
The American Journal of Engineering and Technology 240 https://www.theamericanjournals.com/index.php/tajet

 TYPE Original Research

PAGE NO. 240-247

DOI 10.37547/tajet/Volume07Issue06-25

OPEN ACCESS

SUBMITED 17 April 2025

ACCEPTED 24 May 2025

PUBLISHED 30 June 2025

VOLUME Vol.07 Issue 06 2025

CITATION

Dhanasekar Elumalai. (2025). The Role of Chaos Engineering in DevSecOps
Strengthening Security and Compliance in Agile. The American Journal of
Engineering and Technology, 7(06), 240–247.
https://doi.org/10.37547/tajet/Volume07Issue06-25.

COPYRIGHT

© 2025 Original content from this work may be used under the terms

of the creative commons attributes 4.0 License.

The Role of Chaos

Engineering in DevSecOps

Strengthening Security

and Compliance in Agile

Dhanasekar Elumalai
Fidelity investments, USA

Abstract: Recently, the DevSecOps practice has

improved companies’ agile development of secure

software, reducing problems and improving return on

investment. However, overreliance on security tools and

traditional security techniques can facilitate the

implementation of vulnerabilities in different stages of

the software lifecycle. The evolution, principles, and

importance of DevSecOps in contemporary software

engineering. DevSecOps arises from the recognition that

traditional security measures often lag the rapid pace of

DevOps development cycles, leading to vulnerabilities

and breaches. By integrating security early and

continuously throughout the software development

lifecycle, DevSecOps aims to proactively identify and

mitigate risks without impeding the agility and speed of

DevOps practices. The core principles of DevSecOps,

emphasizing automation, collaboration, and cultural

transformation. Automation streamlines security

processes, enabling the automated testing and

validation of code for vulnerabilities. Collaboration

fosters communication and shared responsibility among

developers, operations, and security teams, breaking

down silos and promoting a collective approach to

security. Cultural transformation involves cultivating a

security-first mindset across the organization, where

security is not an inherent part of the development

process. The importance of DevSecOps cannot be

overstated in today's digital landscape, where cyber

threats are omnipresent, and the cost of security

breaches is staggering. By integrating security into every

stage of the DevOps pipeline, organizations can enhance

their resilience to cyber-attacks, comply with regulatory

requirements, and build trust with customers.

DevSecOps represents a holistic approach to software

https://doi.org/10.37547/tajet/Volume07Issue06-25
https://doi.org/10.37547/tajet/Volume07Issue06-25

The American Journal of Engineering and Technology 241 https://www.theamericanjournals.com/index.php/tajet

development that prioritizes security without

compromising speed or innovation. Embracing

DevSecOps principles is imperative for organizations

seeking to stay ahead in complex and hostile digital

environment.

KEYWORDS

DevSecOps; Security; Practices; Emergence; DevOps;

Review.

INTRODUCTION

DevSecOps is a methodology that integrates security

practices into the DevOps process, ensuring security

measures are implemented and maintained throughout

the entire software development lifecycle. It emphasizes

collaboration, automation, and cultural transformation

to enable faster delivery of secure and reliable software.

The DevOps pipeline is set of practices and tools used to

automate the software delivery process, from code

development to deployment and operations. It typically

includes stages such as coding, building, testing,

deployment, monitoring, and feedback. The goal of the

DevOps pipeline is to streamline and accelerate the

delivery of high-quality software by breaking down silos

between development and operations teams and

promoting continuous integration and continuous

delivery (CI/CD) practices. Traditionally, security has

been treated as separate phase in software

development lifecycle, added as afterthought by

separate security team. This approach can lead to

security vulnerabilities and risks being overlooked too

late in development process, resulting in costly and

time-consuming security breaches. With increasing

frequency and sophistication of cyber threats,

organizations no longer afford to treat security as

isolated concern. DevSecOps acknowledges importance

of security in software development and address

vulnerabilities and security risks early and continuously

throughout the DevOps pipeline. By integrating security

in every stage of development process, DevSecOps helps

organizations mitigate security threats, comply with

regulatory requirements, and build trust with

customers.

1. Principles of DevSecOps

DevSecOps emerged as response to limitations of

traditional security approaches in fast-paced DevOps

environments. The evolution of DevSecOps be traced

back to early efforts to integrate security into DevOps

pipeline, security-focused DevOps tools and practices.

Key milestones include publication of influential papers

and frameworks advocating DevSecOps principles, as

the development of specialized security tools and

technologies to support DevSecOps practices. There is

significant increase in adoption of DevSecOps practices

across industries, driven by factors such as rise of cloud

computing, the proliferation of cyber threats, and

growing regulatory pressure ensuring security of

software systems. Organizations are increasingly

recognizing benefits of DevSecOps in improving security

posture, faster time-to-market, and greater operational

efficiency. As a result, DevSecOps is becoming

increasingly mainstream, with many organizations

integrating security into DevOps pipelines and a culture

of security-first development [1].

Automation a crucial role in DevSecOps enabling rapid

and consistent testing and validation of security

measures throughout development process. Automated

security tests help identify vulnerabilities early in

development lifecycle, allowing teams address promptly

and reduce risk of security breaches. These include static

code analysis tools for scanning code for potential

security issues, dynamic application security testing

(DAST) tools simulating real-world attacks, and

container security tools scanning container images for

vulnerabilities. DevSecOps promotes collaboration and

communication between traditionally siloed

development, operations, and security teams. Breaking

down these silos, teams share insights, expertise, and

responsibilities, leading to better alignment and

coordination addressing security concerns. Cross

functional collaboration involves bringing individuals

together from different disciplines, as development,

operations, security, and quality assurance, working

together towards common security goals. This

collaboration fosters understanding of security

requirements and challenges across teams, leading to

effective security measures. DevSecOps requires a

cultural shift prioritizing security throughout the

software development lifecycle. This involves a mindset

where security is considered fundamental aspect of

software development, rather a separate concern. In

DevSecOps, security is everyone's responsibility, not

responsibility of security team. Fostering a culture of

shared responsibility involves empowering developers,

The American Journal of Engineering and Technology 242 https://www.theamericanjournals.com/index.php/tajet

operators, and other stakeholders taking ownership of

security tasks and make security-conscious decisions in

respective roles.

2. Integrating Security Practices into DevOps

Pipeline

Providing developers with training and resources on

secure coding practices helping to write code that is

resilient to security threats. This includes educating

developers on common vulnerabilities, secure coding

guidelines, and best practices for writing secure code.

Establishing and enforcing secure coding guidelines and

standards ensures consistency and adherence to

security best practices across development teams.

These guidelines cover areas as input validation,

authentication, authorization, and data encryption.

Integrating security testing into CI/CD pipelines allowing

for automated and continuous validation of security

controls throughout the software delivery process. This

includes running security tests as static code analysis,

dynamic application security testing (DAST), and

dependency scanning the automated build and

deployment process. Static analysis, dynamic analysis,

penetration testing, etc.

Security testing encompasses various techniques and

methodologies for identifying and assessing security

vulnerabilities in software applications [4]. This includes

static analysis, examining code for security flaws

executing it, dynamic analysis, which tests application

runtime environment, and penetration testing,

simulating real-world attacks uncovering vulnerabilities.

Infrastructure as Code involves managing and

provisioning infrastructure using code and automation

tools. By implementing security controls directly in

infrastructure code, the configuration files and scripts,

organizations ensure security measures are consistently

applied across environments. Enabling organizations to

define and deploy infrastructure configurations in

repeatable and consistent manner, reducing risk of

configuration drift and misconfigurations leading

security vulnerabilities. By treating infrastructure as

code, organizations apply same versioning, testing, and

review processes to infrastructure changes as they do

for application code.

DevSecOps emphasizes integration of security practices

throughout software development lifecycle, enabling

teams to detect and address security vulnerabilities

early on. By incorporating automated security testing

and continuous monitoring into development pipeline,

DevSecOps facilitates proactive identification of

vulnerabilities, allowing organizations fixing issues

before they being exploited by attackers. This proactive

approach helps overall security posture of software

systems, reducing the risk of potential security breaches.

3. Reduced attack and likelihood of breaches:

Through implementation of DevSecOps practices,

organizations minimize their attack surface potential

points of entry for cyber threats. Integrating security

measures such secure coding practices, vulnerability

scanning, and access controls into development process,

DevSecOps reduces likelihood of successful attacks. This

reduction in attack surface area, coupled with proactive

identification and mitigation of vulnerabilities, lowers

risk of security breaches and data compromises.

DevSecOps assists organizations meeting regulatory

standards and compliance mandates embedding

security into development process. Regulations such as

GDPR, HIPAA, PCI DSS, and other organizations

implement specific security measures protecting

sensitive data and ensure privacy and confidentiality.

DevSecOps facilitates compliance with regulations by

automating security controls, conducting regular

security assessments, and documenting security

measures, thereby reducing risk of non-compliance and

associated penalties. By incorporating security into

every stage of software development lifecycle,

DevSecOps enables organizations demonstrate their

commitment to security best practices. This includes

industry recognized security frameworks NIST

Cybersecurity Framework or CIS Controls adhering to

established security guidelines and standards [4].

By demonstrating these best practices, organizations

build trust with customers, partners, and regulatory

bodies, showcasing dedication protecting sensitive

information and mitigating security risks. DevSecOps

play crucial role building trust with customers and

stakeholders ensuring security and reliability of software

products and services. Prioritizing security throughout

development process, organizations demonstrate their

commitment to protecting customer data and sensitive

information. This fosters trust and confidence in

organization's ability delivering secure and dependable

The American Journal of Engineering and Technology 243 https://www.theamericanjournals.com/index.php/tajet

solutions, enhancing customer satisfaction and loyalty.

In the security incident, organizations have

implemented DevSecOps practices to better equip

responding effectively, minimizing impact on reputation

and brand. Proactively identifying and addressing

vulnerabilities, organizations reduce likelihood and

severity of security incidents. Additionally, maintaining

transparent communication and demonstrating

commitment to remediation and improvement,

organizations mitigate reputational damage and rebuild

trust with customers and stakeholders, ultimately

preserving their reputation and credibility in market.

How can an organization successfully integrate a DevOps

environment and a chaos engineering methodology to

increase enterprise availability through increased

resilience and reliability? The central question to a broad

and general question addition sub-questions could be

posed. The following sub-questions relate aspects of

integration of DevOps or DevSecOps environment with

chaos engineering methodology supporting gathering

data:

1. How does the implementation of chaos engineering

methodologies augment the DevOps/DevSecOps

environment providing available, robust, and reliable

systems?

2. What is the intersecting and overlapping areas

between chaos engineering and DevOps/DevSecOps

that provide the most synergy to improve system

availability

Several research methods including questioning, data

collection, data analysis, interpretation, and validation

study focused on understanding how integration of

distinct methodologies of chaos engineering and

DevOps could improve software system resiliency and

reliability. Although DevOps is relatively new

methodology, is far more mature in development and

industry adoption than chaos engineering, allowing

identifying practices leading to improved system

reliability, resilience, and availability. The evaluation of

DevOps best practices from a chaos engineering

perspective, together with examination of current

processes and methodologies in place, provided

perspective to effective method and criteria for

selection of semi-structured interview questions

elaborating the conceptual framework. Both DevOps

and chaos engineering disciplines have processes and

tools, to purpose the synergetic elements between

DevOps and chaos engineering leading to greater

systematic availability and robustness either

methodology acting independently.

4. The Importance of Chaos Engineering in

DevSecOps

Chaos engineering promotes a security-focused culture

enhancing collaboration across development,

operations, and security teams throughout the software

development lifecycle (SDLC). This proactive approach

ensures that security prioritized at every stage, thus

reducing vulnerabilities and risks in DevSecOps [6].

Advantages of integrating Chaos engineering in

Devsecops

4.1. Proactive Vulnerability Management: By

continuously testing systems under various

failure scenarios, organizations can identify and

remediate security vulnerabilities before they

can be exploited during a real incident.

4.2. Enhanced Compliance: DevSecOps emphasizes

regulatory compliance, ensuring that chaos

testing adheres to necessary security

benchmarks and standards.

4.3. Continuous Monitoring: Real-time insights

from chaos tests enable ongoing monitoring of

security controls’ effectiveness, helping

organizations adapt and respond to emerging

threats promptly.

5.1.1. Collaboration and Knowledge Sharing: By

bringing together development, security, and

operations teams, DevSecOps fosters a culture of

collaboration and knowledge transfer, allowing for the

sharing of best practices in chaos testing [2].

Tools and Technologies for DevSecOps in Chaos Testing

Implementing the checks outlined above requires the

right set of tools. Below are some commonly used

technologies that can assist senior SREs integrating

DevSecOps practices into chaos testing:

1. Chaos Testing Tools

The American Journal of Engineering and Technology 244 https://www.theamericanjournals.com/index.php/tajet

• Gremlin: An advanced chaos engineering

platform that allows users to create and run

chaos experiments with ease. It includes built-in

safety features to manage risks effectively.

• Chaos Monkey: Part of the Simian Army, Chaos

Monkey randomly terminates instances

ensuring that applications can tolerate instance

failures.

• Litmus: An open-source chaos engineering

platform provides ability creating and managing

chaos experiments across various

environments.

Security Tools

• OWASP ZAP: An open-source DAST tool for

identifying vulnerabilities in applications during

chaos tests. It can be integrated into CI/CD

pipeline to automate assessments [4].

• Snyk: A developer-centric tool focused

identifying and fixing vulnerabilities within

open-source libraries and containers.

• Aqua Security: Focuses on cloud-native

security, providing scanning and security

measures for containers and serverless

applications.

5.1.2. Monitoring and Logging Tools

• Splunk: A powerful tool for monitoring, logging,

and analyzing machine-generated data, helping

teams detect threats and anomalies during

chaos engineering experiments.

• ELK Stack (Elasticsearch, Logstash, Kibana): A

popular open-source solution for collecting,

storing, and analyzing log data from different

sources.

• Prometheus: A monitoring system designed for

reliability and scalability, Prometheus collects

metrics and offers powerful querying

capabilities.

Automation Tools

• Jenkins: A widely used CI/CD tool allowing for

automation of deployment processes, including

running security checks before chaos

experiments [5].

• GitHub Actions: Automate workflows right in

GitHub repositories, easily integrating testing

and security processes into the version control

system.

• Terraform: Infrastructure as code tool that

allows for consistent and secure configuration,

enabling automated deployment of

infrastructure environments for chaos tests.

Major cloud providers, such as AWS, also offer chaos

engineering tools, including AWS Fault Injection

Simulator and AWS Resilience Hub. Additionally, the

integration of security orchestration tools for chaos

testing enhances the ability simulating real-world cyber

threats, further strengthening the resilience of systems

in unpredictable conditions.

These tools primarily aim to use chaos engineering to

avert availability failures. However, despite its potential

advantages, the security sector has yet to fully embrace

chaos engineering, even though its principles could offer

significant benefits for enhancing cybersecurity.

As organizations continue to realize value of proactive

cybersecurity, many are turning to Managed Security

Chaos Engineering services. These services provide

structured, expert-led approach to simulating real-world

security threats, helping organizations uncover

vulnerabilities before they become a problem.

By utilizing Managed Security Chaos Engineering

services, businesses ensure that their systems are tested

thoroughly and consistently, resulting in improved

resilience and a more robust security framework.

5. ChaosSecOps in Action on AWS

An e-commerce platform on AWS experiences

performance slowdowns and is potential security

vulnerabilities. The platform handles large volume of

transactions and stores sensitive customer data. They

want to improve the resilience and security of their

system using ChaosSecOps [3].

The American Journal of Engineering and Technology 245 https://www.theamericanjournals.com/index.php/tajet

1 Data Flow:

"Product Listing" Request The following describes the

successful flow of a user request to view a list of

products. It assumes no security issues are detected,

and no errors occur.

1. Internet (User clicks 'View Products'): The process

begins with a user action: clicking a link or button on the

e-commerce website to view products (e.g., browsing a

category, performing a search). This generates an HTTP

(or HTTPS) request.

2. AWS WAF (Checks for malicious requests): The user's

request first encounters the AWS Web Application

Firewall. The WAF analyzes the request, looking for

patterns that indicate malicious activity (e.g., SQL

injection attempts, cross-site scripting payloads, known

attack signatures). In this successful flow, the WAF

determines the request is legitimate and allows it to

pass.

3. API Gateway (Routes to Lambda_PL): The request,

now cleared by the WAF, reaches the AWS API Gateway.

The API Gateway acts as a reverse proxy. Based on the

request's URL, HTTP method, and potentially other

headers, it determines the appropriate backend service

to handle the request. In this flow, the API Gateway

identifies the request as one for [3] product listing and

routes it to the Lambda_PL function (the Lambda

function specifically designed for handling product

listing requests).

4. AWS Lambda (Product Listing - Lambda_PL) (Prepares

DB query): The Lambda_PL function is invoked by the

API Gateway. The request data (e.g., query parameters

like category, keywords, filters) is passed to the Lambda

function as input. The Lambda function's code contains

the logic to process this request. It prepares a SQL query

to retrieve the relevant product information from the

database. This query will likely include WHERE clauses

based on the user's request (e.g., WHERE category =

'shoes' AND color = 'red’). The query is not executed

within the Lambda function itself; rather the Lambda

constructs the query string.

5. AWS RDS (PostgreSQL - Read Replica) (Executes query,

returns data): The Lambda_PL function establishes a

connection to the Read Replica of the AWS RDS

PostgreSQL database. Using a Read Replica for read-only

operations like product listing is a best practice for

scalability and performance. The Lambda function sends

the prepared SQL query to the Read Replica. The Read

Replica executes the query against the product catalog

data. The Read Replica returns the results of the query

(a set of product data matching the criteria) to the

Lambda_PL function.

6. Lambda_PL (Formats data): The Lambda_PL function

receives the raw data from the database. It then formats

this data into a suitable response format for the client

(usually JSON). This might involve structuring the data,

adding additional fields, or converting data types. The

Lambda_PL function returns the formatted JSON

response to the API Gateway.

7. API Gateway --> WAF: The API Gateway sends the

response back towards the user. The response passes

back through the WAF.

8. WAF --> Internet (User receives product listing): The

WAF, having already vetted the initial request, typically

allows the response to pass through without

modification (unless specific response filtering rules are

configured, which is less common). The response goes

to the internet. The user's web browser receives the

JSON response. The browser's JavaScript code (or the

mobile app) renders this JSON data into a visually

appealing product listing (images, names, prices, etc.).

The user sees the list of products.

9. AWS CloudWatch: Throughout the entire process,

CloudWatch is continuously collecting metrics and logs

from all the involved AWS services (WAF, API Gateway,

Lambda, RDS). This data is crucial for monitoring

performance, identifying bottlenecks, and detecting

errors.

7. Management Services Flow: Supporting Processes

1. IAM: Each AWS service (Lambda, API Gateway, RDS)

operates with specific IAM roles that grant it the

necessary permissions to perform its tasks (e.g., Lambda

has permission to read from RDS).

2. Guard Duty: Provides real-time threat detection -

monitors for suspicious activities and unusual patterns

across the environment.

3. CloudTrail: Records all AWS API activity - creates an

The American Journal of Engineering and Technology 246 https://www.theamericanjournals.com/index.php/tajet

audit trail of who did what and when for compliance and

security analysis.

4. CI/CD Pipeline: Automates deployment - handles code

testing, security validation, and controlled releases,

including pre-deployment chaos testing to verify system

resilience.

These background services don't handle user requests

directly but form the operational foundation that keeps

the main application secure, compliant, and regularly

updated.

8. DevOps Toolchain

CI/CD: AWS Code Pipeline: Orchestrates the build, test,

and deployment process. Used to integrate chaos

experiments as a stage.

AWS Code Build: Compiles the code for the Lambda_PL

function (and other components, even if not directly

used in this flow).

AWS Code Deploy: Deploys the Lambda_PL function

(and other components) to the appropriate AWS

environments (staging, production).

Configuration Management:

AWS CloudFormation: Defines and provisions the AWS

infrastructure (Lambda, RDS, API Gateway, WAF, etc.) as

code. Crucial for ensuring consistent environments for

testing.

Ansible: (Optional - include if used for any configuration

management tasks within instances, e.g., configuring

the PostgreSQL database).

Monitoring: AWS CloudWatch: Collects metrics and logs

from all the relevant AWS services (Lambda, RDS, API

Gateway, WAF).

Prometheus: (Optional - include if used for additional

monitoring, especially if you have a hybrid environment

or use it with Kubernetes).

Grafana: (Optional - include if used for visualizing

Prometheus metrics).

Security Scanning: AWS Inspector: Automated security

assessments for AWS resources (used to establish

baseline security posture).

SonarQube: Static code analysis for the Lambda_PL code

(and other codebases). Integrated into Code Build.

OWASP ZAP: Dynamic application security testing, used

to simulate attacks against the WAF (in the staging

environment).

Chaos Engineering: Gremlin: Used for conducting the

chaos experiments (RDS failover, Lambda resource

exhaustion, WAF testing).

Continuous Integration: Integrated the RDS failover and

Lambda resource exhaustion experiments into the Code

Pipeline as post-deployment steps in the staging

environment.

9. CONCLUSION

DevSecOps represents holistic approach to software

development integrating security practices seamlessly

into the DevOps pipeline [1]. Prioritizing security,

fostering collaboration across teams, and embracing

automation and cultural transformation, organizations

enhance their security posture and resilience to cyber

threats. In today's digital landscape, cyber threats are

increasingly sophisticated and regulatory requirements

becoming more stringent, embracing DevSecOps

principles and practices essential for organizations to

protect sensitive data, ensure regulatory compliance,

and maintain trust and credibility with customers and

stakeholders. Organizations encourage to invest in

training, tools, and technologies effectively implement

DevSecOps and stay ahead of emerging threats and

regulatory requirements. By integrating security into

every aspect of software development lifecycle and

fostering culture of security awareness and

collaboration, organizations can build robust and secure

software solutions meeting the demands of today's

dynamic and evolving threat landscape.

REFERENCES

Gupta, Subrat. The Art of DevOps Engineering. Subrat

Gupta, 2024.

Runsewe, Oluwayemisi, Olajide Soji Osundare, Samuel

Olaoluwa, and Lucy Anthony Akwawa Folorunsho. "End-

to-End systems development in agile environments: Best

practices and case studies from the financial

sector." International Journal of Engineering Research

The American Journal of Engineering and Technology 247 https://www.theamericanjournals.com/index.php/tajet

and Development 20, no. 08 (2024): 522-529.

Merkow, Mark. Secure, resilient, and agile software

development. Auerbach Publications, 2019.

Abrahams, T.O., Ewuga, S.K., Kaggwa, S., Uwaoma, P.U.,

Hassan, A.O. and Dawodu, S.O., 2023. Review of

strategic alignment: Accounting and cybersecurity for

data confidentiality and financial security

Akbar, M.A., Smolander, K., Mahmood, S. and Alsanad,

A., 2022. Toward successful DevSecOps in software

development organizations: A decision-making

framework. Information and Software Technology, 147,

p.106894.

Rosenthal, C., Jones, N., & Allspaw, J. (2020). Chaos

Engineering: System Resiliency in Practice. O'Reilly

Media.

