation include:

• Job Monitoring & Alerts: Scheduled health

checks for jobs and transfers using cron jobs

or Rundeck

• Auto-recovery Scripts: Restart stuck

processes or clear cache directories based

on log patterns

• Incident Notification: Integration with

PagerDuty, Slack, or email alerts via

Alertmanager

• Routine Maintenance: Automate log

rotation, archive compression, disk cleanup,

and backup validation

As shown in Figure 3, this reference architecture

enables centralized monitoring and responsive

automation without modifying the legacy core

systems.

The American Journal of Engineering and Technology 174 https://www.theamericanjournals.com/index.php/tajet

Figure 3: Monitoring and Automation Architecture in a Legacy Retail Stack

This diagram depicts a sample architecture

integrating open-source tooling with legacy

systems:

• Data Sources: FTP logs, mainframe job logs,

store check-in data

• Collection Layer: Fluentd, Node Exporter

• Processing/Alerting: Prometheus,

Alertmanager

• Visualization: Grafana dashboards

• Automation/Orchestration: Rundeck,

custom scripts (Python/Shell)

6.3 Tool Selection Criteria for Legacy

Environments

When selecting tools for legacy integration, the

following criteria should be prioritized:

o Lightweight & Low Overhead: Must Operate

on resource-constrained servers

o Agentless or Minimal Agents: Reduces

friction with legacy system administrators

o CLI/Script Friendly: Should support

integration with shell scripts and cron jobs.

o Open Source: Minimizes licensing cost and

avoids vendor lock-in

o Extensible & Interoperable: Able to

interface with modern Devops platforms as

needed

6.4 Benefits of Integrated Monitoring and

Automation

• Faster Issue Detection and

Resolution:Alerts generated within seconds

of job failure improve MTTD significantly.

• Operational Efficiency:Scripts automate

common resolutions, allowing engineers to

focus on strategic initiatives.

• Consistency and Reliability:Standardized

monitoring eliminates reliance on tribal

knowledge or manual log reviews.

• Incremental Modernization:Serves as a

foundation for broader infrastructure

refactoring and DevOps adoption.

The American Journal of Engineering and Technology 175 https://www.theamericanjournals.com/index.php/tajet

Legacy systems can increase their reliability,

observability, and operational efficiency

significantly by utilizing non-invasive tools and

targeted automation, bringing them closer to the

requirements of modern cloud-native platforms.

7. Risk Mitigation and Organizational Alignment

Implementing Site Reliability Engineering (SRE) in

legacy retail environments takes more than just

tools and scripts; it also necessitates a strategic

approach to technical risk management and

organizational buy-in. Legacy systems are

frequently mission-critical, unstable, and managed

by teams with decades of combined experience. As

a result, successful SRE deployment requires risk

mitigation and stakeholder alignment across

engineering, operations, and business groups.

7.1 Technical Risk Mitigation Strategies

Legacy environments impose limits such as

unsupported technologies, undocumented

dependencies, and limited automation capabilities.

These risks can be reduced using the following

strategies:

• Pilot-Based Rollouts: Implement SRE on

low-risk, non-customer-facing systems (e.g.,

internal reports, reconciliation jobs). Use

early successes to boost confidence and

improve techniques.

• Fallback Mechanisms: Automation scripts

should have error handling and rollback

features as fallback mechanisms. Avoid

automation that generates irreversible

states.

• Observability Before Automation: Prioritize

observability over automation. First, use

logging and analytics to better understand

system behavior in both normal and

degraded settings.

• Change Isolation: To introduce new

reliability measures or scripts, limit the blast

radius by using canary updates, blue-green

deployments, or job-level toggles.

For example, before automating work restarts,

monitor failure rates and recovery times for at least

30 days to confirm that the automation logic

appropriately reflects operator actions.

7.2 Organizational Alignment

Cultural resistance is a major barrier in legacy

environments, especially where teams are

accustomed to traditional ITIL-style incident

response and hierarchical approvals.

Table 3 illustrates key alignment strategies within the organization

Strategy Description

Executive Sponsorship
Secure top-down support to prioritize SRE as a reliability and

modernization enabler

Cross-Functional

Collaboration

Form hybrid SRE pods with members from operations, development, and

infrastructure teams

Training and Upskilling
Conduct SRE bootcamps focused on tooling, monitoring, incident

handling, and runbook development

Communication and

Transparency

Share dashboards, SLOs, and error budget policies across stakeholders to

build trust

Blameless Culture Initiatives
Promote post-incident reviews without assigning blame to encourage

openness and improvement

Table 3: Key Alignment Strategies

The American Journal of Engineering and Technology 176 https://www.theamericanjournals.com/index.php/tajet

7.3 Stakeholder Roles in SRE for Legacy Systems

Stakeholder Role in SRE Adoption

CTO / CIO Provide vision, funding, and mandate for reliability programs

Operations Managers Define pain points, assist in toil identification

Development Teams Integrate observability into legacy code, assist in defining SLOs

Business Analysts Translate service impact into business risk/value language

SRE Champions Act as internal consultants and cultural liaisons

Table 4: Stakeholder Roles in Legacy Systems

7.4 Governance and Change Management

It is vital to establish governance structures that

enable agile dependability practices in legacy

systems. This includes:

o Establishing escalation rules and on-call

rotations, as well as documenting change

approval processes for automated

operations.

o Assigning service ownership, particularly for

neglected or "black-box" systems.

o Including dependability KPIs in performance

appraisals and project success metrics.

Outcome: Formal governance ensures that SRE

processes are not considered as side projects but

rather integrated into day-to-day operations.

7.5 Success Metrics for Risk and Alignment

To evaluate the success of SRE adoption in legacy

systems, organizations should track the following

metrics:

• Reduction in Mean Time to Detect (MTTD)

and Resolve (MTTR)

• % of systems with defined SLOs and

automated health checks

• Number of manual runbook tasks

automated

• Stakeholder satisfaction (via surveys or

incident debriefs)

• Reduction in unplanned downtime or SLA

violations

Enterprises may successfully adopt SRE in even the

most entrenched legacy systems by aligning

technological efforts with organizational strategy

and controlling risks in advance, changing them

from operational liabilities to robust, insight-driven

assets.

8.Future Trends and Recommendations

As the retail business evolves in response to digital

disruption, economic instability, and customer

experience demands, Site Reliability Engineering

(SRE) will become increasingly important in

guaranteeing uptime and resilience, particularly for

older systems. While legacy environments provide

problems, current trends and innovations provide

fresh opportunity to use SRE principles more

effectively in these contexts.

8.1 AI and Machine Learning in Legacy

Operations

AI and machine learning are rapidly being used in

current infrastructures. When customized for

legacy contexts, they provide the following

benefits:

• Anomaly detection: Machine learning

models can identify irregularities in batch

The American Journal of Engineering and Technology 177 https://www.theamericanjournals.com/index.php/tajet

task durations, POS log patterns, and

transaction spikes that indicate approaching

failures.

• Predictive Maintenance: AI models trained

on past system records can predict

hardware failures or processing delays

before they disrupt operations.

• Incident Classification: NLP and machine

learning can help categorize incident tickets

and discover reoccurring failure patterns in

legacy systems.

For example, a shop could employ anomaly

detection on historical batch processing times to

send out preemptive alerts before SLAs are

exceeded.

8.2 Gradual Refactoring with SRE Metrics

Rather than embarking on risky and costly re-

platforming initiatives, businesses can leverage

SRE-driven metrics (e.g., error budgets, toil indices,

MTTR trends) to identify high-impact components

for targeted modernization.

• Modularize historical batch tasks into API-

driven services based on common failure

locations.

• Replace fragile integrations (for example,

flat-file FTP transfers) with event-based

messaging systems like Kafka.

• Track SLO breaches and prioritize technical

debt correction.

Recommendation: Use SRE telemetry to inform

modernization roadmaps, ensuring that

engineering efforts are focused on the most reliable

older components.

8.3 Hybrid and Multi-Cloud Integration

Many retailers are adopting hybrid cloud models to

extend legacy capabilities into cloud environments.

SRE will be essential in:

• Monitoring service reliability across on-

prem and cloud components

• Maintaining consistent observability and

alerting pipelines

• Coordinating change management across

platforms

As shown in Figure 4, hybrid observability models

will be essential as legacy systems evolve toward

distributed retail platforms.

Figure 4: Future-State Hybrid SRE Monitoring Model for Legacy + Cloud Retail Environments

8.4 Chaos Engineering for Legacy Systems Chaos engineering, which has traditionally been

The American Journal of Engineering and Technology 178 https://www.theamericanjournals.com/index.php/tajet

used for microservices, is rapidly being adopted to

improve fault tolerance in legacy systems.

Organizations can simulate batch task delays, data

feed issues, and resource fatigue.

• Validate incident response readiness.

• Improve the automatic rollback methods.

• Uncover hidden dependencies in monolithic

code bases.

Caution: Chaos experiments in legacy

environments must be carefully planned and

monitored to avoid causing widespread failures.

8.5 Strategic Recommendations

The strategic recommendations summarized in

Table 3 are informed by practices outlined in SRE

foundational literature [1], DevOps transformation

frameworks [3], and modernization guidance for

legacy systems [8][9].

Recommendation Justification

Start with non-critical legacy components Minimizes risk, builds early momentum

Establish a central SRE enablement team Encourages knowledge sharing, tooling standardization

Treat SRE as a culture shift, not a toolkit Ensures long-term organizational alignment

Use SLOs and error budgets to drive priorities
Aligns engineering focus with business reliability

expectations

Track metrics across legacy and modern

systems

Provides end-to-end service visibility for hybrid

environments

Table 5: Strategic Recommendations

As shops continue to innovate, the ability to

function consistently across historical and modern

systems will become an important differentiation.

Adopting SRE not only improves present

operations, but also sets the door for a more

seamless, metric-driven transition to next-

generation retail solutions.

9.Conclusion

The implementation of Site Reliability Engineering

(SRE) in legacy retail infrastructure is a critical step

toward updating operating processes without

requiring high-risk system overhauls. Legacy

systems, while reliable and business-critical, suffer

from low observability, high operational workload,

and reactive incident response. SRE addresses

these difficulties with a structured, data-driven

strategy that includes Service Level Objectives

(SLOs), error budgets, proactive monitoring, and

automation.

This article offered a phased implementation

methodology targeted to traditional retail

environments, allowing for gradual adoption of SRE

concepts while retaining system stability. It

investigated how open-source tools and lightweight

scripts might increase observability while reducing

toil, emphasizing the importance of corporate

alignment and cultural transformation in achieving

success. A real-world case study found measurable

gains in reliability, detection time, and operational

efficiency, supporting the importance of SRE in non-

cloud-native environments.

Furthermore, the report discussed new trends

including AI-powered monitoring, hybrid

observability architectures, and chaotic

engineering for legacy systems. These

developments promise to broaden the scope of

SRE, preparing legacy infrastructures for a future of

resilient, scalable, and customer-centric retail

operations.

To summarize, SRE is more than a collection of tools

The American Journal of Engineering and Technology 179 https://www.theamericanjournals.com/index.php/tajet

or processes; it is a cultural and strategic

transformation that enables merchants to manage

complexity, assure uptime, and continuously

improve the dependability of even their oldest

systems. For enterprises looking to bridge the gap

between stability and innovation, SRE provides a

practical and proven solution.

References

1. Beyer, B., Jones, C., Petoff, J., & Murphy, N. R.

(2016). Site Reliability Engineering: How Google

Runs Production Systems. O’Reilly Media.

2. Krief, M. (2019). Learning DevOps: Continuously

Deliver Better Software. Packt Publishing.

3. Kim, G., Humble, J., Debois, P., & Willis, J.

(2016). The DevOps Handbook: How to Create

World-Class Agility, Reliability, & Security in

Technology Organizations. IT Revolution Press.

4. Burns, B., Grant, B., Oppenheimer, D., Brewer,

E., & Wilkes, J. (2016). Borg, Omega, and

Kubernetes. Communications of the ACM, 59(5),

50–57. https://doi.org/10.1145/2890784

5. OpenSLO. (2021). Open Specification for SLOs.

https://openslo.com

6. Thongmak, M. (2022). Applying AI in IT

Operations: Anomaly Detection and Incident

Prediction in Legacy Systems. Journal of

Information Technology Management, 33(1),

35–42.

7. Allspaw, J. (2017). Blameless PostMortems and

a Just Culture: A Guide to Incident Investigation.

Etsy Engineering. https://codeascraft.com

8. Gartner. (2023). Predicts 2023: Legacy Systems

Modernization Strategies for CIOs. Gartner

Research.

9. Woodcock, S. (2020). Automating Legacy

Systems: Practices and Pitfalls. IEEE Software,

37(4), 67–73.

https://doi.org/10.1109/MS.2020.2996582

https://openslo.com/
https://codeascraft.com/

