
The American Journal of Engineering and Technology 96 https://www.theamericanjournals.com/index.php/tajet 

 

TYPE Original Research 

PAGE NO. 96-101 

DOI 10.37547/tajet/Volume07Issue07-11 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

OPEN ACCESS 

SUBMITED 07 June 2025 

ACCEPTED 29 June 2025 

PUBLISHED 24 July 2025 

VOLUME Vol.07 Issue 07 2025 
 

CITATION 
Markushin, V. (2025). Inside Blockchain Startups: Precision Strategies to 
Sidestep Technical Pitfalls. The American Journal of Engineering and 
Technology, 7(07), 96–101. 
https://doi.org/10.37547/tajet/Volume07Issue07-11 

COPYRIGHT 

© 2025 Original content from this work may be used under the terms 

of the creative commons attributes 4.0 License. 

Inside Blockchain Startups: 

Precision Strategies to 

Sidestep Technical Pitfalls 
 

Vladislav Markushin 
Team Lead, Rust Developer at Composable Foundation, Argentina 

 

Abstract: This paper presents a structured analysis of 

common engineering failures in early-stage blockchain 

startups. Drawing on practical experience within the 

Ethereum, Solana, Polkadot, and Cosmos SDK 

ecosystems, it identifies five recurrent categories of 

technical pitfalls: inadequate system design, fragile or 

overly coupled architectures, improper use of cross-

chain protocols, insufficient build and release 

automation, and limited observability and runtime 

diagnostics. The study employs a case-based 

methodology across five representative projects, 

covering a wide range of protocol layers and 

architectural patterns—from decentralized messengers 

to cross-chain bridge infrastructure. 

Findings demonstrate that the adoption of mature 

engineering practices—such as Command–Query 

Responsibility Segregation (CQRS), event sourcing, finite 

state machines, proxy contract standards (EIP-1967, EIP-

2535), and type safety in Rust—substantially improves 

system resilience and extensibility. Particular emphasis 

is placed on Inter-Blockchain Communication (IBC) as a 

robust standard for secure interoperability across 

heterogeneous chains. The paper also highlights how 

automated CI/CD pipelines, multi-layer telemetry, and 

centralized alerting frameworks support early fault 

detection and operational responsiveness. The study 

concludes that minimizing custom low-level 

implementations in favor of standardized, modular 

approaches is critical for building secure, auditable, and 

scalable decentralized systems. 

Keywords: blockchain, cross-chain, Ethereum, Solana, 

Polkadot, IBC, development 

Introduction 

Blockchain systems, characterized by decentralized 

 

https://doi.org/10.37547/tajet/Volume07Issue07-11
https://doi.org/10.37547/tajet/Volume07Issue07-11


The American Journal of Engineering and Technology 97 https://www.theamericanjournals.com/index.php/tajet 
 

consensus and tamper-resistant data structures, impose 

a distinct set of design constraints on early-stage 

technology ventures. These constraints frequently 

surface in the form of technical missteps, such as 

premature optimization, custom protocol development, 

or the absence of robust architectural frameworks. 

Collectively, such missteps can delay system rollouts, 

introduce vulnerabilities, and erode a project’s 

operational viability. 

This study draws on my applied experience as a Rust 

engineer working within the Ethereum, Solana, 

Polkadot, and Cosmos SDK ecosystems. Projects 

analyzed span multiple blockchain domains, including 

messaging systems (Paymon Inc.), protocol-level 

consensus (Soramitsu), and cross-chain bridge 

architecture (Composable Foundation). 

The analysis identifies five recurrent categories of 

technical pitfalls in blockchain startups: (1) Inadequate 

system design strategies; (2) Fragile or monolithic 

software architecture; (3) Misapplication or 

underutilization of cross-chain communication 

protocols; (4) Deficient build automation and release 

orchestration; (5) Limited observability and runtime 

introspection mechanisms. Each category is examined 

through a case study methodology grounded in real-

world deployments, with the goal of offering practical 

mitigations informed by both general software 

engineering principles and blockchain-specific 

requirements. This work aims to inform practitioners 

and researchers invested in advancing the resilience and 

scalability of decentralized systems. 

Methodology 

This study adopts a qualitative, case-based research 

approach to examine recurring technical challenges in 

the development of blockchain infrastructure. The 

analysis is grounded in direct engineering experience 

across five representative projects, selected for their 

diversity in architectural scope, consensus mechanisms, 

and protocol layers. 

 
● Crypto Messenger (Paymon Inc., 2017–2019): A 

messaging platform incorporating integrated 

cryptocurrency transfers. The project encountered 

issues related to architectural over-engineering and 

nonstandard protocol design. 

● Iroha Blockchain (Soramitsu, 2020–2021): standalone 

Blockchain distributed ledger system. This case 

illustrates the challenges of managing protocol 

complexity and developing a secure smart contract 

environment. 

● Decentralized Loyalty System (Bitfury, 2019–2020): A 

modular architecture implementing GOST cryptographic 

standards. The focus here is on system modularity and 

the implications of cryptographic design constraints on 

infrastructure extensibility. 

● Ethereum–Internet Computer Bridge (InfinitySwap, 

2021–2022): A cross-chain bridge protocol emphasizing 

system-level optimization and secure interoperability 

across heterogeneous chains. 

● IBC Bridges and Solana Rollup (Composable 

Foundation, 2022–present): A multi-chain integration 

effort featuring Inter-Blockchain Communication (IBC) 

and rollup technologies. Particular attention is given to 

governance-aware architecture and formal state 

verification mechanisms. 

Results and Discussion 

System Design Pitfalls 

A recurring design failure observed across early-stage 

blockchain projects involves the unnecessary 

reinvention of foundational infrastructure. In one case 

study, the development team elected to construct the 

entire network stack from first principles, bypassing 

established remote procedure call (RPC) protocols and 

serialization libraries. Instead, a custom binary protocol 

was developed in C++. While this approach was 

intended to offer greater control, it significantly 

impeded debugging, delayed feature delivery, and 

ultimately necessitated a complete architectural 

reimplementation. 

This tendency — favoring bespoke solutions over 

standardized tooling — is prevalent among blockchain 

startups. In pursuit of performance optimization or 

architectural purity, teams frequently forgo widely 

adopted technologies such as JSON-RPC, WebSockets, 

or serialization libraries like borsh and scale-codec. In 

practice, however, these decisions often fragment 

development efforts, hinder interoperability, and result 

in the accumulation of long-term technical debt. 

These findings reinforce a broader principle: in the initial 



The American Journal of Engineering and Technology 98 https://www.theamericanjournals.com/index.php/tajet 
 

phases of system development, engineering priorities 

should be weighted toward observability, verifiability, 

and maintainability rather than micro-optimizations. 

Architectures based on robust, well-supported 

components are less prone to critical failure modes and 

reduce the operational overhead associated with long-

term maintenance. 

Architectural Practices and Change Resilience 

Although architectural shortcomings may appear benign 

in the early stages of distributed system development, 

they often become major obstacles to scalability and 

evolvability as the system matures. Across the examined 

case studies, several architectural anti-patterns 

emerged repeatedly. These included reliance on 

mutable global state, insufficient modularization, tight 

coupling between functional components, and frequent 

violations of established object-oriented design 

principles—particularly those articulated by the SOLID 

framework. These deficiencies collectively increased the 

cognitive load required for refactoring, impeded the 

integration of new features, and elevated the risk of 

regressions and latent defects. 

Several design strategies consistently proved effective 

in mitigating these issues: 

● CQRS (Command–Query Responsibility 

Segregation): Partitioning read and write operations 

enabled clearer separation of concerns. In the 

context of cross-chain bridges, this approach 

allowed transaction submission and status queries 

to be processed through distinct layers, enhancing 

both performance and reliability. 

● Event Sourcing: Persisting system state transitions 

as a stream of immutable events facilitated reliable 

state reconstruction and provided a natural 

integration point for downstream services through 

event subscription mechanisms. 

● Finite State Machines (FSMs): Formalizing system 

behavior via FSMs provided a rigorous framework 

for managing operation lifecycles. This was 

particularly critical in cross-chain workflows, where 

strict sequencing constraints are required to 

prevent invalid or premature transitions. 

● Proxy Contract Patterns (EIP-1967) and the 

Diamond Standard (EIP-2535): These upgradeability 

techniques enabled safe replacement of contract 

logic without jeopardizing the integrity of stored 

state—an essential requirement in financial systems 

handling on-chain assets. 

● Type safety in Rust: The use of Rust’s type system, 

including generics, traits, and algebraic data types, 

played a central role in enforcing invariants at 

compile time. This improved both modular 

reasoning and overall system reliability by catching 

potential logic errors prior to runtime. 

The application of these patterns significantly improved 

maintainability, facilitated the addition of new features 

without architectural compromise, and enhanced 

testability. Collectively, these practices promote 

software systems that are resilient to change and robust 

against failure, which are key attributes in the rapidly 

evolving landscape of blockchain infrastructure. 

Cross-Chain Protocols and IBC 

Cross-chain integration presents stringent requirements 

in terms of data consistency, synchronization 

guarantees, and fault tolerance. Ensuring secure and 

reliable inter-network communication in a 

heterogeneous blockchain environment remains one of 

the most technically demanding aspects of 

decentralized systems engineering. Across multiple 

projects, implementation deficiencies in cross-chain 

bridge protocols frequently resulted in state divergence 

between participating networks, exposing users to loss 

of funds and undermining trust in protocol correctness. 

The most reliable solution in this context was the Inter-

Blockchain Communication (IBC) protocol. IBC 

formalizes inter-chain message passing through the 

Interchain Standards (ICS) specification suite, offering a 

rigorously defined interface for verifying remote states 

and coordinating cross-chain operations. 

Key architectural modules include: 

● ICS-02: Light Clients 

Responsible for verifying the state of remote 

blockchains through cryptographic validation of 

Merkle proofs and consensus headers. These clients 

play a central role in maintaining data integrity and 

detecting protocol violations such as equivocation 



The American Journal of Engineering and Technology 99 https://www.theamericanjournals.com/index.php/tajet 
 

(double-signing) or timestamp manipulation. 

● ICS-03: Connection Handshake 

Specifies a four-phase handshake protocol — 

ConnOpenInit, ConnOpenTry, ConnOpenAck, and 

ConnOpenConfirm — used to establish 

authenticated and validated communication 

channels between two chains. The handshake 

protocol relies on trusted client state for 

bidirectional agreement. 

● ICS-26: Middleware Routing 

Provides a modular routing layer that enables 

protocol extensibility without modifying core 

application logic. This facilitates the seamless 

integration of optional features such as fee 

abstraction, on-chain routing policies, or interchain 

account management via custom middleware. 

● ICS-08: WASM Clients 

Implements client-side verification logic using 

WebAssembly (WASM), allowing for more flexible 

upgrades and cross-language development. Smart 

contracts are deployed using MsgStoreCode and 

upgraded via MsgMigrateContract, enabling 

governance-based evolution of interchain clients 

without requiring network forks. 

In practice, successful IBC deployment necessitates the 

development of chain-specific light client adapters to 

accommodate varying consensus mechanisms. 

Furthermore, strict typing of interchain state data and 

routine protocol audits are essential to ensuring 

correctness, resilience, and auditability. 

Adherence to the IBC framework significantly reduces 

the likelihood of inconsistent state transitions or 

unexpected asset behavior, supporting the construction 

of secure and scalable cross-chain communication 

protocols. 

Build Automation and Release Processes 

Blockchain startups frequently operate under 

compressed development timelines, requiring rapid 

iteration, support for multiple deployment 

environments (such as development, testnet, and 

production), and strict reproducibility guarantees across 

heterogeneous platforms. In the absence of robust 

continuous integration and delivery (CI/CD) 

infrastructure, these operational pressures often result 

in unreliable builds, delayed release cycles, and elevated 

operational burden on engineering teams. 

To address these challenges and enhance build 

reliability, the projects examined in this study adopted a 

fully automated approach to the software delivery 

lifecycle. Docker-based containerization was employed 

to ensure environmental consistency across 

development and production systems, with image 

publishing managed via the docker/build-push-action. 

This setup enabled reproducible builds and significantly 

accelerated the delivery of new releases. Build times 

were further optimized through the use of dependency 

caching in GitHub Actions; in particular, caching the 

Cargo and target directories with the rust-cache action 

proved highly effective for Rust-based systems with 

complex dependency graphs. 

Automated enforcement of code quality standards was 

integrated into every CI stage. Static analysis was 

performed using cargo clippy, formatting compliance 

was verified via cargo fmt -- --check, and test coverage 

metrics were collected using cargo-llvm-cov. These tools 

ensured that potential issues were identified early in the 

development cycle—prior to code integration—thereby 

improving consistency and maintainability across the 

codebase. 

Deployment workflows were managed through Amazon 

Web Services (AWS), with orchestration pipelines 

issuing commands such as aws ecs update-service and 

aws eks update-kubeconfig to perform seamless 

updates of containerized services and Kubernetes 

clusters. To prevent configuration drift across 

environments, deployment logic was isolated using 

github.ref conditions in conjunction with scoped 

environment variables. 

Release processes were governed by semantic 

versioning, with Git tags in the v*.*.* format triggering 

automated deployment and rollback mechanisms. This 

workflow reduced the risk of human error, minimized 

manual intervention, and significantly tightened the 

feedback loop between development and production 

environments. 



The American Journal of Engineering and Technology 100 https://www.theamericanjournals.com/index.php/tajet 
 

Monitoring and Observability Systems 

In the early stages of one project, the absence of a 

structured observability framework significantly delayed 

the detection and resolution of critical production 

issues. Latency spikes in API responses, inconsistencies 

in transaction processing, and instances of CPU 

exhaustion were only recognized post hoc—typically 

following user reports or service disruptions. The lack of 

centralized monitoring and alerting mechanisms led to 

prolonged recovery times and diminished operational 

responsiveness. 

To mitigate these challenges, observability practices 

were extended across the full system stack. At the 

infrastructure level, telemetry was collected for key 

resource indicators, including CPU utilization, memory 

allocation, disk input/output operations, and network 

throughput. These metrics were monitored both at the 

host and container levels to enable fine-grained 

resource tracking in containerized deployments. 

At the application layer, operational telemetry 

encompassed API latency distributions, request 

throughput, error rates (HTTP 4xx/5xx), and transaction 

queue depth. These indicators were instrumental in 

assessing the health and responsiveness of core 

business logic components under varying load 

conditions. 

In addition, blockchain-specific metrics were captured 

to provide insight into protocol-layer behavior. 

Monitored signals included current block height, 

reorganization frequency, mempool congestion, and gas 

consumption patterns. These metrics supported early 

detection of chain instabilities and facilitated 

preemptive remediation of network-level anomalies. 

Centralized log aggregation was performed using the 

ELK stack and Grafana Loki, enabling efficient log 

retrieval and correlation during incident response. For 

deeper performance diagnostics, distributed tracing — 

implemented via OpenTelemetry and Jaeger — enabled 

end-to-end request flow analysis across microservices, 

facilitating root cause identification for latency and 

reliability regressions. 

Complementing passive monitoring, synthetic blackbox 

checks were deployed to continuously verify the 

availability and responsiveness of critical endpoints, 

including RPC interfaces. Alerting workflows were 

managed through Alertmanager, with notification 

routing to operational communication platforms such as 

Slack and Telegram. Alerting logic was governed by 

service-level indicators (SLIs) and service-level 

objectives (SLOs), combining static thresholds with 

anomaly detection techniques to minimize false 

positives and prioritize events requiring immediate 

intervention. 

Conclusion 

Engineering failures in blockchain startups extend 

beyond project delays; they erode user trust, complicate 

maintainability, and in many cases, introduce 

vulnerabilities that compromise asset security. The root 

causes of such failures are varied, encompassing the 

unnecessary development of custom protocols, the 

absence of well-defined architectural patterns, and the 

lack of systematic observability and operational 

visibility. 

The case studies presented in this paper highlight that 

resilience in blockchain infrastructure is not a product of 

novelty but of disciplined engineering. Systems that rely 

on mature, standardized protocols and libraries—rather 

than bespoke, low-level implementations—tend to 

exhibit greater maintainability and fault tolerance. 

Modular architectural designs with strict separation of 

concerns support adaptability and scalability, while 

formalized inter-chain communication via protocols 

such as IBC introduces robustness in cross-network 

interactions. Additionally, automation of build, 

deployment, and monitoring pipelines enhances 

reproducibility and operational responsiveness, 

minimizing downtime and human error. 

Together, these practices offer a pragmatic foundation 

for the development of secure, auditable, and scalable 

blockchain systems. As the ecosystem continues to 

mature, adopting these engineering principles will be 

essential not only for technical excellence but also for 

maintaining long-term trust in decentralized 

technologies. 

References 

1. ConsenSys. (2021). Poly Network Hack Analysis. 

ConsenSys Diligence Report. Retrieved from 

https://consensys.net/diligence. 

 

https://consensys.net/diligence


The American Journal of Engineering and Technology 101 https://www.theamericanjournals.com/index.php/tajet 
 

2. Cosmos. (2022). Inter-Blockchain Communication 

Protocol Specification. Cosmos SDK Documentation. 

Retrieved from https://docs.cosmos.network. 

 

3. Dannen, C. (2017). Introducing Ethereum and 

Solidity: Foundations of Cryptocurrency and 

Blockchain Programming for Beginners. Apress. 

 

4. Knuth, D. E. (1974). Structured Programming with go 

to Statements. ACM Computing Surveys (CSUR), 

6(4), 261–301. 

 

5. Wood, G. (2016). Polkadot: Vision for a 

Heterogeneous Multi-Chain Framework. Web3 

Foundation White Paper. 

https://docs.cosmos.network/
https://docs.cosmos.network/

